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Abstract. Zagreb indices and their modified versions of a molecular graph originate from many practical
problems such as two dimensional quantitative structure-activity (2D QSAR) and molecular chirality.
Nowadays, they have become important invariants which can be used to characterize the properties of
graphs from different aspects.

LetVk
n (orEk

n respectively) be a set of graphs of n vertices with vertex connectivity (or edge connectivity
respectively) at most k. In this paper, we explore some properties of the modified first and second multi-
plicative Zagreb indices of graphs inVk

n andEk
n. By using analytic and combinatorial tools, we obtain some

sharp lower and upper bounds for these indices of graphs in Vk
n and Ek

n. In addition, the corresponding
extremal graphs which attain the lower or upper bounds are characterized. Our results enrich outcomes
on studying Zagreb indices and the methods developed in this paper may provide some new tools for
investigating the values on modified multiplicative Zagreb indices of other classes of graphs.

1. Introduction

In many fields like Physics, Chemistry and Electric Network, the boiling point, the melting point, the
chemical bonds and the bond energy are all important quantifiable parameters in their fields.

To understand physic-chemical properties of chemical compounds or network structures and practical
problems, mathematical modelings, such as graphs, have been built.

A molecular structured graph is a simple finite connected graph which represents the carbon-atom
skeleton of an organic molecule of a hydrocarbon. The vertices of a molecular graph represent the carbon
atoms while their undirected edges represent the carbon bounds. Studying graphs is a constant focus in
chemical graph theory and its applications in the effort to better understand molecular structures.

Secondly, many abstract concepts were defined based on degree or distance, and collectively named
topological descriptors or topological indices after mathematical modelings. Different indices represent their
corresponding chemical structures in graph-theoretical terms via arbitrary molecular graphs. Large number
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of articles about related all topological indices are proposed and based on edges or vertices in a molecular
graph ([11-28]).

In the last decades, as a powerful approach, these two dimensional topological indices have been
used to design or discover many new drugs such as Anticonvulsants, Anineoplastics, Antimalarials or
Antiallergics and Silico generation ([4, 11-13, 26]). These topological indices play a key role in the process
of drug discovery and other research areas ([5-8, 21]).

Among degree-based topological indices, Zagreb indices are the oldest ones and the most studied. Large
numbers of articles about Zagreb indices and related indices have been published in the last decades (see
for example [1, 3, 9, 10, 18, 19]). Recently, Gutman, Eliasi and Iranmanesh, respectively ([3, 9]) introduced
the modified first multiplicative Zagreb index of a graph defined as follows:∏

∗

1(G) =
∏

uv∈E(G)

[d(u) + d(v)].

In 2016, Basavanagoud et al.([1]) studied several derived graphs and introduced another multiplicative
version called the modified second multiplicative Zagreb index and defined as∏

∗

2(G) =
∏

uv∈E(G)

[d(u) + d(v)][d(u)+d(v)].

With respect to Zagreb indices and modified versions, researchers are interested in finding upper and
lower bounds for these indices of graphs and characterizing the graphs in which the maximal (respectively
minimal) index values are attained (see [10, 15, 20, 23, 27, 28]). And mathematical and computational
properties on Zagreb indices have also been considered. Furthermore, other directions include studies of
relation between multiplicative Zagreb indices and the corresponding invariants of elements of the graph
G (vertices, pendent vertices, diameter, maximum degree, girth, cut edge, cut vertex, perfect matching,
connectivity). For example, Li and Zhou [16] found the maximum and minimum Zagreb indices of graphs
with vertex connectivity at most k. Wang [25] extended the results and obtained the maximum and
minimum multiplicative Zagreb indices of graphs under the same condition.

Since the modified multiplicative Zagreb indices are relatively new concepts and involve the sum of
degrees of both vertices of every edge, their values are usually more difficult to determine. Thus, we need
to search for new tools to deal with these kind of indices. For this purpose, in this paper we study properties
of modified multiplicative Zagreb indices of graphs with vertex connectivity or edge connectivity at most
k. We manage to use some basic analytic functions to find the upper and lower bounds for the modified
first and second multiplicative Zagreb indices and characterize their extremal graphs:

Theorem 1.1. Given n, k ∈ N, n ≥ 3 and k ≥ 1, let G be a graph with n vertices and vertex connectivity at most k
and Kk

n be a graph obtained by adding a vertex to a clique Kn−1 and joining the vertex to exactly k ≤ n − 1 vertices of
Kn−1. Then ∏

∗

1(G) ≤
∏
∗

1(Kk
n)

and ∏
∗

2(G) ≤
∏
∗

2(Kk
n)

where the equalities hold if and only if G � Kk
n, where∏

∗

1(Kk
n) = 2

k(k−1)+(n−k−1)(n−k−2)
2 · (n − 1)

k(k−1)
2 · (n − 2)

(n−k−1)(n−k−2)
2 · (2n − 3)k(n−k−1)

· (n + k − 1)k,∏
∗

2(Kk
n) = 2(n−1)k(k−1)+(n−2)(n−k−1)(n−k−2)

· (n − 1)(n−1)k(k−1)
· (n − 2)(n−2)(n−k−1)(n−k−2)

· (2n−

3)(2n−3)k(n−k−1)
· (n + k − 1)(n+k−1)k.

