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Abstract. In the present paper, the symmetries admitted by semiconformal curvature tensor in semiconfor-
mally symmetric spacetime have been studied and we show that a four-dimensional spacetime admitting
a proper semiconformal symmetry is semiconformally flat or of the Petrov type N. It is also shown that
a four-dimensional spacetime with divergence-free semiconformal curvature tensor admitting a proper
semiconformal symmetry is locally of the Petrov type O or has four distinct principal null directions. In
both the cases, we found that if the spacetime admits an infinitesimal semiconformal Killing vector field
then the scalar curvature of the spacetime vanishes.

1. Introduction

The existence of one or more Killing vector fields or homothetic vector fields are required for solving
Einstein’s field equations. In fact, most of the familiar solutions depend on this hypothesis and these vector
fields correspond to spacetime symmetries, commonly known as collineations. Katzin et al. ([5], [6]),
pioneers of the concept of symmetries of spacetime, defined these symmetries through the vanishing of Lie
derivatives of certain tensor with respect to a vector field and this vector may be time like, spacelike or null.
For example, Lie derivative of metric tensor gives motion and vector field corresponding to this symmetry is
called Killing vector field. The symmetries defined through semiconformal and conformal curvature tensors
preserve the casual character of the spacetime manifold. The semiconformal curvature tensor is a special
case of conformal curvature tensor and is invariant under the conharmonic transformation. Collinson and
French ([2]) obtained that a vacuum spacetime with a proper conformal symmetry is either locally flat or
of Petrov type N. Later on, Eardley et al. ([3]) investigated that asymptotically flat spacetimes with certain
geometric and energy conditions with a proper conformal symmetry are of Petrov type O. Garfinkle and
Tian ([4]) have studied that the four-dimentional Einstein spaces with proper conformal symmetry are of
Petrov type O, which characterize de Sitter and anti-de Sitter cosmological models. For dimensions n > 3,
Kerckhove ([12]) pointed out that a non-Ricci-flat Einstein manifold with proper conformal symmetry
is locally warped product whose fiber is Einstein and base has constant sectional curvature, provided
that the span of closed conformal vector fields is non–degenrate and has a constant dimension. In the two
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The third author supported by the Grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea.
Email addresses: musavvir.alig@gmail.com (Musavvir Ali), pundir.naeem@gmail.com (Naeem Ahmad Pundeer),

yjsuh@knu.ac.kr (Young Jin Suh)



M. Ali et al. / Filomat 33:16 (2019), 5191–5198 5192

different cases, viz. conformal symmetric spacetime and a four dimensional spacetime with divergence-free
Weyl conformal curvature tensor, Sharma ([13], [14]) proved that such spacetimes with proper conformal
symmetry are either locally flat or of the Petrov type N. Later on, Abdussattar and Babita Dwivedi [1],
discussed the above cases for conharmonic curvature tensor. Recently, De and Suh [15] studied the Weakly
semiconformally symmetric manifolds. Motivated by the above works, we have studied the symmetric and
divergence-free semiconformal curvature tensor with proper semiconformal symmetry of the spacetime.
We have proved the following results

Theorem 1.1. If a semiconformally symmetric spacetime admits a proper semiconformal symmetry, then the scalar
curvature of the spacetime vanishes and the spacetime is either semiconformally flat or of Petrov type N.

Theorem 1.2. If ξ is a proper semiconformal symmetry with the divergence-free semiconformal curvature tensor,
then the scalar curvature of the spacetime vanishes and the spacetime is either semiconformally flat or of Petrov type
N.

2. Preliminaries

Let (Mn, 1) denotes an n−dimensional Riemannian manifold with nondegenerate metric 1. The conharmonic
curvature tensor is given by Z. Ahsan ([17])

Lh
bcd = Rh

bcd +
1

n − 2
(δh

c Rbd − δ
h
dRbc + 1bdRh

c − 1bcRh
d), (1)

which is invariant under conharmonic transformation introduced by Ishii([16]), where Rh
bcd, Rab, respectively

Riemann and Ricci curvature tensor. J. Kim ([7]) has introduced the notion of semiconformal curvature
tensor as

Ph
bcd = −(n − 2)BCh

bcd + [A + (n − 2)B]Lh
bcd, (2)

This tensor is also invariant under the same transformation discussed above, defined by ([8]).
Here Ch

bcd is a Weyl conformal curvature tensor defined by

Ch
bcd = Rh

bcd +
1

n − 2
(δh

c Rbd − δ
h
dRbc + 1bdRh

c − 1bcRh
d) +

R
(n − 1)(n − 2)

(δh
d1bc − δ

h
c1bd), (3)

the constants A and B are not simultaneously zero. In particular, for A = 1 and B = − 1
n−2 , the semi-

conformal curvature tensor reduces to Weyl conformal curvature tensor, and also for A = 1 and B = 0, it
reduces to conharmonic curvature tensor. Further in our paper we assume that A , 0, B , 0 and A + 2B , 0
because for the case A + 2B = 0 the two tensors Ph

bcd and Ch
bcd become equivalent provided B , 0.

