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Abstract. In this paper we have addressed the behaviour of Yamabe constant along the Cotton flow. We
have also studied the evolution of ADM mass along the Cotton flow and it is shown that the ADM mass
is conserved along the Cotton flow. Among others evolution of Bach tensor under Cotton flow is derived.
It is shown that if the metric of a local conformally flat 3-manifold evolves under the Cotton flow, then the
Bach tensor satisfies the heat equation.

1. Introduction

After successful applicability of Ricci flow [8], various geometric flows have been widely studied e.g.
the mean curvature flow, Yamabe flow, cross curvature flow etc. We know that local conformally flatness
of a manifold is measured by the vanishing of Weyl tensor. Since, the Weyl tensor vanishes identically
for all 3-manifolds and this responsibility goes back to the Cotton tensor. This tensor was studied in the
context of topologically massive gravity [7]. In [1], Kisisel et al. introduced a new geometric flow, called
the Cotton flow. Unlike the Yamabe flow, which preserves the conformal class of the metric, Cotton flow
tends to evolve an initial metric to the local conformally flat one [1]. One can also observe that the Yamabe
flow and the Cotton flow are orthogonal. One of the most important geometric quantity which comes out
from the solution of the Yamabe problem is the Yamabe invariant. The sign of Yamabe invariant carries
important topological information for the manifold. In [6], Chang and Lu studied the evolution of Yamabe
constant under the Ricci flow and under some technical assumption obtained that the Yamabe constant
is non-decreasing along the Ricci flow. Motivated by the above studies, in this paper we have obtained
evolution of the Yamabe constant along Cotton flow.

The paper is arranged as follows. Section 2 carries the preliminary discussions to get the results. Section
3 deals with the study of evolution of Yamabe constant. In section 4, we study the evolution of ADM
mass under Cotton flow. It is known that the Bach tensor is a trace-free tensor of rank 2 and also it is
conformally invariant in 4-dimension [3]. Before 1968, it was the only known conformally invariant tensor
that is algebraically independent of the Weyl tensor [3]. Such tensor is significant in the field of differential
geometry and general relativity. Here in the last section we consider the evolution of Bach tensor under
Cotton flow and it is proved that if the metric of a locally conformally flat 3-manifold evolves under the
Cotton flow, then the Bach tensor satisfies the heat equation.
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2. Preliminaries

Let 1 be a Riemannian metric of a n-Riemannian manifold with Riemannian connection ∇. The (0, 2)
type Cotton-York tensor C of 3-manifold is

Ci j =
εimn

√
1
∇m(R j

n −
1
4
δ j

nR), (1)

where Ri j is the Ricci tensor and R is the scalar curvature [12]. The important fact about the tensor Ci j is
that, it is covariantly conserved, symmetric and traceless [12]. This property of the Cotton tensor motivated
the authors in [1] to introduce the Cotton flow given by

∂1i j

∂t
= KCi j, where Ci j = 1il1 jkCkl (2)

and K is a positive constant.
One may scale the parameter t to set K = 1. In [5], Chow studied Yamabe flow for local conformally flat

metrics and proved that the metric converges to a round metric in C∞ topology. Keeping this fact in mind
the constant K is choosen to be positive, so that the metric on the 3-sphere converge to the round metric
rather than diverge from it. The fixed point of (2) are necessarily locally conformally flat metrics. Another
interesting fact about the flow (2) is that, it preserves the volume and hence unlike the Ricci flow, we do not
need any normalization. The above facts will be used frequently in our analysis. The evolution equations
for the standard geometric quantities are given by

∂
∂t

Γi
jk =

1
2
1il(∇ jCkl + ∇kC jl − ∇lC jk), (3)

∂
∂t

Ri j = 3RliCl
j − RlmClm1i j −

1
2

RCi j −
1
2
∇

2Ci j, (4)

∂R
∂t

= −Ci jRi j. (5)

Being a third order partial differential equation, there is no known technique available in the literature for
the existence and uniqueness of (2). But in [1], the authors have been able to formalize (2) as a grade flow
of some functional.