On the lower bounds for the modified first and second multiplicative Zagreb indices, we obtain the
following:



H. Wang et al. / Filomat 33:14 (2019), 4673–4685 4675

Theorem 1.2. Let G be a graph with n vertices and vertex connectivity at most k, where n ≥ 3 and k ≥ 1. Then∏
∗

1(G) ≥ 9 · 4n−3 and
∏
∗

2(G) ≥ 729 · 256n−3, and the equalities hold if and only if G � Pn, where Pn is a path on n
vertices.

The methods we develop in this paper are expected to be used to study the properties of other indices
of graphs. We first give some notations and graph operation properties of the modified first and second
multiplicative Zagreb indices in Section 2 and then we prove our main results in Section 3.

2. Preliminaries and properties

Let G = (V(G),E(G)) be a simple connected graph with vertex set V = V(G) and edge set E = E(G). If a
vertex v ∈ V(G), then the neighborhood of v denotes the set N(v) = NG(v) = {w ∈ V(G), vw ∈ E(G)}, and the
degree of v is dG(v) = |N(v)|, also denoted by d(v). Let ni denote the number of vertices of degree i ≥ 0.

Given V1,V2 ⊆ V(G), denote E[V1,V2] = {uv ∈ E(G) : u ∈ V1, v ∈ V2}. Given S ⊆ V(G) and F ⊆ E(G),
we denote by G[S] the subgraph of G induced by S, G[F] the subgraph induced by F, G − S the subgraph
induced by V(G) − S and G − F for the subgraph of G obtained by deleting F. If G − S contains at least 2
components, then S is said to be a vertex cut set of G. Similarly, if G − F contains at least 2 components,
then E is called an edge cut set. In our exposition we will use the terminology and notations of (chemical)
graph theory (see [2, 22]).

A graph G is said to be k-connected with k ≥ 1, if either G is complete graph Kk+1, or it has at least k + 2
vertices and contains no (k − 1)-vertex cut. The vertex connectivity of G, denoted by κ(G), is defined as the
maximal value of k for which a connected graph G is k-connected. Similarly, for k ≥ 1, a graph G is called
k-edge-connected if it has at least two vertices and does not contain a (k − 1)-edge cut. The maximal value
of k for which a connected graph G is k-edge-connected is said to be the edge connectivity of G, denoted by
κ′(G). By the definitions, the following proposition is obtained.

Proposition 2.1. Let G be a graph with n vertices. Then
(i) κ(G) ≤ κ′(G) ≤ n − 1,
(ii) κ(G) = n − 1, κ′(G) = n − 1 and G � Kn are equivalent.

Let Vk
n be a set of connected graphs with n vertices and vertex connectivity at most k, κ(G) ≤ k ≤ n − 1.

Denote by Ek
n a set of connected graphs with n vertices and edge connectivity at most k, κ′(G) ≤ k ≤ n − 1.

Let Pn and Sn be, respectively, a path and a star of n vertices. Let Kn denote a complete graph. The graph
Kk

n is obtained by joining k vertices of Kn−1 to an isolated vertex (see Figure 1). Then Kk
n ∈ E

k
n ⊂ V

k
n.

uK
u

u

u

u

u

n−1

1

2

k

i

k−1

Figure 1.

According to the definitions of
∏
∗

1(G) and
∏
∗

2(G), the following proposition is routinely obtained.

Proposition 2.2. Let e be an edge of a graph G ∈ Vk
n (Ek

n respectively). Then
(i) G − e ∈ Vk

n (Ek
n respectively),

(ii)
∏
∗

i (G − e) <
∏
∗

i (G), i = 1, 2.
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In addition, by elementary calculations, we have

Proposition 2.3. If m > 0 and b < a, then b
a <

b+m
a+m .

Proposition 2.4. If M is an integer with M ≥ 2, then (M + 5)M < (M + 3)M+2.

Proof. It is easy to verify that this proposition holds for M = 2, 3. Below we may assume that M ≥ 4. By the
fact 2i

i! < 1 for any i = 4, · · · ,M, we have

Ci
M(M + 3)M−i

· 2i =
M(M−1)···(M−i+1)

i! · (M + 3)M−i
· 2i

< (M + 3)i
· (M + 3)M−i

= (M + 3)M.
By Binomial Theorem, we obtain

(M + 5)M

= [(M + 3) + 2]M

= (M + 3)M + 2M · (M + 3)M−1 + 2M(M − 1) · (M + 3)M−2 + 4
3 M(M − 1)(M − 2) · (M + 3)M−3+

M∑
i=4

Ci
M(M + 3)M−i

· 2i

< (M + 3)M + 2(M + 3)M + 2(M + 3)M + 4
3 (M + 3)M + (M − 3) · (M + 3)M

= (M + 3)M[1 + 2 + 2 + 4
3 + (M − 3)]

< (M + 3)M+2.
Thus,

(M + 5)M < (M + 3)M+2.

We first provide some lemmas, which will play very important roles in the proofs of our main results.
According to the definitions of

∏
∗

1(G) and
∏
∗

2(G), we have the following lemmas.

Lemma 2.5. Let u, v ∈ V(G) and uv < E(G). Then∏
∗

1(G) <
∏
∗

1(G + uv),
∏
∗

2(G) <
∏
∗

2(G + uv).

Given two graphs G1 and G2, if V(G1)∩V(G2) = ∅, then the join graph G1 ⊕G2 is a graph with vertex set
V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {uv,u ∈ V(G1), v ∈ V(G2)}.