The semiconformal curvature tensor satisfies the following properties.

Phbcd = −Pbhcd = −Phbdc = Pcdhb, (4)

and

Phbcd + Pchbd + Pbchd = 0. (5)

In view of equations (1) and (3), equation (2) takes the following form

Ph
bcd = A[Rh

bcd +
1
2

(δh
c Rbd − δ

h
dRbc + 1bdRh

c − 1bcRh
d)] −

BR
3

(δh
d1bc − δ

h
c1bd), (6)
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after contraction over h and d we get

Pbc = −
(A + 2B

2

)
R1bc. (7)

This is also invariant under conharmonic transformation.

Using the equations (3) and (6), we get

Ph
bcd = ACh

bcd −
1
3

[
δh

dPbc − δ
h
c Pbd

]
(8)

We shall be using the following definitions in our investigations

Definition 2.1. A four-dimensional spacetime is said to admit a conformal motion along a vector field ξ if

£ξ1ab = 2ψ1ab, (9)

where ψ = 1
4ξ

d
;d.

Definition 2.2. A four-dimensional spacetime is called conformal collineation (Conf C), if there exist a vector field ξ
such that

£ξΓb
cd = δb

cψ;d + δb
dψ;c − 1cd1

bmψ;m (10)

where ψ = 1
4ξ

d
;d.

Recently, M. Ali et al. ([10]) introduced a new symmetry as

£ξPh
bcd = 0, (11)

and called it a semiconformal curvature collineation. For more literature on symmetries see Katzin et al.
([5]).

3. Main Results

Here we shall prove one proposition and the theorems stated in section 1. We then also obtain the
results, which are arranged as lemma and corollary in this section.

Proposition 3.1. If the divergence of semiconformal curvature vanishes and the scalar curvature is covariantly
constant, then the semiconformal curvature satisfies the Bianchi’s second identity.

Proof. Taking covariant derivative of equation (6) with respect to l, we get

Ph
bcd;l = A[Rh

bcd;l +
1
2

(δh
c Rbd;l − δ

h
dRbc;l + 1bdRh

c;l − 1bcRh
d;l)] −

BR;l

3
(δh

d1bc − δ
h
c1bd). (12)

Permutting cyclically twice for the indices (c, d, l) equation (12) leads to

Ph
bdl;c = A[Rh

bdl;c +
1
2

(δh
dRbl;c − δ

h
l Rbd;c + 1blRh

d;c − 1bdRh
l;c)] −

BR;c

3
(δh

l 1bd − δ
h
d1bl). (13)
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and

Ph
blc;d = A[Rh

blc;d +
1
2

(δh
l Rbc;d − δ

h
c Rbl;d + 1bcRh

l;d − 1blRh
c;d)] −

BR;d

3
(δh

c1bl − δ
h
l 1bc). (14)

Adding the equations (12), (13), (14) and using the Bianchi’s second identity satisfied by Riemann curvature
tensor, we get

Ph
bcd;l + Ph

bdl;c + Ph
blc;d =

A
2

[
δh

c (Rbd;l − Rbl;d) + δh
d(Rbl;c − Rbc;l) + δh

l (Rbc;d − Rbd;c)
]

+
A
2

[
1bd(Rh

c;l − Rh
l;c) + 1bc(Rh

l;d − Rh
d;l) + 1bl(Rh

d;c − Rh
c;d)

]
+

B
3

[
δh

d(1blR;c − 1bcR;l) + δh
c (1bdR;l − 1blR;d)

+ δh
l (1bcR;d − 1bdR;c)

]
. (15)

Now contracting over h and l, equation (12) reduces to

Ph
bcd;h = A

[
Rh

bcd;h +
1
2

(
Rbd;c − Rbc;d + 1bdR;c − 1bcR;d

)]
−

B
3

(
1bcR;d − 1bdR;c

)
. (16)

It is known that the Bianchi second identity after contraction is

Rh
bcd;h = (Rbc;d − Rbd;c). (17)

Now from equations (16) and (17), we have

Ph
bcd;h =

A
2

(
Rbc;d − Rbd;c

)
−

(3A + 2B
6

)(
1bcR;d − 1bdR;c

)
(18)

But given that the divergence of semiconformal curvature tensor vanishes, equation (15) reduces to the
following form by using equation (18)

Ph
bcd;l + Ph

bdl;c + Ph
blc;d = (A + B)[δh

c (1bdR;l − 1blR;d) + δh
d(1blR;c − 1bcR;l)

+ δh
l (1bcR;d − 1bdR;c)]. (19)

Moreover, if the scalar curvature tensor is covariantly constant, then equation (19) leads to

Ph
bcd;l + Ph

bdl;c + Ph
blc;d = 0, (20)

which implies that the semiconformal curvature tensor satisfies the Bianchi’s second identity.