Now the Yamabe constant of 1 on a closed manifold Mn is given by

Y(1) = inf
u∈C∞(M)

u>0

∫
M( 4(n−1)

n−2 |∇u|2 + R1u2)dµ

(
∫

M u
2n

n−2 dµ)
n−2

n

, (6)

where dµ is the volume form of 1. The classical Euler-Lagrange equation for a minimizer u is

−
4(n − 1)

n − 2
∆u + R1u = Y(1)u

n+2
n−2 , (7)∫

M
u

2n
n−2 dµ = 1, (8)

where ∆ is a Laplace-Beltrami operator. Now from the solution of the Yamabe problem [10], one can note
that there always exist a minimizer for (6). Thus having a solution u, the metric u

4
n−2 1 is called the Yamabe

metric and has constant scalar curvatureY(1).
Now the familiar subcritical regularization of (7) and (8) is defined by

−
4(n − 1)

n − 2
∆u + R1u = Yp(1)up, (9)
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M

up+1dµ = 1, (10)

where p ∈ (1, n+2
n−2 ] and Yp(1) is a constant. Also (9) and (10) is nothing but the Euler-Lagrange equation for

the minimizer of the functional

Yp(1) = inf
u∈C∞(M)

u>0

∫
M( 4(n−1)

n−2 |∇u|2 + R1u2)dµ

(
∫

M up+1dµ)
2

p+1

.

3. Evolution of Yamabe Constant

First we prove a lemma which will be used for later purpose.

Lemma 3.1. Let M be a closed manifold and 1 be the Riemannian metric evolving by the Cotton flow. If u ∈ C∞(M),
then

∂
∂t
|∇u|2 = −〈C, |∇u|2〉 + 2〈∇u,∇h〉 (11)

and
∂
∂t

(∆u) = −〈C,Hess u〉 + ∆h, (12)

where h = ∂u
∂t and ‘Hess’ is the Hessian operator.

Proof. For a local coordinate system (xi), we compute that

∂
∂t
|∇u|2 =

∂
∂t

(1i j
∇iu∇ ju)

= (
∂
∂t
1i j)∇iu∇ ju + 21i j

∇iu∇ jh

= −1ik1 jlCkl∇iu∇ ju + 21i j
∇iu∇ jh

= −〈C, |∇u|2〉 + 2〈∇u,∇h〉.

This proves (11). Also,

∂
∂t

(∆u) =
∂
∂t

(1i j
∇i∇ ju)

=
∂
∂t

(1i j)∇i∇ ju + 1i j ∂
∂t

(∇i∇ ju)

= −1ik1 jlCkl∇i∇ ju + ∆h
= −〈C,Hess u〉 + ∆h.

Now, we are ready to state our main result following the same technique used in [6].

Theorem 3.2. Let 1(t), t ∈ [0,T), be a solution of the Cotton flow on a closed manifold M3, where T is the maximal
time of existence of the solution 1(t). Given p ∈ (1, 5], assume that there is a C1-family of positive functions
u(t), t ∈ [0,T) which satisfy

−8∆1(t)u(t) + R1(t)u(t) = Ỹp(t){u(t)}p,∫
M
{u(t)}p+1dµ1(t) = 1,

where Ỹp is a function of t only. Then

∂
∂t
Ỹp(t) = −2

∫
M

u2Ci jRi jdµ.
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Proof. We compute

∂
∂t
Ỹp(t) =

∫
M

8
∂
∂t
|∇u|2dµ +

∫
M

∂R
∂t

u2dµ +

∫
M

2Ruh dµ.

Using (11), (12) and the fact that volume element is preserved along the Cotton flow we have

∂
∂t
Ỹp(t) =

∫
M

(−8〈C, |∇u|2〉 + 16〈∇u,∇h〉)dµ −
∫

M
Ci jRi ju2dµ + 2

∫
M

Ruh dµ. (13)

Now, taking derivative with respect to t we get from (9) that

−8
∂
∂t

(∆u(t)) +
∂R
∂t

u(t) + Rh =
d
dt

(Ỹp(t)){u(t)}p + pỸp(t){u(t)}p−1h.

Using (12) in above equation, we get

8〈C,Hess u〉 − 8∆h − Ci jRi ju + Rh =
d
dt

(Ỹp(t))up + pỸp(t)up−1h.

Multiplying both sides of above equation by 2u we get

−16u∆h + 2Ruh = −16u〈C,Hess u〉 (14)

= 2u2Ci jRi j + 2
d
dt

(Ỹp(t))up+1

= 2pỸp(t)uph.