Let G( j,Hk,n− k− j) = K j ⊕Hk ⊕Kn−k− j be a graph with n ≥ 3 vertices, in which K j and Kn−k− j are cliques,
and Hk is a graph with k vertices (see Figure 2). Specially, G( j,Kk,n − k − j) plays a key bridge role in this
paper.
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Figure 2. G( j,Hk,n − k − j)

Lemma 2.6. For any G( j,Hk,n − k − j) = K j ⊕Hk ⊕ Kn−k− j with n ≥ 3, k ≥ 1 and 1 ≤ j ≤ n−k
2 , we have

dG( j,Hk ,n−k− j)(v) =


k + j − 1, if v ∈ V(K j),

dHk (v) + n − k, if v ∈ V(Hk),
n − j − 1, if v ∈ V(Kn−k− j).

The next lemma is a key lemma in the proofs for upper bounds of our main results.

Lemma 2.7. Let G( j,Kk,n − k − j) = K j ⊕ Kk ⊕ Kn−k− j be a graph with n vertices, in which K j, Kk and Kn−k− j are
cliques. If n ≥ 3, k ≥ 1 and 2 ≤ j ≤ n−k

2 , then∏
∗

1(G( j,Kk,n − k − j)) <
∏
∗

1(G(1,Kk,n − k − 1))
and ∏

∗

2(G( j,Kk,n − k − j)) <
∏
∗

2(G(1,Kk,n − k − 1)).

Proof. Let the graph G = G( j,Kk,n− k− j) for any n ≥ 3, k ≥ 1 and 1 ≤ j ≤ n−k
2 . By Lemma 2.6, we know that

dG(v) =


k + j − 1, if v ∈ V(K j),

n − 1, if v ∈ V(Kk),
n − j − 1, if v ∈ V(Kn−k− j).

Let E1 = E[V(K j)] ∩ E(G), E2 = E[V(Kk)] ∩ E(G), E3 = E[V(Kn−k− j)] ∩ E(G), B1 = E[V(K j),V(Kk)] ∩ E(G),
B2 = E[V(Kk),V(Kn−k− j)] ∩ E(G). Then

|E1| =
j( j − 1)

2
,

|E2| =
k(k − 1)

2
,

|E3| =
(n − k − j)(n − k − j − 1)

2
,

|B1| = jk,
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|B2| = k(n − k − j).

Let f (x, y) be the unified function of
∏
∗

1 and
∏
∗

2. By the concepts of
∏
∗

1,
∏
∗

2 and the structure of the
class of the graph G = G( j,Kk,n − k − j), we have∏

∗

i (G) =
∏

∀uv∈E(G)

f (d(u), d(v))

=
∏
∀uv∈E1

f (d(u), d(v)) ·
∏
∀uv∈E2

f (d(u), d(v)) ·
∏
∀uv∈E3

f (d(u), d(v)) ·
∏
∀uv∈B1

f (d(u), d(v)) ·
∏
∀uv∈B2

f (d(u), d(v))

= [ f (k+ j−1, k+ j−1)]|E1 | · [ f (n−1,n−1)]|E2 | · [ f (n− j−1,n− j−1)]|E3 | · [ f (k+ j−1,n−1)]|B1 | · [ f (n−1,n− j−1)]|B2 |,

where i = 1, 2.

With respect to
∏
∗

1(G), its corresponding function is f (x, y) = x + y. After calculations, we have∏
∗

1(G) =
∏

∀uv∈E(G)

[dG(u) + dG(v)]

= [2(k + j − 1)]
j( j−1)

2 · [2(n − 1)]
k(k−1)

2 · [2(n − j − 1)]
(n−k− j)(n−k− j−1)

2 · [n + k + j − 2] jk
· [2n − j − 2]k(n−k− j).

(*1)

Claim 1. Let G = G( j,Kk,n − k − j) with given n ≥ 3 and k ≥ 1. Then
∏
∗

1(G) is a strictly decreasing
discrete function with respect to the variable j, where 1 ≤ j < n−k

2 .
Furthermore, if n−k

2 ≥ 2 is an integer, then∏
∗

1(G( n−k
2 ,Kk,

n−k
2 )) <

∏
∗

1(G(1,Kk,n − k − 1)).

Proof of Claim 1.
Since

∏
∗

1(G) > 0 for 1 ≤ j ≤ n−k
2 , ln[

∏
∗

1(G)] has the same monotonicity as
∏
∗

1(G).

Define the corresponding real function∏
∗

1(x) = [2(k + x − 1)]
x(x−1)

2 · [2(n − 1)]
k(k−1)

2 · [2(n − x − 1)]
(n−k−x)(n−k−x−1)

2 · [n + k+
x − 2]xk

· [2n − x − 2]k(n−k−x) (?1)

with respect to one variable x in the interval [1, n−k
2 ).

By Derivative Theory of a function with one variable, we first need to prove that

d[ln(
∏
∗

1(x))]
dx

< 0.

By (?1), we have

d[ln(
∏
∗

1(x))]
dx = (2x + k − n) · ln2 + 1

2 [(2x − 1)ln(k + x − 1) − (2n − 2k − 2x − 1)ln(n − x − 1)]+

[ x(x−1)
(k+x−1) −

(n−k−x)(n−k−x−1)
(n−x−1) ] + k

{
[ln(n + k + x − 2) − ln(2n − x − 2)] + [ x

n+k+x−2 −
n−k−x

2n−x−2 ]
}
.

