
Filomat 33:14 (2019), 4655–4664
https://doi.org/10.2298/FIL1914655T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We establish a relation theoretic version of the main result of Aydi et al. [H. Aydi, M. Abbas,
C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric space, Topol. Appl.
(159), 2012, 3234–3242] and extend the results of Alam and Imdad [A. Alam, M. Imdad, Relation-theoretic
contraction priciple, J. Fixed Point Theory Appl., 17(4), 2015, 693–702.] for a set-valued map in a partial
Pompeiu-Hausdorff metric space. Numerical examples are presented to validate the theoretical finding
and to demonstrate that our results generalize, improve and extend the recent results in different spaces
equipped with binary relations to their set-valued variant exploiting weaker conditions. Our results provide
a new answer, in the setting of relation theoretic contractions, to the open question posed by Rhoades on
continuity at fixed point. We also show that, under the assumption of k-continuity, the solution to the
Rhoades’ problem given by Bisht and Rakoc̆ević characterizes completeness of the metric space. As an
application of our main result, we solve an integral inclusion of Fredholm type.

1. Introduction

The distance between two closed sets is currently a vital tool in mathematics, computer science and
numerous other areas of research. More than one hundred years ago D. Pompeiu [16] (1873−1954) stated this
idea in the context of complex analysis. Infact, Pompeiu needed this distance to define the distance between
two curves in the complex plane and also to introduce the notion of a limit of a sequence of sets by means
of this distance. Let U,V be two bounded and closed sets. If u ∈ U, then d(u,V) = min {d(u, v) : v ∈ V} ,
is the distance between the points u and the set V and d(u, v) is the distance between the points u and
v. Further, Pompeiu noted that D(U,V) is not symmetric and consequently, he defined the asymmetric
distance between the setsU andV as: D(U,V) = max {d(u,V) : u ∈ U} and between the setsV andU as:
D(V,U) = max {d(v,U) : v ∈ V}. He pointed out that D(U,V) = 0 iffU ⊂ V and D(V,U) = 0 iffV ⊂ U.
In order to endow the distance between two sets with its most natural property (symmetry), Pompeiu
considered a natural way to symmetrize his notion, by defining the distance between the setsU andV as
P(U,V) = D(U,V) + D(V,U) and concluded that P(U,V) = 0 iff D(U,V) = 0 and D(V,U) = 0, i.e., iff
U =V.
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On the other hand, in 1914, F. Hausdorff (1868 − 1942) [5] considered all the basic concepts introduced by
Pompeiu, in the general framework of a metric space and adopted an alternative way to symmetrize the
asymmetric distances D(U,V) and D(V,U), which is commonly named as Hausdorff metric. Both the
definitions are equivalent, by virtue of the double inequality which yields 1

2 (u + v) ≤ max{u, v} ≤ (u + v),
1
2 P(A,B) ≤ H(A,B) ≤ P(A,B).

The metrical fixed point theorem for a set valued map appeared in 1968 with the papers of Markin
[9], Nadler [12] and with the paper in 1969 by Covits and Nadler [4]. Consequently, 1968 marks the
appearance of Pompeiu-Hausdorff metric in metrical fixed point theory, under the name ”Hausdorff metric”
or ”Hausdorff distance”, which is still being used in the majority of cases. Although it is better to use the
word Pompeiu-Hausdorff metric as Pompeiu intiated the work to measure distance between two closed
and bounded sets.

Our aim is to prove a relation-theoretic variant of the main result of Ayadi et al. [2] in partial metric
spaces equipped with an arbitrary binary relation for a set-valued map. Examples are given, to demonstrate
the theoretical findings. Consequently, we unify and generalize numerous fixed point results for single-
valued maps to the analogous set-valued maps. Also, we solve an integral inclusion of Fredholm type as an
application of our main result. In the sequal we demonstrate the significance of partial Pompeiu-Hausdorff
metric under Relation-Theoretic Contractions and point out that the list of research areas that uses partial
Pompeiu-Hausdorff metric is very inspiring.