Now applying integration by parts from (13) and (14) we have,

∂
∂t

(Ỹp(t)) = −8
∫

M
〈C, |∇u|2〉dµ +

∫
M
−16(u∆h + 2Ruh)dµ −

∫
M

Ci jRi ju2dµ (15)

= −8
∫

M
〈C, |∇u|2〉dµ − 16

∫
M

u〈C,Hess u〉dµ +

∫
M

2u2Ci jRi jdµ + 2
d
dt

(Ỹp(t)) + 2pỸp(t)
∫

M
uphdµ.

From (10) we have

d
dt

∫
M

up+1dµ = 0,

which implies that∫
M

uph dµ = 0. (16)

Now we have∫
M
〈C, |∇u|2〉dµ =

∫
M
1ik1 jlCkl∇iu∇ ju dµ (17)

= −

∫
M
1ik1 jlu∇iCkl∇ ju dµ

= −

∫
M

u1 jl
∇

kCkl∇ ju dµ

= 0.
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Finally,∫
M

u〈C,Hess u〉dµ =

∫
M

u1ik1 jlCkl∇i∇ ju dµ (18)

= −

∫
M

u1ik1 jl
∇iCkl∇ ju dµ

= −

∫
M

u1 jl
∇

kCkl∇ ju dµ

= 0.

Using (16), (17) and (18) in (15) we have

d
dt

(Ỹp(t)) = −2
∫

u2Ci jRi jdµ.

Thus proof of Theorem 3.1 is complete.

Corollary 3.3. Let M3 be a closed manifold with non-negative Cotton tensor and positive Ricci curvature. If the
metric evolves under Cotton flow, then the Yamabe constant is non-increasing along the flow.

4. Evolution of ADM mass under Cotton flow

In this section, we discuss the evolution of an important physical and geometrical invariant, called ADM
mass, under Cotton flow.

Definition 4.1. A Riemannian manifold (Mn, 1) is said to be asymptotically flat or asymptotically Euclidean if
M = M0 ∩M∞ with M0 compact and M∞ ≈ Rn

− BR(0) for some R > 0 so that in the induced Euclidean coordinate
system, the metric satisfies the asymptotic conditions

1i j = δi j + o(r−α), ∂k1i j = o(r−α−1), ∂k∂l1i j = o(r−α−2),

where α > 0 is the asymptotic order and r is the distance from a fixed base point with respect to the induced Euclidean
metric.

Asymptotically Euclidean manifold has been intensively studied on general relativity as the spatial slice
for the Minkowski space-time are asymptotically Euclidean.

In this setup, the total mass or ADM mass of the gravitational system can be defined by [10]

m(1) = lim
R→∞

1
4wn

∫
SR

(∂i1i j − ∂ j1ii) dSR, (19)

where wn denoted the volume of the (n − 1)-sphere and SR is the Euclidean sphere of radius R centered at
the base point. Here dSR is the volume element of SR.

When the scalar curvature is integrable and α > n−2
2 , m(1) is well defined and independent of the

coordinate at infinity [4] and therefore is a metric invariant. The famous positive mass theorem, proved
firstly by Schoen and Yau [11], states that m(1) ≥ 0 if the scalar curvature is non-negative. Moreover,
m(1) = 0 if and only if M is the Euclidean space. For such a manifold, one can define the asymptotic volume
ratio by

µ = lim
r→∞

V(Br, 1)
wnrn ,

where V(Br, 1) is the volume of a metric ball of radius r and wn is the volume of unit n-ball in Euclidean
space. If µ = 1, an almost Euclidean manifold is said to be almost locally Euclidean. For an almost locally
Euclidean manifold, the mass is also defined by (19), except that SR should be taken as the distant sphere.
We now prove the following:
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Theorem 4.2. Under the Cotton flow, the asymptotic volume ratio remains invariant.

Proof. The result follows from the evolution of the volume element under Cotton flow.

Corollary 4.3. The almost locally Euclidean and almost Euclidean properties are preserved under Cotton flow.

Theorem 4.4. The ADM mass is conserved along the Cotton flow.