Below, we need to prove that, given numbers k ≥ 1 and n ≥ 3, all of the following are negative for any
1 ≤ x < n−k

2 :

∆1 = (2x + k − n)ln2,

∆2 = (2x − 1)ln(k + x − 1) − (2n − 2k − 2x − 1)ln(n − x − 1),
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∆3 =
x(x−1)

(k+x−1) −
(n−k−x)(n−k−x−1)

(n−x−1) ,

∆4 = ln(n + k + x − 2) − ln(2n − x − 2),

∆5 = x
n+k+x−2 −

n−k−x
2n−x−2 .

(1) Since 1 ≤ x < n−k
2 , 2x + k − n < 0. Then ∆1 < 0.

(2) Since 1 ≤ x < n−k
2 , n − k > 2x and n − x − 1 > x + k − 1. Then

(n − x − 1)2n−2k−2x−1 = (n − x − 1)2(n−k)−2x−1 > (n − x − 1)2·2x−2x−1 = (n − x − 1)2x−1 > (x + k − 1)2x−1

which implies that (x+k−1)2x−1

(n−x−1)2n−2k−2x−1 < 1, that is ∆2 < 0.

(3) Since 1 ≤ x < n−k
2 , x < n − k − x. Let us consider

f (x) =
x(x − 1)
k + x − 1

.

Then the function f (x) is increasing for 1 ≤ x < n−k
2 and k ≥ 1. Thus,

∆3 =
x(x−1)

(k+x−1) −
(n−k−x)(n−k−x−1)

(n−x−1) =
x(x−1)

(k+x−1) −
(n−k−x)[(n−k−x)−1]

k+(n−k−x)−1 = f (x) − f (n − k − x) < 0.

(4) Since 1 ≤ x < n−k
2 , n + k + x − 2 < 2n − x − 2. Then n+k+x−2

2n−x−2 < 1, which implies

ln
n + k + x − 2

2n − x − 2
< 0,

that is,
∆4 < 0.

(5) Since 1 ≤ x < n−k
2 , n − k − 2x > 0. By Proposition 2.3,

∆5 =
x

n + k + x − 2
−

n − k − x
2n − x − 2

=
x

n + k + x − 2
−

x + (n − k − 2x)
n + k + x − 2 + (n − k − 2x)

,

implying
∆5 < 0.

Up to now, we have proved that for any 1 ≤ x < n−k
2 ,

d[ln(
∏
∗

1(x))]
dx

< 0.

Now we only need to clarify that for an integer n−k
2 ≥ 2,∏

∗

1(G( n−k
2 ,Kk,

n−k
2 )) <

∏
∗

1(G(1,Kk,n − k − 1)).

In fact, since n−k
2 is a positive integer, n, k have the same parity. Since 1 ≤ k ≤ n−4, then n + k−2 ≤ 2n−6,

3n+k−4
2 ≤ 2n − 4, n + k − 1 ≤ 2n − 5, and 2 ≤ n − k − 2 ≤ n − 3. Since n ≥ 5, 2n − 4 ≥ 6.
By (*1), we have∏

∗

1(G(1,Kk,n − k − 1)) = [2(n − 1)]
k(k−1)

2 · [2(n − 2)]
(n−k−1)(n−k−2)

2 · [n + k − 1]k
· [2n − 3]k(n−k−1)

and ∏
∗

1(G( n−k
2 ,Kk,

n−k
2 )) = [2(n − 1)]

k(k−1)
2 · [n + k − 2]

(n−k)(n−k−2)
4 · [ 3n+k−4

2 ]k(n−k).
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Immediately, we have∏
∗

1(G(1,Kk,n − k − 1))∏
∗

1(G( n−k
2 ,Kk,

n−k
2 ))

=
(2n − 4)

(n−k)(n−k−2)
4

(n + k − 2)
(n−k)(n−k−2)

4

·
(2n − 3)k(n−k)

( 3n+k−4
2 )k(n−k)

·
(n + k − 1)k

(2n − 3)k
· (2n − 4)

(n−k−2)2

4

>
(n + k − 1)k

(2n − 3)k
· (2n − 4)

(n−k−2)2

4

Now, we want to prove (n+k−1)k

(2n−3)k · (2n − 4)
(n−k−2)2

4 > 1. Let

h(x) =
(n + x − 1)x

(2n − 3)x · (2n − 4)
(n−x−2)2

4

with x ∈ [1,n − 4] and n ≥ 5. After a simple calculation, we have

d(ln[h(x)])
dx

= [ln(n + x − 1) − ln(2n − 3)] + [
x

x + (n − 1)
− (n − x − 2)ln

√

2n − 4].

Since n ≥ 5 and 1 ≤ x ≤ n − 4, we have

ln(n + x − 1) < ln(2n − 3),

x
x + n − 1

< 1 < 2 · ln
√

6 < (n − x − 2) · ln
√

2n − 4.

Therefore, d(ln[h(x)])
dx < 0, implying that h(x) is strictly decreasing in 1 ≤ x ≤ n − 4. Then by Proposition 2.4,

we have ∏
∗

1(G(1,Kk,n − k − 1))∏
∗

1(G( n−k
2 ,Kk,

n−k
2 ))

> 1.