Sharma investigated the proper conformal symmetries of conformal symmetric spacetimes using the
following equation (c.f., [11])

Chbcd;l = 0, (21)

It has been proved that the conformal symmetric spacetimes, admitting an infinitesimal symmetry are
conformally flat or of Petrov type N. Also, it is known that Petrov type N gravitational fields represent the
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plane gravitational waves with parallel rays, provided the Einstein tensor is invariant under the infinitesimal
conformal symmetry. Thus, the symmetry of semiconformal symmetric spacetime may be defined as

Phbcd;l = 0. (22)

where Phbcd is semiconformal curvature tensor. We shall now prove our first main theorem as follows:

Proof of Theorem 1.1 The commutation formula for the semiconformal curvature tensor (in an analogous
manner as given by Yano [9]).

£ξ
(
Ph

bcd;l

)
−

(
£ξPh

bcd

)
;l

=
(
£ξΓh

lm

)
Pm

bcd −
(
£ξΓm

lb

)
Ph

mcd −
(
£ξΓm

lc

)
Ph

bmd

−

(
£ξΓm

ld

)
Ph

bcm. (23)

Making use of equations (10), (11) and (22), equation (23) may take the form

(
δh

lψ;m + δh
mψ;l − 1lmψ

h
;

)
Pm

bcd −
(
δm

l ψ;b + δm
b ψ;l − 1lbψ

m
;

)
Ph

mcd

−

(
δm

l ψ;c + δm
c ψ;l − 1lcψ

m
;

)
Ph

bmd −
(
δm

l ψ;d + δm
d ψ;l − 1ldψ

m
;

)
Ph

bcm = 0. (24)

Contracting equation (24) over h and l, we get

4ψ;mPm
bcd − ψ;m

(
Pm

bcd + Pm
dbc + Pm

cdb

)
+ ψ;cPbd − ψ;dPbc = 0. (25)

But from equation (6) it is seen that

Pm
{bcd} = 0. (26)

In view of equation (26), equation (25) leads to

4ψ;mPm
bcd + ψ;cPbd − ψ;dPbc = 0. (27)

Contracting this equation over b and c and using equation (7), we get

7(A + 2B)
2

Rψ;d = 0. (28)

Since ξ is a proper semiconformal vector field, ψ;d , 0 and due to our suppositions (i.e., A , 0, B , 0 and
A + 2B , 0. ) equation (28) leads to R = 0. Consequenly equation (7) will give

Pbc = 0 (29)

and from equation (8), the semiconformal and conformal curvature tensor become identical for A = 1.
Equation (27), now takes the form

4ψ;mPh
bcd = 0. (30)

Using equation (30) in equation (24) and then multiplying by ψl
;, we get

ψ;lψ
l
;P

h
bcd = 0. (31)

From the equation (31), either ψ;lψl
; = 0 or Ph

bcd = 0, i.e., the four-dimensional spacetime is semiconformally
flat. Further as we have a four-dimensional spacetime admits proper semiconformal vector field ξ, ψl

; , 0,
therefore, if ψl

;ψ;l = 0 then ψl
; must be null. Thus from equation (30) the spacetime is of the Petrov type N

and the four repeated principal null directions of the semiconformal curvature tensor are given by ψl
;.

This completes the proof.
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For the proof of Theorem 1.2, the following lemma is required

Lemma 3.2. The necessay and sufficient condition for the semiconformal curvature collineation is that £ξ(R) = −2ψR,
where ψ = 1

4ξ
d
;d.

Proof. Equation (6) may be expressed as

Ph
bcd =

(30A + 64B
204

)
δh

c1bdR −
(33A + 64B

204

)
δh

d1bcR. (32)

Now taking the Lie derivative on both sides of this equation with respect to ξ, equation (32) leads to

£ξPh
bcd =

(30A + 64B
204

)
δh

c [R£ξ(1bd) + 1bd£ξ(R)]

−

(33A + 64B
204

)
δh

d[R£ξ(1bc) + 1bc£ξ(R)]. (33)

which on using equations (9) and (11) leads to(30A + 64B
204

)
δh

c [2ψ1bdR + 1bd£ξ(R)] −
(33A + 64B

204

)
δh

d[2ψ1bc + 1bc£ξ(R)] = 0, (34)

which implies that

£ξ(R) = −2ψR. (35)

This completes the proof.