Proof: Taking the manifold to be almost locally Euclidean, we compute

∂
∂t

m(1(t)) =

∫
SR→∞

(
∂
∂t
1i j,i −

∂
∂t
1ii, j)dsi

=

∫
SR→∞

(Ci j,i − Cii, j)dsi

= −

∫
SR→∞

Cii, j dsi.

As, the Cotton-York tensor is trace-free, we have

∂
∂t

m(1(t)) = 0.

This proves the Theorem.

5. The Bach Tensor and the Cotton flow

The Bach tensor in dimension three is given by [9]

Bik = ∇ jCi jk.

The Schouten tensor is given by

Si j = Ri j −
1

2(n − 1)
R1i j.

Then in terms of Schouten tensor, the Bach tensor can be written as [9]

Bik = ∇ j∇kSi j − ∆Sik. (20)

In dimension three, the covariant derivative of the Cotton tensor is given by [9]

∇ jCi jk = 3Ri jRkj −
3
2

RRik − |Ric|21ik +
R2

2
1ik +

1
4
∇k∇iR − ∆Sik. (21)

We need the following Schur lemma

∇ jSi j =
1
4
∇iR. (22)

Using (22) in (21), we have [9]

∇k∇ jCi jk = R jlCl ji (23)

and hence the divergence of the Bach tensor is given by

∇kBik = ∇kBki = R jlCl ji. (24)
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To calculate the evolution of the Bach tensor along Cotton flow, we use the following formula:

(∂t − ∆)Bik = ∇ j(∂t − ∆)Ci jk − [∆,∇ j]Ci jk + 2Rpj∇pCi jk + [∂t,∇ j]Ci jk. (25)

Using commutation for covariant derivatives we find [9]

[∆,∇ j]Ci jk = ∇iRlpCplk − ∇pRliCplk + ∇kRlpCilp (26)

−∇pRlkCilp + Rlp∇pCilk + 2Rlp∇kCilp − 2Rlp∇lCipk +
1
2
∇pRCikp + 2RlkBil − RBik.

To move further, we calculate evolution of Cotton tensor under Cotton flow. We calculate the time derivative
directly from the expression of Cotton tensor in dimension 3, viz.

Ci jk = ∇kRi j − ∇ jRik −
1
4

(∇kR1i j − ∇ jR1ik),

∂
∂t

Ci jk =
∂
∂t
∇kRi j −

∂
∂t
∇ jRik −

1
4

[(∇k
∂R
∂t
1i j + ∇kR

∂1i j

∂t
) − (∇ j

∂R
∂t
1ik + ∇ jR

∂1i j

∂t
)]. (27)

Using (4) we have,

∂
∂t
∇kRi j = 3∇k(RliCl

j) − 1i j∇k(RlmClm) −
1
2
∇k(RCi j) −

1
2
∇

3Ci j (28)

+(∇lCik − ∇kCil∇iCkl)R jl + (∇lC jk − ∇kC jl∇ jCkl)Ril

= 3∇k(1lmC jmRli) − 1i j∇k(1il1 jmRi jClm) −
1
2
∇kRCi j

−
1
2

R∇kCi j −
1
2
∇

3Ci j + (∇lCik − ∇kCil − ∇iCkl)R jl + (∇lC jk − ∇kC jl − ∇ jCkl)Ril

= 31lmRli∇kC jm + 31lmC jm∇kRli −
1
2
∇kRCi j −

1
2

R∇kCi j

−
1
2
∇

3Ci j + (∇lCik − ∇kCil − ∇iCkl)R jl + (∇lC jk − ∇kC jl − ∇ jCkl)Ril

= 3Rm
i ∇kC jm + 3Cl

j∇kRli −
1
2
∇kRCi j

−
1
2

R∇kCi j −
1
2
∇

3Ci j + (∇lCik − ∇kCil − ∇iCkl)R jl + (∇lC jk − ∇kC jl − ∇ jCkl)Ril.

Since the Cotton tensor is traceless and covariantly conserved, we have from (27) and (28) that

∂
∂t

Ci jk = 3Rm
i ∇kC jm + 3Cl

j∇kRli −
1
2
∇kRCi j −

1
2

R∇kCi j −
1
2
∇

3Ci j (29)

+(∇lCik − ∇kCil − ∇iCkl)R jl + (∇lC jk − ∇kC jl − ∇ jCkl)Ril

−3Rm
i ∇ jCkm − 3Cl

k∇ jRli +
1
2
∇ jRCik +

1
2

R∇ jCik +
1
2
∇

3Cik

−(∇lCi j − ∇ jCil − ∇iC jl)Rkl − (∇lCkj − ∇ jCkl − ∇kC jl)Ril −
1
4

(∇kRCi j − ∇ jRCik).