Hence, Claim 1 holds. �

Similarly, with respect to
∏
∗

2(G), its corresponding function is f (x, y) = (x + y)x+y. After calculation, we
obtain that∏

∗

2(G) =
∏

∀uv∈E(G)

[dG(u) + dG(v)][dG(u)+dG(v)]

= [2(k + j − 1)]2(k+ j−1)· j( j−1)
2 · [2(n − 1)]2(n−1)· k(k−1)

2 · [2(n − j − 1)]2(n− j−1)· (n−k− j)(n−k− j−1)
2 · [n+

k + j − 2](n+k+ j−2)· jk
· [2n − j − 2](2n− j−2)·k(n−k− j)

(*2)

Claim 2. For the class of the graphs G = G( j,Kk,n − k − j) with given n ≥ 3 and k ≥ 1, we have∏
∗

2(G) is a strictly decreasing discrete function with respect to the variable j, where 1 ≤ j < n−k
2 .

Furthermore, if n−k
2 ≥ 2 is an integer, then

∏
∗

2(G( n−k
2 ,Kk,

n−k
2 )) <

∏
∗

2(G(1,Kk,n − k − 1)).

Proof of Claim 2.
Since

∏
∗

2(G) > 0 for 1 ≤ j ≤ n−k
2 , ln[

∏
∗

2(G)] has the same monotonicity as
∏
∗

2(G).

Define the corresponding real function∏
∗

2(x) = [2(k + x − 1)]2(k+x−1)· x(x−1)
2 · [2(n − 1)]2(n−1)· k(k−1)

2 · [2(n − x − 1)]2(n−x−1)· (n−k−x)(n−k−x−1)
2 · [n+
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k + x − 2](n+k+x−2)·xk
· [2n − x − 2](2n−x−2)·k(n−k−x) (?2)

with respect to one variable x in the interval [1, n−k
2 ). By Derivative Theory of a function with one variable,

we only need to prove that
d[ln(

∏
∗

2(x))]
dx

< 0.

By (?2) we have
d[ln(

∏
∗

2(x))]
dx

= ln2 ·
{
[x(x − 1) − (n − k − x)(n − k − x − 1)] + [(2x − 1)(k + x − 1) − (n − x − 1)(2n − 2k − 2x − 1)]

}
+

[(2x − 1)(k + x − 1)ln(k + x − 1) − (2n − 2k − 2x − 1)(n − x − 1)ln(n − x − 1)]+{
x(x − 1)[1 + ln(k + x − 1)] − (n − k − x)(n − k − x − 1)[1 + ln(n − x − 1)]

}
+

k
{
[(n + k + x − 2)ln(n + k + x − 2) − (2n − x − 2)ln(2n − x − 2)]+

[x(1 + ln(n + k + x − 2)) − (n − k − x)(1 + ln(2n − x − 2))]
}
.

Below, we need to prove all of the following are non-positive for any 1 ≤ x < n−k
2 and given numbers

k ≥ 1 and n ≥ 2 as follows.
∆11 = x(x − 1) − (n − k − x)(n − k − x − 1),
∆12 = (2x − 1)(k + x − 1) − (n − x − 1)(2n − 2k − 2x − 1),
∆2 = (2x − 1)(k + x − 1)ln(k + x − 1) − (2n − 2k − 2x − 1)(n − x − 1)ln(n − x − 1),
∆3 = x(x − 1)[1 + ln(k + x − 1)] − (n − k − x)(n − k − x − 1)[1 + ln(n − x − 1)],
∆4 = (n + k + x − 2)ln(n + k + x − 2) − (2n − x − 2)ln(2n − x − 2),

∆5 = x[1 + ln(n + k + x − 2)] − (n − k − x)[1 + ln(2n − x − 2)].

(1) Let us consider f (x) = x(x− 1)− (n− k − x)(n− k − x− 1) and 1(x) = (2x− 1)(k + x− 1) with respect to
x. They are both increasing functions for 1 ≤ x ≤ n−k

2 and k ≥ 1. Since 1 ≤ x < n−k
2 , n − k − x > x. Then

∆11 = x(x − 1) − (n − k − x)(n − k − x − 1) = f (x) − f (n − k − x) < 0,
∆12 = (2x − 1)(k + x − 1) − [2(n − k − x) − 1][k + (n − k − x) − 1] = 1(x) − 1(n − k − x) < 0.

(2) Since 1 ≤ x < n−k
2 , x < n − k − x. Consider a function

f (x) = (2x − 1)(k + x − 1)ln(k + x − 1).

It is obvious that f (x) is strictly increasing for 1 ≤ x < n−k
2 and k ≥ 1. Thus,

∆2 = (2x − 1)(k + x − 1)ln(k + x − 1) − [2(n − k − x) − 1] · [k + (n − k − x) − 1] · ln[k + (n − k − x) − 1]
= f (x) − f (n − k − x) < 0.

(3) Let f (x) = x(x − 1)[1 + ln(k + x − 1)]. It is obvious that f (x) is strictly increasing for 1 ≤ x < n−k
2 and

k ≥ 1. Since 1 ≤ x < n−k
2 , x < n − k − x. Thus,

∆3 = x(x − 1)[1 + ln(k + x − 1)] − (n − k − x)(n − k − x − 1)[1 + ln(n − x − 1)] = f (x) − f (n − k − x) < 0.

(4) Since 1 ≤ x < n−k
2 , k + x < n − x. Let

f (x) = (n + k + x − 2)ln(n + k + x − 2).