2. Preliminaries

Throughout the paper, a mapM : Z → 2Z of a non empty setZ is a set-valued map, (Z, p) is a partial
metric space [11] and CBp(Z) denote the set of all nonempty, bounded and closed subsets ofZ.
An element z∗ ∈ Z is called a fixed point ofM if z∗ ∈ Mz∗. If τp is topology induced by p, closedness is taken
from (Z, τp).U is a bounded subset in (Z, p) if there exists z0 ∈ Z and M > 0 such that p(z0, z) < p(z, z) + M,
i.e., z ∈ Bp(z0,M). ForU,V ∈ Z, define

• p(z,U) = inf
{
p(z,u) : u ∈ U

}
,

• δp(U,V) = sup
{
p(u,V) : u ∈ U

}
,

• δp(V,U) = sup
{
p(v,U) : v ∈ V

}
.

Definition 2.1. [2] Let U,V,W ∈ CBp(Z) andHp(U,V) = max
{
δp(U,V), δp(V,U)

}
. We have

(i) Hp(U,U) ≤ Hp(U,V);

(ii) Hp(U,V) = Hp(V,U);

(iii) Hp(U,V) ≤ Hp(U,W) +Hp(W,V) − infw∈W p(w,w).

Hp : CBp(Z) × CBp(Z)→ [0,∞) is known as partial Pompeiu-Hausdorff metric induced by p.

Example 2.2. Let Z = {−1, 0, 1} and p(z,w) = max {|z| , |w|} , z,w ∈ Z defines a partial metric p on Z then
Hp(U,V) = 0 or 1, whereU andV are subsets ofZ.

Remark 2.3. Every Pompeiu-Hausdorff metric is a partial Pompeiu-Hausdorff metric but reverse is not applicable.

Lemma 2.4. [2] LetU andV are nonempty bounded and closed subsets of a partial metric space (Z, p) and ξ > 1.
Then u ∈ U there exists v ∈ V such that p(u, v) ≤ ξHp(U,V).

Definition 2.5. [8] A binary relation denoted by R, is a subset ofZ×Z. If (s, v) ∈ R, then s is related to v.

Definition 2.6. [10] R is complete if s, v ∈ R, [s, v] ∈ R, (i.e., either (s, v) ∈ R or (v, s) ∈ R).
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Definition 2.7. [8] The symmetric closure Rs is the smallest symmetric relation containg R, i.e., Rs = R
⋃
R
−1.

Definition 2.8. [7] R isM−closed if (s, v) ∈ R =⇒ (Ms,Mv) ∈ R, s, v ∈ U.

Definition 2.9. [1] A sequence {sn} inZ is R−preserving if (sn, sn+1) ∈ R, n ∈N0.

Definition 2.10. [6] For any m ∈ N, w ∈ Z is m−connected to z if there exists a path of length m from z to w, i.e.,
there exists {ui} ⊆ Z, i = 0, 1, . . . ,m such that u0 = z,uk = w and (ui,ui+1) ∈ R. For some z ∈ Z,

P(z,m) =
{
w ∈ Z : there exists a path o f len1th m f rom z to w

}
.

A sequence {zn} ⊆ Z is called a trajectory of the mapM, starting at z1, if zn+1 ∈ Mzn, n ∈N.

A graph of a mapM is defined as G(M) = {(z,w) : z ∈ Z,w ∈ Mz}. The mapM is closed if G(M) is closed
subset ofZ×Z.

Definition 2.11. [19] Let ψ be the class of functions ψ : [0,∞) −→ [0,∞), such that

(i) ψ is Lebesgue integrable, summable on compact subset of [0,∞);

(ii)
∫ ε

0 ψ(t)dt > 0 for each ε > 0.

3. Main Results

We introduceR−completeness andMp−closedness in a partial Pompieu-Hausdorff metric space (CBp(Z),Hp)
to establish a set-valued relation theoretic variant of the main result of Aydi et al. [2].

Definition 3.1. (CBp(Z),Hp) isR−complete if everyR−preserving Cauchy sequence inZ converges to a point inZ.

Every complete partial Pompeiu-Hausdorff metric space is R−complete, however reverse is not essentially
true.

Definition 3.2. Let R be a binary relation on Z and M : Z → CBp(Z) be a set-valued map. Then R is called
Mp−closed if

(w, z) ∈ R, u ∈ Mw, v ∈ Mz, p(u, v) ≤ p(w, z) implies that (u, v) ∈ R.

