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Abstract. LetH be the real quaternion algebra andHm×n denote the set of all m × n matrices overH. For
A ∈ Hm×n, we denote by Aφ the n × m matrix obtained by applying φ entrywise to the transposed matrix
At, where φ is a nonstandard involution ofH. A ∈ Hn×n is said to be φ-Hermitian if A = Aφ. In this paper,
we construct a simultaneous decomposition of four real quaternion matrices with the same row number
(A,B,C,D), where A is φ-Hermitian, and B,C,D are general matrices. Using this simultaneous matrix
decomposition, we derive necessary and sufficient conditions for the existence of a solution to some real
quaternion matrix equations involving φ-Hermicity in terms of ranks of the given real quaternion matrices.
We also present the general solutions to these real quaternion matrix equations when they are solvable.
Finally some numerical examples are presented to illustrate the results of this paper.

1. Introduction

Quaternion matrix equation and its general Hermitian solutions play important roles in dealing with
many problems arising from systems and control theory [14]. There have been many papers using different
approaches to investigate the real quaternion matrix equations (e.g., [1]-[5], [11]-[13], [15], [16], [20], [21]).
For instance, Rodman [14] gave a necessary and sufficient condition for the existence of a unique solution
to the Sylvester quaternion matrix equation. Pereira and Vettori [13] considered the stabilities of some
quaternionic linear systems and their applications. Futorny et.al. [1] derived the Roth’s solvability criteria
for the quaternion matrix equations AX − X̂B = C and X − AX̂B = C.

Solving the real quaternion matrix equations involving φ-Hermicity is a new topic in quaternion linear
algebra and has attracted more and more attention in recent years. For example, He, Liu and Tam [7]
considered mixed pairs of quaternion matrix Sylvester equations involving φ-Hermicity. Very recently, He
[6] considered the following system of quaternion matrix equations involving φ-Hermicity{

A1X1 + (A1X1)φ + C1Y1(C1)φ + F1W(F1)φ = E1,
A2X2 + (A2X2)φ + C2Y2(C2)φ + F2W(F2)φ = E2,

Y1 = (Y1)φ, Y2 = (Y2)φ, W = Wφ. (1)

Some necessary and sufficient conditions for the existence of a solution (X,Y,Z) to the system (1) in terms
of ranks and Moore-Penrose inverses were presented in [6]. Moreover, the general solution to the system
(1) is given when it is solvable.
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In this paper, we consider the following two real quaternion matrix equations involving φ-Hermicity:

BXBφ + CYCφ + DZDφ = A, X = Xφ, Y = Yφ, Z = Zφ, (2)

and

BXC + (BXC)φ + DYDφ = A, Y = Yφ, (3)

where A = Aφ, B,C, and D are given real quaternion matrices, X,Y,Z are unknowns. In order to study the
above mentioned two equations, we need to construct a simultaneous decomposition for the quaternion
matrix array

( m p1 p2 p3

m A B C D
)
, (4)

where B ∈ Hm×p1 ,C ∈ Hm×p2 ,D ∈ Hm×p3 , and A ∈ Hm×m is φ-Hermitian. Another goal of this paper is to
find invertible quaternion matrices P,T1,T2,T3, such that

PAPφ = SA, PBT1 = SB, PCT2 = SC, PDT3 = SD, (5)

where SB,SC,SD are quasi-diagonal matrices with the finest possible subdivision of matrices, and SA is
φ-Hermitian with an appropriate form (see Theorem 3.1 for the definitions in details).

The rest of this paper is organized as follows. In Section 2, we review the definition and properties
of φ-Hermitian quaternion matrix. We in Section 3 construct a simultaneous decomposition of four real
quaternion matrices involving φ-Hermicity (4). As applications of this simultaneous decomposition, we in
Sections 4 and 5 consider the solvability conditions and general solutions to the systems of real quaternion
matrix equations involving φ-Hermicity (2) and (3).

2. Preliminaries

In this section, we review some definitions and some known lemmas which are used in this paper.
Let R andHm×n stand, respectively, for the real number field and the set of all m × n matrices over the

real quaternion algebra

H =
{
a0 + a1i + a2j + a3k

∣∣∣ i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R
}
.

The symbol r(A) stands for the rank of a given real quaternion matrix A. The identity matrix and zero
matrix with appropriate sizes are denoted by I and 0, respectively. The set of all n×n invertible matrix over
the quaternion algebra are denoted by GLn(H).

Rodman [14] presented the definitions of the nonstandard involution φ, the resulting real quaternion
matrix Aφ, and the φ-Hermitian real quaternion matrix. At first, we review the definition of an involution.

Definition 2.1 (Involution). [14] A map φ: H −→ H is called an antiendomorphism if φ(xy) = φ(y)φ(x) for all
x, y ∈H, and φ(x + y) = φ(x) +φ(y) for all x, y ∈H. An antiendomorphism φ is called an involution if φ(φ(x)) = x
for every x ∈H.

The matrix representation of involutions are given in the following lemma.