It is obvious that f (x) is increasing for 1 ≤ x < n−k
2 . Then

∆4 = (n + k + x − 2)ln(n + k + x − 2) − (2n − x − 2)ln(2n − x − 2) = f (k + x) − f (n − x) < 0.

(5) Since 1 ≤ x < n−k
2 , we have 2x < n − k and k + x < n − x. Then
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∆5 = x[1 + ln(n + k + x − 2)] − (n − k − x)[1 + ln(2n − x − 2)]

< x[1 + ln(n + k + x − 2)] − (2x − x)[1 + ln(x + k + n − 2)] = 0.

Up to now, we have proved that for any 1 ≤ x < n−k
2 ,

d[ln(
∏
∗

2(x))]
dx

< 0.

Now we only need to clarify that for an integer n−k
2 ≥ 2,∏

∗

2(G( n−k
2 ,Kk,

n−k
2 )) <

∏
∗

2(G(1,Kk,n − k − 1)).

In fact, since n, k have the same parity, n−k
2 is a positive integer. Since 1 ≤ k ≤ n − 4, 4 ≤ n − k ≤ n − 1,

3 ≤ n−k−1 ≤ n−2, 2 ≤ n−k−2 ≤ n−3, n ≤ n+k−1 ≤ 2n−5, n−1 ≤ n+k−2 ≤ 2n−6, 3n−3
2 ≤

3n+k−4
2 ≤ 2n−4.

For the convenience of writing, let F(x) = xx. It is a strictly increasing function on x ∈ [5,+∞) and
F′(x) = (1 + x)F(x). By (*2), we have∏

∗

2(G(1,Kk,n − k − 1))

= [F(2(n − 1))]
k(k−1)

2 · [F(2(n − 2))]
(n−k−1)(n−k−2)

2 · [F(n + k − 1)]k
· [F(2n − 3)]k(n−k−1).

and∏
∗

2(G( n−k
2 ,Kk,

n−k
2 ))

= [F(2(n − 1))]
k(k−1)

2 · [F(n + k − 2)]
(n−k)(n−k−2)

4 · [F( 3n+k−4
2 )]k(n−k).

Immediately, we have∏
∗

2(G(1,Kk,n − k − 1))∏
∗

2(G( n−k
2 ,Kk,

n−k
2 ))

=
[F(2(n − 2))]

(n−k−1)(n−k−2)
2

[F( 3n+k−4
2 )]k(n−k)

·
[F(n + k − 1)]k

[F(n + k − 2)]
(n−k)(n−k−2)

4

· [F(2n − 3)]k(n−k−1)

> [F(2n − 4)]
(n−k−1)(n−k−2)

2 −k(n−k)
· [F(n + k − 2)]k− (n−k)(n−k−2)

4 · [F(2n − 3)]k(n−k−1)

= [F(2n − 4)]
1
2 [n2
−4nk+3k2

−3(n−k)+2]
· [F(n + k − 2)]

1
4 [2k−n2

−k2+2nk+2n]
· [F(2n − 3)]k(n−k−1).

Now, we want to prove that

[F(2n − 4)]
1
2 [n2
−4nk+3k2

−3(n−k)+2]
· [F(n + k − 2)]

1
4 [2k−n2

−k2+2nk+2n]
· [F(2n − 3)]k(n−k−1) > 1.

Let
1(x) = [F(2n − 4)]

1
2 [n2
−4nx+3x2

−3(n−x)+2]
· [F(n + x − 2)]

1
4 [2x−n2

−x2+2nx+2n]
· [F(2n − 3)]x(n−x−1)

with x ∈ [1,n − 4] and n ≥ 5. After a simple calculation, we have
d[ln 1(x)]

dx

= −4n+6x+3
2 · ln F(2n − 4) + n−x+1

2 · ln F(n + x − 2) + 1
4 [2(x + n) − (n − x)2] · [1 + ln(n + x − 2)]+

(n − 2x − 1) · ln F(2n − 3)

< (−4n+6x+3)+(n−x+1)+(n−2x−1)
2 · ln F(2n − 3) +

2(x+n)−(n−x)2

4 [1 + ln(n + x − 2)]

=
−(n−x−2)

2 · ln F(2n − 3) +
(x+n)

2 [1 + ln(n + x − 2)] − (n−x)2

4 [1 + ln(n + x − 2)]

< − (n−x−2)(2n−3)
2 ln(2n − 3) + x+n−2

2 ln(n + x − 2) +
2(x+n)−(n−x)2

4
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= − n−x−2
2 ln F(2n − 3) + 1

2 ln F(n + x − 2) +
2(x+n)−(n−x)2

4

< − n−x−2
2 ln F(2n − 3) + 1

2 ln F(2n − 3) + (n − 6)

= −n+x+3
2 ln F(2n − 3) + (n − 6) < 0

as 2(x+n)−(n−x)2

4 is strictly increasing in [1,n − 4], and −n + x + 3 < −1 and ln F(2n − 3) > n − 6 when
n ≥ 5.

Therefore, d[ln 1(x)]
dx < 0, implying that 1(x) is strictly decreasing in 1 ≤ x ≤ n − 4. Then

[F(2n − 4)]
1
2 [n2
−4nk+3k2

−3(n−k)+2]
· [F(n + k − 2)]

1
4 [2k−n2

−k2+2nk+2n]
· [F(2n − 3)]k(n−k−1)

> 1(n − 4) = [F(2n − 4)]
(3n−5)2+13

2 · [F(3n − 6)]n−2
· [F(2n − 3)]n−2 > 1.