Again we have

∆Ci jk = ∆∇kRi j − ∆∇ jRik −
1
4

∆∇kR1i j +
1
4

∆∇ jR1ik. (30)

Combining (29) and (30) we have the following:
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Proposition 5.1. If the metric of a 3-manifold (M3, 1(t)) evolves under Cotton flow, then the (3, 0) Cotton tensor
satisfies the following PDE

(
∂
∂t
− ∆)Ci jk = 3(Cl

j∇kRli − Cl
k∇ jRli) −

3
4

(∇kRCi j − ∇ jRCik) + 3Rm
i (∇kC jm − ∇ jCkm) (31)

+
R
2

(∇ jCik − ∇kCi j) + (∇lCik − ∇kCil − ∇iCkl)R jl − (∇lCi j − ∇ jCil − ∇iC jl)Rkl

−
1
2

(∇3Ci j − ∇
3Cik) − (∆∇kRi j − ∆∇ jRik) +

1
4

(∆∇kR1i j − ∆∇ jR1ik).

Using the second Bianchi identity we get from (31) that

∇ j(
∂
∂t
− ∆)Ci jk = 3(Cl

j∇ j∇kRli − Cl
k∆Rli) −

3
4

(Cl j∇ j∇kR − ∆RCik − ∇ jR∇ jCik)

+
R
2

(∆Cik − ∇ j∇kCi j) + (∇ j∇lCik − ∇ j∇kCil − ∇ j∇iCklR jl) (32)

−(∇ j∇lCi j − ∆Cil − ∇ j∇iC jl)Rkl + (∇lCik − ∇kCil − ∇iCkl)∇ jR jl

−(∇lCi j − ∇ jCil − ∇iC jl)∇ jRkl −
1
2

(∇4Ci j − ∇
4Cik) − ∇ j∆Ci jk,

since the Cotton-York tensor is trace-free and covariantly conserved. Finally, we calculate

[∂t,∇ j]Ci jk = −∂tΓ
p
ijCpjk − ∂tΓ

p
jkCi jp (33)

= −
1
2
1pl(∇iC jl + ∇ jCil − ∇lCi j)Cpjk −

1
2
1pl(∇ jCkl + ∇kC jl − ∇lC jk)Ci jp

=
1
2
∇

pCi jCpjk +
1
2
∇

pC jkCi jp,

where we have used the property that the Cotton-York tensor is covariantly conserved.
Combining (21), (25), (26), (31), (32) and (33) we have

∂
∂t

Bik = ∆Bik + 3(Cl
j∇ j∇kRli − Cl

k∆Rli) −
3
4

(Cl j∇ j∇kR − ∆RCik − ∇ jR∇ jCik) (34)

+
R
2

(∆Cik − ∇ j∇kCi j) + (∇ j∇lCik − ∇ j∇kCil − ∇ j∇iCkl)R jl

−(∇ j∇lCi j − ∆Cil − ∇ j∇iC jl)Rkl + (∇lCik − ∇kCil − ∇iCkl)∇ jR jl

−(∇lCi j − ∇ jCil − ∇iC jl)∇ jRkl −
1
2

(∇4Ci j − ∇
4Cik) − ∇ j∆Ci jk

−∇iRlpCplk + ∇pRilCplk − ∇kRlpCilp + ∇pRlkCilp − ∇pRlpCilk − 2∇kRlpCilp

+2Rlp∇lCipk −
1
2
∇pRCikp − 2RlkBil + RBik + 2Rpj∇pCi jk +

1
2
∇

pCi jCpjk +
1
2
∇

pC jkCi jp.

This leads to the following:

Theorem 5.2. Let (M3, 1(t)) be a complete 3-manifold evolving under Cotton flow. Then the Bach tensor evolves by
(34).

Corollary 5.3. If the metric of a local conformally flat 3-manifold evolves under the Cotton flow, then the Bach tensor
satisfies the heat equation given by ∂

∂t Bik = ∆Bik.
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