Remark 3.3. For a single valued mapM : Z→Z, R isMp−closed if

(w, z) ∈ R, p(Mw,Mz) ≤ p(w, z) implies that (Mw,Mz) ∈ R.

Example 3.4. LetZ = R2 and a partial metric p : Z×Z→ [0,∞) be defined by p((z,w), (u, v)) = max
{√

z2 + w2,
√

u2 + v2
}
,

(z,w), (u, v) ∈ Z. Let a relationR and a self mapM onZ be defined asR =
{
((z,w), (u, v)) : z2 + w2

≤ 1, u2 + v2
≤ 1

}
andM(z,w) =

 1
4 (z,w), (z,w) ∈ U
4(z,w), otherwise.

LetU be open subset ofZ as shown in following figure.
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Noticeably,R isMp−closed but notM−closed. Since ((1, 0), (0, 1)) ∈ R but (M(1, 0),M(0, 1)) = ((4, 0), (0, 4)) <
R.

Remark 3.5. In the above example if p : Z×Z→ [0,∞) be defined as:

p((z,w), (u, v)) =

 1
2 , (z,w) , (u, v)
1
4 , (z,w) = (u, v).

ThenR is notMp−closed. Here p(M(1, 0),M(0, 1)) = p((4, 0), (0, 4)) = 1
2 = p((1, 0), (0, 1)) and p(M(1, 0),M(1, 0)) =

p((4, 0), (4, 0)) = 1
4 = p((1, 0), (1, 0)). However (M(1, 0),M(0, 1)), (M(1, 0),M(1, 0)) < R.

It is clear thatMp−closedness depends on both, a set-valued mapM as well as a partial metric p and is
weaker thanM−closedness.

Theorem 3.6. LetM be a set-valued self map of a complete partial Pompeiu-Hausdorff metric space (CBp(Z),Hp)
equipped with a binary relation R, satisfying :

(i) there exist z0 ∈ Z such that P(z0, k)
⋂
Mz0 is non-empty, k ∈N.

(ii) R isMp-closed.

(iii) M : Z→ CBp(Z) is a set-valued map such that

Hp(Mz,Mw) ≤ ηp(z,w) f or all (z,w) ∈ R, where η ∈ (0, 1). (1)

(iv) eitherM is a closed map or if for any trajectory {zn} ⊆ Z ofM, if {zn} → z∗ and zn+1 ∈ P(zn, k), n ∈ N, then
there exists a subsequence

{
zn j

}
of {zn} such that [zn j , z∗] ∈ R, j ∈N.

Then there exists a trajectory {zn} ⊆ Z ofM, converging to a fixed point ofM.

Proof. Because P(z0,m)
⋂
Mz0 , φ, so let z1 ∈ P(z0,m)

⋂
Mz0. Therefore z1 ∈ Mz0 implies if z0 = z1 ∈

Mz0, z0 is a fixed point ofM and the constant sequence {z0} is a trajectory ofM converging to a fixed point
ofM and hence the proof is completed.

So we consider a path of minimum length, i.e., z0 , z1. Now z1 ∈ P(z0,m) implies that there exists
{wi} ⊆ Z, i = 0, 1, . . . ,m such that w0 = z0,wm = z1 and (wi,wi+1) ∈ R, i = 0, 1, . . . ,m− 1. If wi = wi+1 for some
i = 0, 1, . . . ,m − 1, we redefine m such that wi , wi+1, i = 0, 1, . . . ,m − 1.
Since z1 ∈ Mz0 =Mw0, p(w0,w1) > 0. From Lemma 2.4 there exists ξ = 1

√
η then there exists w1

1 ∈ Mw1 such
that

p(z1,w1
1) ≤

1
√
η
Hp(Mw0,Mw1). (2)

Choice of w1
1 depends on the choice of η, since w0 and w1 are fixed.

M is set-valued relation theoretic contraction and (w0,w1) ∈ R, so inequality (1) follows that

p(z1,w1
1) ≤

√
η p(w0,w1), (3)

i.e., p(z1,w1
1) < p(w0,w1).

By theMp−closedness of R, (z1,w1
1) ∈ R.

Following the similiar steps, for i = 0, 1, 2, . . . there exists w1
i ∈ Mwi such that (w1

i−1,w
1
i ) ∈ R and

p(w1
i−1,w

1
i ) ≤

√
ηp(wi−1,wi).