Hence, Claim 2 holds. �

By Claims 1 and 2, we can recursively use this process from j to j − 1, and obtain that∏
∗

i (G( j,Kk,n − k − j)) <
∏
∗

i (G( j − 1,Kk,n − k − j + 1)) <
∏
∗

i (G( j − 2,Kk,n − k − j + 2)) <

· · · <
∏
∗

i (G(1,Kk,n − k − 1)).
Therefore,

∏
∗

i (G( j,Kk,n − k − j)) <
∏
∗

i (G(1,Kk,n − k − 1)) for any 2 ≤ j ≤ n−k
2 and i = 1, 2.

Thus, we complete the proof.

Now, we give a lemma related to the minimum values of the modified Zagreb indices of graphs.

Lemma 2.8. Let G be a connected graph with u ∈ V(G) such that dG(u) = 1 and uv ∈ E(G). If dG(v) ≥ 3, then we
can find a connected graph G′ such that

∏
∗

i (G′) <
∏
∗

i (G) with i = 1, 2.

Proof. Choose a vertex w in N(v) − {u} and construct a connected graph G′ by deleting vw and adding uw.
Then it is easy to check that

∏
∗

i (G′) <
∏
∗

i (G) with i = 1, 2 holds.

3. Proofs of the main results

We now turn to prove our main results in this section.

Proof of Theorem 1.1

Note that the degree sequence of Kk
n is k,n − 2,n − 2, · · · ,n − 2︸                     ︷︷                     ︸

n−k−1

,n − 1,n − 1, · · · ,n − 1︸                     ︷︷                     ︸
k

. By the definitions

of
∏
∗

1(G),
∏
∗

2(G) and routine calculations, we have∏
∗

1(Kk
n) = 2

k(k−1)+(n−k−1)(n−k−2)
2 · (n − 1)

k(k−1)
2 · (n − 2)

(n−k−1)(n−k−2)
2 · (2n − 3)k(n−k−1)

· (n + k − 1)k,∏
∗

2(Kk
n) = 2(n−1)k(k−1)+(n−2)(n−k−1)(n−k−2)

· (n − 1)(n−1)k(k−1)
· (n − 2)(n−2)(n−k−1)(n−k−2)

· (2n−

3)(2n−3)k(n−k−1)
· (n + k − 1)(n+k−1)k.

It suffices to prove that
∏
∗

1(G) ≤
∏
∗

1(Kk
n) and

∏
∗

2(G) ≤
∏
∗

2(Kk
n), and the equalities hold if and only if

G � Kk
n.

If k = n − 1, then G � Kn−1
n � Kn, and the theorem is true. Below, we assume 1 ≤ k ≤ n − 2 and then

choose a graph G1 (G2 respectively) in Vk
n such that

∏
∗

1(G1) (
∏
∗

2(G2) respectively) is maximal.
Since Gi � Kn for i = 1, 2, then Gi has a vertex cut set of size k. Let Vi = {vi1, vi2, · · · , vik} be the cut vertex

set of Gi. Let ω(Gi −Vi) denote the number of components of Gi −Vi. By Lemma 2.5 and the choice of Gi, it
is very easy to check that ω(Gi − Vi) = 2 and the induced subgraphs of V(Gi1) ∪Vi and V(Gi2) ∪Vi in Gi are
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complete subgraphs for i = 1, 2. Thus, we obtain that Gi1, Gi[Vi] and Gi2 are complete subgraphs of Gi. Let
Gi1 = Kn′ and Gi2 = Kn′′ . Then we have Gi = Kn′ ⊕Kk⊕Kn′′ which is a type of G( j,Kk,n−k− j). Without loss of
generality, assume that n′ ≤ n”. Then 1 ≤ n′ ≤ n−k

2 . By Lemma 2.7, we have a new graph G′i = K1⊕Kk⊕Kn−k−1

in Vk
n such that

∏
∗

i (G′i) ≥
∏
∗

i (Gi) and equality holds if and only if Gi = K1 ⊕ Kk ⊕ Kn−k−1 = Kk
n for i = 1, 2.

Hence the proof of Theorem 1.1 is complete.

Since Kk
n ∈ E

k
n ⊂ V

k
n, then the following result is an immediate consequence.

Theorem 3.1. Let G be a graph in Ek
n. Then∏

∗

1(G) ≤
∏
∗

1(Kk
n) and

∏
∗

2(G) ≤
∏
∗

2(Kk
n),

where the equalities hold if and only if G � Kk
n, and∏

∗

1(Kk
n) = 2

k(k−1)+(n−k−1)(n−k−2)
2 · (n − 1)

k(k−1)
2 · (n − 2)

(n−k−1)(n−k−2)
2 · (2n − 3)k(n−k−1)

· (n + k − 1)k,∏
∗

2(Kk
n) = 2(n−1)k(k−1)+(n−2)(n−k−1)(n−k−2)

· (n − 1)(n−1)k(k−1)
· (n − 2)(n−2)(n−k−1)(n−k−2)

· (2n−

3)(2n−3)k(n−k−1)
· (n + k − 1)(n+k−1)k.