Lemma 2.2. [14] Letφ be an antiendomorphism ofH. Assume thatφ does not mapH into zero. Thenφ is one-to-one
and ontoH; thus, φ is in fact an antiautomorphism. Moreover, φ is real linear, and can be represented as a 4 × 4 real
matrix with respect to the basis {1, i, j,k}. Then φ is an involution if and only if

φ =

(
1 0
0 T

)
, (6)

where either T = −I3 or T is a 3 × 3 real orthogonal symmetric matrix with eigenvalues 1, 1,−1.
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So we can classify involutions into two classes: the standard involution and the nonstandard involution,
as defined below.

Definition 2.3 (Standard Involution). [14] An involution φ is standard if φ =

(
1 0
0 −I3

)
. For a ∈H, let a∗ denote

the standard involution of a.

Definition 2.4 (Nonstandard Involution). [14] An involution φ is nonstandard if

φ =

(
1 0
0 T

)
,

where T is a 3 × 3 real orthogonal symmetric matrix with eigenvalues 1, 1,−1.

In this paper, we consider only the nonstandard involution. Some examples of nonstandard involutions
can be found in [7].

For A ∈Hm×n,we denote by Aφ [14] the n×m matrix obtained by applyingφ entrywise to the transposed
matrix At, where φ is a nonstandard involution. We give some algebraic properties of quaternion matrix
nonstandard involution.

Proposition 2.5. [14] Let φ be a nonstandard involution. Then,
(1) (αA + βB)φ = Aφφ(α) + Bφφ(β), α, β ∈H, A,B ∈Hm×n.
(2) (Aα + Bβ)φ = φ(α)Aφ + φ(β)Bφ, α, β ∈H, A,B ∈Hm×n.
(3) (AB)φ = BφAφ, A ∈Hm×n, B ∈Hn×p.
(4) (Aφ)φ = A, A ∈Hm×n.
(5) If A ∈Hn×n is invertible, then (Aφ)−1 = (A−1)φ.
(6) r(A) = r(Aφ),A ∈Hm×n.
(7) Iφ = I, 0φ = 0.

Now we recall the definition of the φ-Hermitian matrix.

Definition 2.6 (φ-Hermitian). [14] A ∈ Hn×n is said to be φ-Hermitian if A = Aφ, where φ is a nonstandard
involution.

For η ∈ {i, j,k}, a real quaternion matrix A ∈Hn×n is said to be η-Hermitian if Aη∗ = A, where Aη∗ = −ηA∗η
and A∗ stands for the conjugate transpose of A [19]. η-Hermitian matrix is a special case of φ-Hermitian,
which has applications in statistical signal processing and widely linear modelling ([17]-[19]).

Now we review the decomposition of a φ-Hermitian matrix A ∈Hn×n.

Lemma 2.7. Let φ be a nonstandard involution. For every φ-Hermitian A ∈Hn×n, there exists an invertible matrix
S such that

SASφ =

(
0 0
0 It

)
for a nonnegative integer t ≤ n. Moreover, t is uniquely determined by A and t = r(A).

The following lemma that is an important tool for obtaining the main result.

Lemma 2.8. [10], [22] Let B ∈ Hm×p1 ,C ∈ Hm×p2 and D ∈ Hm×p3 be given. Then there exist P1 ∈ GLm(H),
WB ∈ GLp1 (H), WC ∈ GLp2 (H), and WD ∈ GLp3 (H) such that

P1BWB = S̃B, P1CWC = S̃C, P1DWD = S̃D,
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where

S̃B =

(
I 0
0 0

)
r(B)

, S̃C =


0 I 0
0 0 0
I 0 0
0 0 0


r2

r(B) − r2
r1

, S̃D =



0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0



r6
r2 − r6

r5
r7

r(B) − r2 − r5 − r7
r7

r4 − r7
r1 − r4

r3

, (7)

r1 = r(B, C) − r(B), r2 = r(B) + r(C) − r(B, C), r3 = r(B, C, D) − r(B, C),

r4 = r(B, D) + r(B, C) − r(B) − r(B, C, D), r5 = r
(
D B 0
D 0 C

)
− r(B, D) − r(C),

r6 = r(B) + r(C) + r(D) − r
(
D B 0
D 0 C

)
, r7 = r(B, C) + r(C, D) + r(B, D) − r(B, C, D) − r

(
D B 0
D 0 C

)
.

3. A simultaneous decomposition of four real quaternion matrices (4)

In this section, we establish a simultaneous decomposition of four real quaternion matrices involving
φ-Hermicity (4).

Theorem 3.1. Let A = Aφ ∈ Hm×m,B ∈ Hm×p1 ,C ∈ Hm×p2 , and D ∈ Hm×p3 be given. Then there exist
P ∈ GLm(H), T1 ∈ GLp1 (H), T2 ∈ GLp2 (H), T3 ∈ GLp3 (H), such that

PAPφ = SA, PBT1 = SB, PCT2 = SC, PDT3 = SD, (8)

where

SA = (SA)φ =


A11 · · · A19 A1,10 0
...

. . .
...

...
...