Taking w1
0 = z1 and w1

m = z2,
{
w1

i : i = 0, 1, . . . ,m
}

forms a path of lenght m from z1 to z2. So z2 ∈

P(z1,m)
⋂
Mz1. There is no guarantee that all

{
w1

i

}
⊆ Z are different.

Following the same pattern, we get a trajectory {zn} of M such that zn+1 ∈ P(zn, k)
⋂
Mzn as there exists{

wn
i

}
⊆ Z, i = 0, 1, . . . ,m , wn

0 = zn,wn
m = zn+1. Although, all

{
wn

i

}
⊆ Zmay not be different. Consider if:
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(i) p(wn−1
i−1 ,w

n−1
i ) > 0, then wn

i ∈ Mwn−1
i such that (wn

i−1,w
n
i ) ∈ R and

p(wn
i−1,w

n
i ) <

√
ηp(wn−1

i−1 ,w
n−1
i ).

(ii) If p(wn−1
i−1 ,w

n−1
i ) = 0, i.e., wn−1

i−1 = wn−1
i . Since wn−1

i−1 ∈ Mwn−2
i−1 ,w

n−1
i ∈ Mwn−2

i and p(wn−1
i−1 ,w

n−1
i ) = 0 <

p(wn−1
i−1 ,w

n−1
i ). So byMp−closedness of R, we get (wn−1

i−1 ,w
n−1
i ) ∈ R.

In both cases, (wn−1
i−1 ,w

n−1
i ) ∈ R, i = 1, 2, . . . ,m.

Next, for notational convenience, take p0
i = p(w0

i−1,w
0
i ) and pn

i = p(wn
i−1,w

n
i ),n ∈ N. Using inequality (1)

repeatedly, we get, for n ∈N and i = 1, 2, . . . ,m,
pn

i = p(wn
i−1,w

n
i ) ≤

√
ηp(wn−1

i−1 ,w
n−1
i )

...
< (
√
η)np0

i .

i.e., pn
i ≤ (

√
η)np0

i . (4)

Now by using (p4), n ∈N and i = 1, 2, . . . ,m
p(zn, zn+1) = p(wn

0 ,w
n
m) ≤ Σm

i=1pn
i − Σm

i=1p(wn−1
i ,wn−1

i )
< Σm

i=1pn
i

< (
√
η)nΣm

i=1p0
i .

For n,m ∈N and n > m, using (p4)
p(zn, zm) ≤ Σn−1

j=mp(z j, z j+1) − Σn−1
j=m+1p(z j, z j)

< Σn−1
j=mp(z j, z j+1)

≤ Σn−1
j=m(
√
η) jΣm

i=1p0
i =

(
√
η)m

1−
√
ηΣm

i=1p0
i −→ 0, as n −→ ∞.

Thus {zn} is a Cauchy sequence in a complete partial Pompeiu-Hausdorff metric space (CBp(Z),Hp).
Therefore, there exists z∗ ∈ Z such that zn −→ z∗ as n −→ ∞. Since {zn} is a trajectory ofM andM is a closed
map, so (zn, zn+1) −→ (z∗, z∗) ∈ G(M), i.e., z∗ ∈ Mz∗. Hence z∗ is a fixed point ofM.
In case, if there exists a subsequence {zn j } of {zn} such that [zn j , z∗] ∈ R, j ∈ N. Since zn j+1 ∈ Mzn j , [zn j , z∗] ∈
R, j ∈N, there exists a sequence

{
v j

}
with v j ∈ Mz∗ such that

p(zn j+1 , v j) ≤ Hp(Mzn j ,Mz∗).
Now, using inequality (1) and (p4)

≤
√
ηp(zn j , z∗)

≤
√
η(p(zn j , zn j+1 ) + p(zn j+1 , z∗) − p(zn j+1 , zn j+1 )).

Choose the sequences
{
v j

}
in such a way that as j→∞, then p(v j, z∗)→ p(z∗, z∗). Since v j ∈ Mz∗ for all j ∈N

andMz∗ is closed, so z∗ ∈ Mz∗. Hence z∗ is a fixed point ofM.

Remark 3.7. If R = Z×Z in Theorem 3.6, we get the extension of Nadler’s Theorem [12] to partial metric spaces.

