Inverse boundary-value problem for the equation of longitudinal wave propagation with non-self-adjoint boundary conditions


Elvin I Azizbayov, Yashar T Mehraliyev




We study the inverse coefficient problem for the equation of longitudinal wave propagation with non-self-adjoint boundary conditions. The main purpose of this paper is to prove the existence and uniqueness of the classical solutions of an inverse boundary-value problem. To investigate the solvability of the inverse problem, we carried out a transformation from the original problem to some equivalent auxiliary problem with trivial boundary conditions. Applying the Fourier method and contraction mappings principle, the solvability of the appropriate auxiliary inverse problem is proved. Furthermore, using the equivalency, the existence and uniqueness of the classical solution of the original problem are shown