(A19)φ · · · A99 A9,10 0
(A1,10)φ · · · (A9,10)φ 0 0

0 · · · 0 0 It


, (9)

SB =



Im1 0 0 0 0 0
0 Im2 0 0 0 0
0 0 Im3 0 0 0
0 0 0 Im4 0 0
0 0 0 0 Im5 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, SC =



0 0 0 Im1 0 0
0 0 0 0 Im2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Im4 0 0 0 0 0
0 Im6 0 0 0 0
0 0 Im7 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, SD =



0 0 0 0 Im1 0
0 0 0 0 0 0
0 0 0 Im3 0 0
0 Im4 0 0 0 0
0 0 0 0 0 0
0 Im4 0 0 0 0
0 0 Im6 0 0 0
0 0 0 0 0 0

Im8 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (10)

and

t = r


A B C D
Bφ 0 0 0
Cφ 0 0 0
Dφ 0 0 0

 − 2r(B,C,D), (11)
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m1 = r(D) + r(B) + r(C) − r
(
D B 0
D 0 C

)
, (12)

m2 = r
(
D B 0
D 0 C

)
− r(B, C) − r(D), m3 = r

(
D B 0
D 0 C

)
− r(B, D) − r(C), (13)

m4 = r(B, C) + r(C, D) + r(B, D) − r(B, C, D) − r
(
D B 0
D 0 C

)
, (14)

m5 = r(B, C, D) − r(C, D), m6 = r
(
D B 0
D 0 C

)
− r(C, D) − r(B), (15)

m7 = r(B, C, D) − r(B, D), m8 = r(B, C, D) − r(B, C). (16)

Proof. It follows from Lemma 2.8 that there exist four matrices P1 ∈ GLm(H), WB ∈ GLp1 (H), WC ∈ GLp2 (H),
and WD ∈ GLp3 (H) such that

P1(B,C,D)

WB 0 0
0 WC 0
0 0 WD

 =



I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0



m1
m2
m3
m4
m5
m4
m6
m7
m8

m − r(B,C,D)

.

Let

P1A(P1)φ = P1Aφ(P1)φ ,


A(1)

11 · · · A(1)
1,10

...
. . .

...

(A(1)
1,10)φ · · · A(1)

10,10

 ,
where the symbol ,means “equals by definition”. Now we pay attention to the φ-Hermitian matrix A(1)

10,10.
By Lemma 2.7, we can find an invertible matrix P2 such that

P2A(1)
10,10(P2)φ =

(
0 0
0 It

)
, t = r(A(1)

10,10).

Then we have

(
Ir(B,C,D) 0

0 P2

) 
A(1)

11 · · · A(1)
1,10

...
. . .

...

(A(1)
1,10)φ · · · A(1)

10,10


(
Ir(B,C,D) 0

0 P2

)
φ

,



A(2)
11 · · · A(2)

19 A(2)
1,10 A(2)

1,11
...

. . .
...

...
...

(A(2)
19 )φ · · · A(2)

99 A(2)
9,10 A(2)

9,11

(A(2)
1,10)φ · · · (A(2)

9,10)φ 0 0
(A(2)

1,11)φ · · · (A(2)
9,11)φ 0 It


,
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Ir(B,C,D) 0

0 P2

)
P1(B,C,D)

WB 0 0
0 WC 0
0 0 WD

 =



I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 I 0
0 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



m1
m2
m3
m4
m5
m4
m6
m7
m8

m − r(B,C,D) − t
t

.

Let

P3 =


Irbcd


0 −A(2)

1,11
...

...

0 −A(2)
9,11


0 Im−rbcd

 .
Then we obtain

P3



A(2)
11 · · · A(2)

19 A(2)
1,10 A(2)

1,11
...

. . .
...

...
...

(A(2)
19 )φ · · · A(2)

99 A(2)
9,10 A(2)

9,11

(A(2)
1,10)φ · · · (A(2)

9,10)φ 0 0
(A(2)

1,11)φ · · · (A(2)
9,11)φ 0 It


(P3)φ ,


A11 · · · A19 A1,10 0
...

. . .
...

...
...

(A19)φ · · · A99 A9,10 0
(A1,10)φ · · · (A9,10)φ 0 0

0 · · · 0 0 It


.

Let

P , P3

(
Ir(B,C,D) 0

0 P2

)
P1, T1 = WC, T2 = WD, T3 = WE.

Hence, the matrices P ∈ GLm(H), T1 ∈ GLp1 (H), T2 ∈ GLp2 (H), and T3 ∈ GLp3 (H) satisfy the equation (8).
Now we want to give the expressions of t,m1, . . . ,m8. It is easy to verify that

t = r


A B C D
Bφ 0 0 0
Cφ 0 0 0
Dφ 0 0 0

 − 2r(B,C,D).

It follows from SA,SB,SC, and SD in (9)-(10) that

1 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0
1 0 1 1 0 1 0 1
1 1 1 2 1 1 1 0
1 1 1 2 1 1 0 1
1 1 1 2 0 1 1 1
1 1 1 2 1 1 1 1
1 0 1 1 0 1 0 1





m1
m2
m3
m4
m5
m6
m7
m8


=



r(B)
r(C)
r(D)

r(B,C)
r(B,D)
r(C,D)

r(B,C,D)
r
(

D B 0
D 0 C

)
− r(B) − r(C)


.