Proof of Theorem 1.2
Since we consider the minimal values of the modified first and second Zagreb indices of graphs G in

Vk
n, by Proposition 2.2(ii), k = 1 and G contains no cycles. Thus G must be a tree with n vertices. By Lemma

2.6 and routine calculations, we have∏
∗

1(Pn) = 9 · 4n−3 and
∏
∗

2(Pn) = 729 · 256n−3.
We only need to prove that for any tree Tn in V1

n, if Tn , Pn then there exists a tree T′n such that∏
∗

i (T′n) <
∏
∗

i (Tn) for i = 1, 2. Since Tn , Pn, then there exists a vertex w in Tn such that dTn (w) ≥ 3 and Tn
has at least three vertices, x1, y1, z1 such that dTn (x1) = dTn (y1) = dTn (z1) = 1. Let x1x2, y1y2 and z1z2 be three
edges of Tn. Applying Lemma 2.8, we may assume that dTn (x2) = dTn (y2) = dTn (z2) = 2.

Choose a path P = x1x2 · · · xk in Tn such that dTn (xi) = 2 for 2 ≤ i ≤ k−1 and dTn (xk) ≥ 3. If dTn (xk) ≥ 4, then
set T′n = T − xk−1xk + xk−1y1 and we can get dTn (xk−1) + dTn (xk) ≥ 6, dTn (y1) + dTn (y2) = 3, dT′n (xk−1) + dT′n (y1) = 4
and dT′n (y1) + dT′n (y2) = 4. Noting that dT′n (w) ≤ dTn (w) for any w ∈ V(Tn) − {xk−1, xk, y1, y2}, we can easily
check that that

∏
∗

i (T′n) <
∏
∗

i (Tn) for i = 1, 2. Hence, we may assume that dTn (xk) = 3.
Let {w1,w2} = NTn (xk) − {xk−1}. We now show that dTn (wi) = 2 for i = 1, 2. In fact, by Lemma 2.8, we may

assume that dTn (wi) ≥ 2 for i = 1, 2. If dTn (wi) ≥ 3, let T′n = Tn−xkw1 +x1z1, where x1 and z1 are in the different
components of Tn − xkw1. Then T′n is a tree and dTn (x1) + dTn (x2) = dTn (z1) + dTn (z2) = 3, dTn (w1) + dTn (xk) ≥ 6,
dTn (xk−1) + dTn (xk) = 5, and dT′n (x1) + dT′n (x2) = dT′n (z1) + dT′n (z2) = dT′n (x1) + dT′n (z1) = dT′n (xk−1) + dT′n (xk) = 4.
Noting that dT′n (w) ≤ dTn (w) for any w ∈ V(Tn)−{x1, x2, z1, z2,w1, xk−1, xk}, we can deduce that

∏
∗

i (T′n) <
∏
∗

i (Tn)
for i = 1, 2. Hence we may assume that dTn (wi) = 2 for i = 1, 2.

Now, let T′n = Tn − xkw1 + x1w1. Then T′n is a tree and dTn (x1) + dTn (x2) = 3, dTn (xk−1) + dTn (xk) =
dTn (w1) + dTn (xk) = 5, and dT′n (x1) + dT′n (x2) = dT′n (xk−1) + dT′n (xk) = dT′n (x1) + dT′n (w1) = 4. Noting that
dT′n (w) ≤ dTn (w) for any w ∈ V(Tn) − {x1, x2, xk−1,w1, xk}, we can deduce that

∏
∗

i (T′n) <
∏
∗

i (Tn) for i = 1, 2.
Hence, the proof of Theorem 1.2 is complete.

Note that Pn ∈ Ek
n ⊂ V

k
n, then the following theorem is obvious.

Theorem 3.2. Let G be a graph in Ek
n. Then ∏

∗

1(G) ≥ 9 · 4n−3 and
∏
∗

2(G) ≥ 729 · 256n−3,
where the equalities hold if and only if G � Pn.



H. Wang et al. / Filomat 33:14 (2019), 4673–4685 4685

4. Acknowledgments

The authors would like to thank Editor Paola Bonacini and the referees for providing their valuable
comments and suggestions, which lead to great improvements in writing of this paper.

References

[1] B. Basavanagoud, S. Patil, Multiplicative Zagreb indices and coindices of some derived graphs, Opuscula Math. 36 (2016) 287-299.
[2] B. Bollobás, Modern Graph Theory, Springer-Verlag, 1998.
[3] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68

(2012) 217-230.
[4] E. Estrada, G. Patlewicz, E. Uriarte, From Molecular graphs to Drugs. A Review on the use of topological indices in drug design

and discovery, Indian Journal of Chemistry 42 (2003) 1315-1329.
[5] I. Gutman, in Advances in the Theory of Benzenoid Hydrocarbons 2, Topics in Current Chemistry, Springer, Berlin, 162 (1992).
[6] I. Gutman, Extremal hexagonal chains. J. Math. Chem. 12 (1993) 197-210.
[7] I. Gutman, S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
[8] I. Gutman, S.J. Cyvin, in Advances in the Theory of Benzenoid Hydrocarbons, Topics in Current Chemistry, Springer, Berlin, 153

(1990).
[9] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.

[10] S. Ji, X. Li, B. Huo, On Reformulated Zagreb Indices with respect to Acyclic, Unicyclic and Bicyclic Graphs,
MATCH:Communications in Mathematical and in Computer Chemistry 72 (2014) 723-732.

[11] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[12] L.B. Kier, L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
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