Further Sharma in [13] has shown that the four-dimensional spacetime will be either conformally flat or
of type N, if a vector field ξ is associated to the conformal symmetry of a spacetime with divergence-free
Weyl conformal curvature tensor and proper conformal symmetry. We extend the similar idea for the
semiconformal case and the result is obtained (Theorem 1.2). We have

Proof of Theorem 1.2. Taking Lie derivative on both sides of equation (19)

£ξ(Ph
bcd;l + Ph

bdl;c + Ph
blc;d) = (A + B)[δh

c {(£ξ1bd)R;l − (£ξ1bl)R;d} + δ
h
c {1bd(£ξR);l

− 1bl(£ξR);d} + δ
h
d{(£ξ1bl)R;c − (£ξ1bc)R;l}

+ δh
d{1bl(£ξR);c − 1bc(£ξR);l} + δ

h
l {(£ξ1bc)R;d

− (£ξ1bd)R;c} + δ
h
l {1bc(£ξR);d − 1bd(£ξR);c}] (36)

Using equation (9) and Lemma 3.2, equation (36) leads to

£ξ(Ph
bcd;l + Ph

bdl;c + Ph
blc;d) = −2(A + B)R[δh

c (1bdψ;l − 1blψ;d) + δh
d(1blψ;c − 1bcψ;l)

+ δh
l (1bcψ;d − 1bdψ;c)] (37)

similar to equation (23), we have two more equations

£ξ
(
Ph

bdl;c

)
−

(
£ξPh

bdl

)
;c

=
(
£ξΓh

cm

)
Pm

bdl −
(
£ξΓm

cb

)
Ph

mdl −
(
£ξΓm

cd

)
Ph

bml

−

(
£ξΓm

cl

)
Ph

bdm. (38)

and
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£ξ
(
Ph

blc;d

)
−

(
£ξPh

blc

)
;d

=
(
£ξΓh

dm

)
Pm

blc −
(
£ξΓm

db

)
Ph

mlc −
(
£ξΓm

dl

)
Ph

bmc −
(
£ξΓm

dc

)
Ph

blm. (39)

Adding equations (23), (38), (39) and making use of equations (10), (11) and (37), we get

− 2(A + B)R[δh
c (1bdψ;l − 1blψ;d) + δh

d(1blψ;c − 1bcψ;l) + δh
l (1bcψ;d − 1bdψ;c)]

= (δh
lψ;m + δh

mψ;l − 1lmψ
h
; )Pm

bcd − (δm
l ψ;b + δm

b ψ;l − 1lbψ
m
; )Ph

mcd

+ (δh
cψ;m + δh

mψ;c − 1cmψ
h
; )Pm

bdl − (δm
c ψ;b + δm

b ψ;c − 1cbψ
m
; )Ph

mdl

+ (δh
dψ;m + δh

mψ;d − 1dmψ
h
; )Pm

blc − (δm
d ψ;b + δm

b ψ;d − 1lbψ
m
; )Ph

mlc. (40)

Now, contracting this equation over h and l and using equation (26), we get

4(A + B)R(1bdψ;c − 1bcψ;d) = 3ψ;mPm
bcd + 1cbψ

m
; Pmd − 1dbψ

m
; Pmc. (41)

Multiplying this equation by 1bc and using equation (7), we obtain R = 0, since ψ;l , 0 and (A + B) , 0 (For
A + B = 0 we are not getting any fruitful result). Hence equation (7) gives Pbc = 0. Using these facts in
equation (41), we get equation (30) and consequently equation (40) leads to

ψ;hPlbcd + ψ;bPh
lcd = 0. (42)

Multiplying this equation byψl
; to the above equation, we get equation (31). Thus theorem is established.

Corollary 3.3. If a four-dimensional spacetime has a divergence free semiconformal curvature tensor and vector field
ξ is associated to a proper semiconformal symmetry of the spacetime, then the spacetime must have the divergence-free
Riemann curvature tensor.

Proof. Making use the fact that R = 0 in equation (16) and using the divergence-free condition for semicon-
formal curvature tensor, we get

Rbc;d − Rbd;c = 0. (43)

In view of equation (43), equation (17) may takes the form

Rh
bcd;h = 0. (44)

This completes the proof.

4. Discussion

Finding the exact solutions of Einstein field equations is the prime motive in gravitational physics. These
equations are highly non-linear PDEs, so some simplifying assumptions has to be made (compatible with
dynamics of chosen distribution of matter) on the geometry of spacetime. These are geometrical/physical
symmetries of spacetime manifold and also known as collineations. In this paper, we have obtained re-
sults on semi-conformal curvature collineation and the types of gravitational field. With the condition of
divergence-free spacetime, we find an ease to explore an already established literature of spacetime symme-
try. Our results can be used to find the solutions of field equations, to discuss the curvature flow and soliton.
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