Solving for mi, (i = 1, . . . , 8) gives (12)-(16).
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Remark 3.2. η-Hermitian is a special case of φ-Hermitian, where η ∈ {i, j,k}. As a special case of Theorem 3.1, we
can obtain the simultaneous decomposition of four real quaternion matrices with the same row number (A,B,C,D),
where A ∈Hm×m is η-Hermitian, B ∈Hm×p1 ,C ∈Hm×p2 , and D ∈Hm×p3 are general matrices.

Let D vanish in Theorem 3.1, then we obtain the simultaneous decomposition of a matrix triplet with
the same row numbers

(A, B, C),

where A is a φ-Hermitian matrix.

Corollary 3.3. Let A = Aφ ∈ Hm×m,B ∈ Hm×p1 , and C ∈ Hm×p2 be given. Then there exist P ∈ GLm(H), T1 ∈

GLp1 (H), T2 ∈ GLp2 (H), such that

PAPφ = SA, PBT1 = SB, PCT2 = SC,

where

(SA, SB, SC) =


n1
n2
n3

n4

A1
11 A1

12 A1
13 A1

14 0
(A1

12)φ A1
22 A1

23 A1
24 0

(A1
13)φ (A1

23)φ A1
33 A1

34 0
(A1

14)φ (A1
24)φ (A1

34)φ 0 0
0 0 0 0 I

I 0 0
0 I 0
0 0 0
0 0 0
0 0 0

I 0 0
0 0 0
0 I 0
0 0 0
0 0 0

,
and

n1 = r(B) + r(C) − r(B, C), n2 = r(B, C) − r(C), n3 = r(B, C) − r(B), n4 = r

 A B C
Bφ 0 0
Cφ 0 0

 − 2r(B, C).

4. Solvability conditions and general φ-Hermitian solution to (2)

In this section, we consider the following real quaternion matrix equation

BXBφ + CYCφ + DZDφ = A, X = Xφ, Y = Yφ, Z = Zφ, (17)

where A = Aφ,B,C, and D are given real quaternion matrices. We give some solvability conditions for the
real quaternion matrix equation (17) to possess a φ-Hermitian solution and to present an expression of this
φ-Hermitian solution when the solvability conditions are met. A numerical example is given to illustrate
the main result.

Theorem 4.1. Let A = Aφ ∈ Hm×m,B ∈ Hm×p1 ,C ∈ Hm×p2 , and D ∈ Hm×p3 be given. Then the real quaternion
matrix equation (17) has a φ-Hermitian solution (X,Y,Z) if and only if the ranks satisfy:

r(A,B,C,D) = r(B,C,D), r
(

A B C
Dφ 0 0

)
= r(B,C) + r(D), (18)

r
(

A B D
Cφ 0 0

)
= r(B,D) + r(C), r

(
A C D
Bφ 0 0

)
= r(C,D) + r(B), (19)

r


0 Dφ Dφ 0 0
D −A 0 0 B
D 0 A C 0
0 Cφ 0 0 0
0 0 Bφ 0 0

 = 2r
(
D B 0
D 0 C

)
. (20)
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In this case, the general φ-Hermitian solution to (17) can be expressed as

X = T1X̂(T1)φ, Y = T2Ŷ(T2)φ, Z = T3Ẑ(T3)φ,

where

X̂ = X̂φ =



X11 X12 X13 X14 A15 X16

(X12)φ X22 A23 A24 A25 X26

(X13)φ (A23)φ X33 A34 − A36 A35 X36

(X14)φ (A24)φ (A34 − A36)φ A44 − A46 A45 X46

(A15)φ (A25)φ (A35)φ (A45)φ A55 X56

(X16)φ (X26)φ (X36)φ (X46)φ (X56)φ X66


, (21)

Ŷ = Ŷφ =



A66 − A46 A67 − A47 A68 (A16 − A14 + X14)φ (A26)φ Y16

(A67 − A47)φ Y22 A78 Y24 (A27)φ Y26

(A68)φ (A78)φ A88 (A18)φ (A28)φ Y36

A16 − A14 + X14 (Y24)φ A18 Y44 A12 − X12 Y46

A26 A27 A28 (A12 − X12)φ A22 − X22 Y56

(Y16)φ (Y26)φ (Y36)φ (Y46)φ (Y56)φ Y66


, (22)

Ẑ = Ẑφ =



A99 (A69)φ (A79)φ (A39)φ (A19)φ Z16

A69 A46 A47 (A36)φ (A14 − X14)φ Z26

A79 (A47)φ A77 − Y22 (A37)φ (A17)φ − Y24 Z36

A39 A36 A37 A33 − X33 (A13 − X13)φ Z46

A19 A14 − X14 A17 − (Y24)φ A13 − X13 Z55 Z56

(Z16)φ (Z26)φ (Z36)φ (Z46)φ (Z56)φ Z66


, (23)

in which X11,X22,X33,X66,Y22,Y44,Y66,Z55, and Z66 are arbitrary φ-Hermitian matrices overH with appropriate
sizes, the remaining Xi j,Yi j,Zi j are arbitrary matrices overH with appropriate sizes.

Proof. Observe that the dimensions of the coefficient matrices A,B,C, and D in the real quaternion matrix
equation (17) have the same number of rows. Hence, the coefficient matrices A,B,C,D can be arranged in
the following matrix array(

A B C D
)
.

It follows from Theorem 3.1 that there exist P ∈ GLm(H), T1 ∈ GLp1 (H), T2 ∈ GLp2 (H), T3 ∈ GLp3 (H), such
that

PAPφ = SA, PBT1 = SB, PCT2 = SC, PDT3 = SD,

where SA,SB,SC, and SD are given in (9) and (10). Hence the matrix equation (17) is equivalent to the matrix
equation

P−1SB[T−1
1 X(T1)−1

φ ](SB)φP−1
φ + P−1SC[T−1

2 Y(T2)−1
φ ](SC)φP−1

φ + P−1SD[T−1
3 Z(T3)−1

φ ](SD)φP−1
φ = P−1SAP−1

φ ,
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i.e.,

SB[T−1
1 X(T1)−1

φ ](SB)φ + SC[T−1
2 Y(T2)−1

φ ](SC)φ + SD[T−1
3 Z(T3)−1

φ ](SD)φ = SA. (24)

Let the matrices

X̂ = T−1
1 X(T1)−1

φ =


X11 · · · X16
...

. . .
...

(X16)φ · · · X66

 = X̂φ, (25)

Ŷ = T−1
2 Y(T2)−1

φ =


Y11 · · · Y16
...

. . .
...

(Y16)φ · · · Y66

 = Ŷφ, (26)

Ẑ = T−1
3 Z(T3)−1

φ =


Z11 · · · Z16
...

. . .
...

(Z16)φ · · · Z66

 = Ẑφ, (27)

be partitioned in accordance with (24). Substituting X̂, Ŷ, and Ẑ of (25)-(27) into (24) yields

X11+Y44+Z55 X12+Y45 X13+(Z45)φ X14+(Z25)φ X15 (Y14+Z25)φ (Y24+Z35)φ (Y34)φ (Z15)φ 0 0
(X12+Y45)φ X22+Y55 X23 X24 X25 (Y15)φ (Y25)φ (Y35)φ 0 0 0
(X13)φ+Z45 (X23)φ X33+Z44 X34+(Z24)φ X35 (Z24)φ (Z34)φ 0 (Z14)φ 0 0
(X14)φ+Z25 (X24)φ (X34)φ+Z24 X44+Z22 X45 Z22 Z23 0 (Z12)φ 0 0

(X15)φ (X25)φ (X35)φ (X45)φ X55 0 0 0 0 0 0
Y14+Z25 Y15 Z24 Z22 0 Y11+Z22 Y12+Z23 Y13 (Z12)φ 0 0
Y24+Z35 Y25 Z34 (Z23)φ 0 (Y12+Z23)φ Y22+Z33 Y23 (Z13)φ 0 0

Y34 Y35 0 0 0 (Y13)φ (Y23)φ Y33 0 0 0
Z15 0 Z14 Z12 0 Z12 Z13 0 Z11 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



=


A11 · · · A19 A1,10 0
...

. . .
...

...
...

(A19)φ · · · A99 A9,10 0
(A1,10)φ · · · (A9,10)φ 0 0

0 · · · 0 0 It


. (28)

If the equation (17) has a φ-Hermitian solution (X,Y,Z), then by (28), we obtain that

t = 0, A49 = A69, A46 = (A46)φ,
(
(A1,10)φ, · · · , (A9,10)φ

)
= 0, (29)

A29 = 0, A38 = 0, A48 = 0, A56 = 0, A57 = 0, A58 = 0, A59 = 0, A89 = 0, (30)

and

X11 + Y44 + Z55 = A11, X12 + Y45 = A12, X13 + Z54 = A13, X14 + Z52 = A14, X15 = A15,

Y41 + Z52 = A16, Y42 + Z53 = A17, Y43 = A18, Z51 = A19,X21 + Y54 = A21, X22 + Y55 = A22,

X23 = A23, X24 = A24, X25 = A25, Y51 = A26, Y52 = A27, Y53 = A28, X31 + Z45 = A31,
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X32 = A32, X33 + Z44 = A33, X34 + Z42 = A34, X35 = A35, Z42 = A36, Z43 = A37, Z41 = A39,

X41 + Z25 = A41, X42 = A42, X43 + Z24 = A43, X44 + Z22 = A44, X45 = A45, Z22 = A46,

Z23 = A47, Z21 = A49, X51 = A51, X52 = A52, X53 = A53, X54 = A54, X55 = A55,

Y14 + Z25 = A61, Y15 = A62, Z24 = A63, Z22 = A64, Y11 + Z22 = A66, Y12 + Z23 = A67,

Y13 = A68, Z21 = A69, Y24 + Z35 = A71, Y25 = A72, Z34 = A73, Z32 = A74, Y21 + Z32 = A76,

Y22 + Z33 = A77, Y23 = A78, Z31 = A79, Y34 = A81, Y35 = A82, Y31 = A86, Y32 = A87,

Y33 = A88, Z15 = A91, Z14 = A93, Z12 = A94, Z12 = A96, Z13 = A97, Z11 = A99.

Hence, the general φ-Hermitian solution (X,Y,Z) can be expressed as (21)-(23) by (28).
Conversely, assume that the equalities in (29) and (30) hold, then by (25)-(28), it can be verified that the

matrices having the forms of (21)-(23) form a φ-Hermitian solution of (24), i.e., (17).
We now show that (18)-(20)⇐⇒ (29) and (30). From SA,SB,SC, and SD in Theorem 3.1, we can infer that

We now show that (18)-(20)⇐⇒ (29) and (30). From SA,SB,SC, and SD in Theorem 3.1, we can infer that

r(A, B, C, D) = r(B, C, D)⇐⇒
(
(A1,10)φ, · · · , (A9,10)φ

)
= 0, t = 0,

r
(

A B C
Dφ 0 0

)
= r(B,C) + r(D)⇐⇒ A29 = 0, A89 = 0, A49 = A69, t = 0,

r
(

A B D
Cφ 0 0

)
= r(B,D) + r(C)⇐⇒ A38 = 0, A48 = 0, A58 = 0, A89 = 0, t = 0,

r
(

A C D
Bφ 0 0

)
= r(C,D) + r(B)⇐⇒ A56 = 0, A57 = 0, A58 = 0, A59 = 0, t = 0,

r


0 Dφ Dφ 0 0
D −A 0 0 B
D 0 A C 0
0 Cφ 0 0 0
0 0 Bφ 0 0

 = 2r
(
D B 0
D 0 C

)
⇐⇒ A46 = (A46)φ, t = 0.

Now we present an example to illustrate Theorem 4.1.

Example 4.2. Given the real quaternion matrices:

B =

(
i + j + k 1 1 + i + j − k
−1 − j + k i −1 + i + j + k

)
, C =

(
1 2i + j −1 + k

i + k 1 + i + j − k 0

)
,
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D =

(
j + 2k i + k j
−2j + k −1 − j k

)
, A = Aφ =

(
−1 + 5i − 20k −25 − 2i − 17j − 5k

−25 − 2i + 17j − 5k −9 − 18i − 14k

)
,

we consider the φ-Hermitian solution to the real quaternion matrix equation (17), where φ(a) = aj∗ = −ja∗j for a ∈H.
Check that

r(A,B,C,D) = r(B,C,D) = 2, r
(

A B C
Dφ 0 0

)
= r(B,C) + r(D) = 3,

r
(

A B D
Cφ 0 0

)
= r(B,D) + r(C) = 3, r

(
A C D
Bφ 0 0

)
= r(C,D) + r(B) = 3,

r


0 Dφ Dφ 0 0
D −A 0 0 B
D 0 A C 0
0 Cφ 0 0 0
0 0 Bφ 0 0

 = 2r
(
D B 0
D 0 C

)
= 6.

All the rank equalities in (18)-(20) hold. Hence, the real quaternion matrix equation (17) has a φ-Hermitian solution
(X,Y,Z). Note that

X = Xφ =

 1 i + k 0
i + k 1 + i 1 − k

0 1 − k 0

 , Y = Yφ =

 0 1 + i k
1 + i i 2k

k 2k 1

 , Z = Zφ =

 i i − k k
i − k i 1

k 1 1


satisfy the real quaternion matrix equation (17).

5. The solution to (3) with Y being φ-Hermitian

We now turn attention to the following real quaternion matrix

BXC + (BXC)φ + DYDφ = A, Y = Yφ, (31)

where A = Aφ,B,C, and D are given real quaternion matrices. We derive necessary and sufficient conditions
for (31) in terms of ranks of the coefficient matrices. We also give the general solution to this real quaternion
matrix equation. A numerical example is also given to illustrate the main result.

Theorem 5.1. Let A = Aφ ∈ Hm×m,B ∈ Hm×p1 ,C ∈ Hp2×m, and D ∈ Hm×p3 be given. Then the real quaternion
matrix equation (31) has a solution (X,Y), where Y is φ-Hermitian, if and only if the ranks satisfy:

r(A, B, Cφ, D) = r(B, Cφ, D), r
(

A B Cφ
Dφ 0 0

)
= r(B, Cφ) + r(D), (32)

r
(

A B D
Bφ 0 0

)
= r(B, D) + r(B), r

(
A Cφ D
C 0 0

)
= r(Cφ, D) + r(C), (33)

r


A 0 B 0 D
0 −A 0 Cφ D

Bφ 0 0 0 0
0 C 0 0 0

Dφ Dφ 0 0 0

 = 2r
(
B 0 D
0 Cφ D

)
. (34)
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In this case, the general solution to (31) can be expressed as

X = T1X̂(T2)φ, Y = T3Ŷ(T3)φ,

where

X̂ =



X11 X12 A18 X14 A12 − (X24)φ X16

A26 A27 A28 X24
1
2 A22 + Z X26

A36 − A34 X32 A38 X34 (A23)φ X36
A46 − A44 A47 − A67 A48 (A14 − A16 + X11)φ (A24)φ X46

A56 A57 A58 (A15)φ (A25)φ X56
X61 X62 X63 X64 X65 X66


, (35)

Ŷ =



A99 (A49)φ (A79)φ (A39)φ (A19)φ Y16
A49 A44 A67 (A34)φ (A14)φ − X44 Y26
A79 (A67)φ A77 (A37 − X32)φ (A17 − X12)φ Y36
A39 A34 A37 − X32 A33 (A13)φ − X34 Y46
A19 A14 − (X44)φ A17 − X12 A13 − (X34)φ A11 − X14 − (X14)φ Y56

(Y16)φ (Y26)φ (Y36)φ (Y46)φ (Y56)φ Y66


, (36)

in which Y66 and Z are arbitrary φ-Hermitian matrices and φ-skewhermitian (Z + Zφ = 0) matrices over H,
respectively, the remaining Xi j and Yi j are arbitrary matrices overH.

Proof. Note that the dimensions of the coefficient matrices A,B,Cφ, and D in real quaternion matrix equation
(31) have the same number of rows. Hence, the coefficient matrices A,B,C,D can be arranged in the following
matrix array(

A B Cφ D
)
.

It follows from Theorem 3.1 that there exist P ∈ GLm(H), T1 ∈ GLp1 (H), T2 ∈ GLp2 (H), T3 ∈ GLp3 (H), such
that

PAPφ = SA, PBT1 = SB, PCφT2 = SC, PDT3 = SD,

where SA,SB,SC, and SD are given in (9) and (10). Hence the real quaternion matrix equation (31) is
equivalent to the real quaternion matrix equation

P−1SB[T−1
1 X(T2)−1

φ ](SC)φP−1
φ + P−1SC[T−1

2 Xφ(T1)−1
φ ](SB)φP−1

φ + P−1SD[T3Y(T3)φ](SD)φP−1
φ = P−1SAP−1

φ ,

i.e.,

SB[T−1
1 X(T2)−1

φ ](SC)φ + SC[T−1
2 Xφ(T1)−1

φ ](SB)φ + SD[T3Y(T3)φ](SD)φ = SA. (37)

Let the matrices

X̂ = T−1
1 X(T2)−1

φ =


X11 · · · X16
...

. . .
...

X61 · · · X66

 , (38)

Ŷ = T−1
3 Y(T3)−1

φ =


Y11 · · · Y16
...

. . .
...

(Y16)φ · · · Y66

 = Ŷφ, (39)
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be partitioned in accordance with (37). Substituting X̂ and Ŷ of (38) and (39) into (37) yields

X14+(X14)φ+Y55 X15+(X24)φ (X34+Y45)φ (X44+Y25)φ (X54)φ X11+(Y25)φ X12+(Y35)φ X13 (Y15)φ 0 0
X24+(X15)φ X25+(X25)φ (X35)φ (X45)φ (X55)φ X21 X22 X23 0 0 0

X34+Y45 X35 Y44 (Y24)φ 0 X31+(Y24)φ X32+(Y34)φ X33 (Y14)φ 0 0
X44+Y25 X45 Y24 Y22 0 X41+Y22 X42+Y23 X43 (Y12)φ 0 0

X54 X55 0 0 0 X51 X52 X53 0 0 0
(X11)φ+Y25 (X21)φ (X31)φ+Y24 (X41)φ+Y22 (X51)φ Y22 Y23 0 (Y12)φ 0 0
(X12)φ+Y35 (X22)φ (X32)φ+Y34 (X42+Y23)φ (X52)φ (Y23)φ Y33 0 (Y13)φ 0 0

(X13)φ (X23)φ (X33)φ (X43)φ (X53)φ 0 0 0 0 0 0
Y15 0 Y14 Y12 0 Y12 Y13 0 Y11 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



=


A11 · · · A19 A1,10 0
...

. . .
...

...
...

(A19)φ · · · A99 A9,10 0
(A1,10)φ · · · (A9,10)φ 0 0

0 · · · 0 0 It


. (40)

If the equation (31) has a solution (X,Y), then by (40), we obtain that

t = 0,
(
(A1,10)φ, · · · , (A9,10)φ

)
= 0, A44 = A66, A49 = A69, (41)

A29 = 0, A59 = 0, A89 = 0, A68 = 0, A78 = 0, A88 = 0, A35 = 0, A45 = 0, A55 = 0, (42)

and

X14 + (X14)φ + Y55 = A11, X15 + (X24)φ = A12, (X34 + Y45)φ = A13, (X44 + Y25)φ = A14,

(X54)φ = A15, X11 + (Y25)φ = A16, X12 + (Y35)φ = A17, X13 = A18, (Y15)φ = A19,

X25 + (X25)φ = A22, (X35)φ = A23, (X45)φ = A24, (X55)φ = A25, X21 = A26, X22 = A27,

X23 = A28, Y44 = A33, (Y24)φ = A34, X31 + (Y24)φ = A36, X32 + (Y34)φ = A37, X33 = A38,

(Y14)φ = A39, Y22 = A44, X41 + Y22 = A46, X42 + Y23 = A47, X43 = A48, (Y12)φ = A49, X51 = A56,

X52 = A57, X53 = A58, Y22 = A66, Y23 = A67, (Y12)φ = A69, Y33 = A77, (Y13)φ = A79, Y11 = A99.

Hence, the general solution (X,Y) can be expressed as (35) and (36) by (40).
Conversely, assume that the equalities in (41) and (42) hold. Then by (38)-(40), it can be verified that the

matrices having the forms of (35) and (36) form a solution of (40), i.e., (31).
We now want to prove that (32)-(34)⇐⇒ (41) and (42). From SA,SB,SC, and SD in Theorem 3.1, we can

infer that

r(A,B,Cφ,D) = r(B,Cφ,D)⇐⇒
(
(A1,10)φ, · · · , (A9,10)φ

)
= 0, t = 0,

r
(

A B Cφ
Dφ 0 0

)
= r(B,Cφ) + r(D)⇐⇒ A29 = 0, A89 = 0, A49 = A69, t = 0,
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r
(

A B D
Bφ 0 0

)
= r(B,D) + r(B)⇐⇒ A68 = 0, A78 = 0, A88 = 0, A89 = 0, t = 0,

r
(
A Cφ D
C 0 0

)
= r(Cφ,D) + r(C)⇐⇒ A35 = 0, A45 = 0, A55 = 0, A59 = 0, t = 0,

r


A 0 B 0 D
0 −A 0 Cφ D

Bφ 0 0 0 0
0 C 0 0 0

Dφ Dφ 0 0 0

 = 2r
(
B 0 D
0 Cφ D

)
⇐⇒ A44 = A66 = 0, t = 0.

Next we give an example to illustrate Theorem 5.1.

Example 5.2. Let

B =

(
1 + j i + k 1 + 2i + j −1 − k
i − j −1 − k −2 + i − j −i + k

)
, C =


i + j −2 + k

1 + 2j 2i + 2k
−i + j + k 2 − j + k

j k

 ,

D =

(
i + j 1 + 3i 1 + k
−1 + k −3 + i i − j

)
, A = Aφ =

(
−16 − 6j + 34k 9 + 17i − 31j − 3k

9 − 17i − 31j − 3k −30 + 12j − 16k

)
.

Now we consider the real quaternion matrix equation (31), where φ(a) = ai∗ = −ia∗i for a ∈H. Check that

r(A,B,Cφ,D) = r(B,Cφ,D) = 2, r
(

A B Cφ
Dφ 0 0

)
= r(B,Cφ) + r(D) = 3,

r
(

A B D
Bi∗ 0 0

)
= r(B,D) + r(B) = 4, r

(
A Cφ D
C 0 0

)
= r(Cφ,D) + r(C) = 4,

r


A 0 B 0 D
0 −A 0 Cφ D

Bφ 0 0 0 0
0 C 0 0 0

Dφ Dφ 0 0 0

 = 2r
(
B 0 D
0 Cφ D

)
= 8.

All the rank equalities in (32)-(34) hold. Hence, the real quaternion matrix equation (31) has a solution. It is easy to
show that

X =


2 + i + k 1 + i + j 1 i + k
−1 + k −i + k j 1

1 + i + j + k 1 1 + j 1 + i + k
i + j + 2k 1 − i + k 1 + 2j 2 + i + k

 , Y = Yφ =

1 + j 1 + i j
1 − i k i

j −i j


satisfy the real quaternion matrix equation (31).
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Remark 5.3. The research on the system of quaternion matrix equations involving η-Hermicity has attracted more
and more attentions in recent years (e.g. [8], [9], [23]-[25]). As special cases of the quaternion matrix equations (2)
and (3), we can derive some necessary and sufficient conditions for the existence of a solution to the following four
quaternion matrix equations involving η-Hermicity for η ∈ {i, j,k}:

BXBη∗ + CYCη∗ + DZDη∗ = A, X = Xη∗, Y = Yη∗, Z = Zη∗,
BXC + (BXC)η∗ + DYDη∗ = A, Y = Yη∗,

where A = Aη∗,B,C, and D are given quaternion matrices.

6. Conclusion

We have derived a simultaneous decomposition of four quaternion matrices with the same row number
(A,B,C,D), where A = Aφ ∈ Hm×m,B ∈ Hm×p1 ,C ∈ Hm×p2 ,D ∈ Hm×p3 , φ is a nonstandard involution of H.
As applications of this simultaneous decomposition, we have presented necessary and sufficient conditions
for the existences and the general solutions to the quaternion matrix equations involving φ-Hermicity (2)
and (3). Some numerical examples are presented to illustrate the results.
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