To demonstrate the significance of partial Pompeiu-Hausdorff metric and valadity of Theorem 3.6, we give
the following examples.

Example 3.8. LetZ = R. Let partial metric onZ andM : Z→ CBp(Z) be defined as:

p(z,w) = |z − w| + max {|z| , |w|} andMz =


{
0, z

4

}
, z ∈ Q+

{0, 4z + 1} , z < Q−.
Let the binary relation R onZ be defined as R = {(z,w) : z,w ∈ Q+

}.

(i) Consider a sequence {zn} = α
22n ,n ∈ N, α ∈ Q. Then (zn, zn+1) ∈ R and zn+1 ∈ Mzn, n ∈ N. Therefore

P(zn, 1) ∩Mzn , φ, n ∈N. Also z1 ∈ P(z1, 1) ∩Mz1.
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(ii) Let (z,w) ∈ R, z,w ∈ Q.Also there exist u ∈ Mz and v ∈ Mw, i.e., (u, v) ∈ R, u, v ∈ Q.HenceR isMp−closed.

(iii) By definition
Hp(Mz,Mw) = Hp(

{
0, z

4

}
,
{
0, w

4

}
)

= max
{
sup

{
0,min(

∣∣∣ z
4

∣∣∣ +
∣∣∣ z

4

∣∣∣ , ∣∣∣ z
4 −

w
4

∣∣∣ + max
{∣∣∣ z

4

∣∣∣ , ∣∣∣w
4

∣∣∣})} , sup
{
0,min(

∣∣∣w
4

∣∣∣ +
∣∣∣w

4

∣∣∣ , ∣∣∣ z
4 −

w
4

∣∣∣ + max
{∣∣∣ z

4

∣∣∣ , ∣∣∣w
4

∣∣∣})}}
= max

{
min(

∣∣∣ z
4

∣∣∣ +
∣∣∣ z

4

∣∣∣ , ∣∣∣ z
4 −

w
4

∣∣∣ + max
{∣∣∣ z

4

∣∣∣ , ∣∣∣w
4

∣∣∣}),min(
∣∣∣w

4

∣∣∣ +
∣∣∣w

4

∣∣∣ , ∣∣∣ z
4 −

w
4

∣∣∣ + max
{∣∣∣ z

4

∣∣∣ , ∣∣∣w
4

∣∣∣})}
≤

1
4 [|z − w| + max {|z| , |w|}].

So,Hp(Mz,Mw) ≤ 1
4 p(z,w),

i.e.,M is a set-valued relation theoretic contraction with 1
4 as a contractivity constant.

(iv) Let {zn} ⊆ Z be a trajectory ofM and {zn} → z, since zn+1 ∈ P(zn, 1). Hence (zn, zn+1) ∈ R and zn ∈ Q,n ∈N.
So either z2 = 0 or z2 = z1

4 . If z2 = 0 then z3 = 0 and so on. If z2 = z1
4 , conitinuing similiarly, we get

zn = 1
4 zn−1 = 1

42 zn−2 = · · · = 1
4n−1 z1. So zn → 0 as n→∞. Therefore, (zn, 0) ∈ R,n ∈N.

Thus, all the hypotheses of Theorem 3.6 are verified and the set of fixed point ofM, F (M) =
{
0,− 1

3

}
.

But for any z ∈ Q− :
Hp(Mz,M0) = Hp({0, 4z + 1} , 0) = |4z + 1| ≥ 2 |z| = p(z, 0).
Therefore,M is not a Nadlar contraction.

Example 3.9. LetZ = R and p(z,w) = {|z| , |w|}. Let a binary relation R onZ andM : Z −→ CBp(Z) be defined

as R = {(z,w) : z,w ∈ R+
} andMz =


{

1
2 ,

1
2z

}
, z > 1{

0, z
2

}
, 0 ≤ z ≤ 1

{−2,−8} , otherwise.

(i) Consider a sequence {zn} = 2n
2n+1 ,n ∈ N. Then (zn, zn+1) ∈ R and zn+1 ∈ Mzn, n ∈ N. Therefore P(zn, 1) ∩

Mzn , φ, n ∈N. Also z1 ∈ P(z1, 1) ∩Mz1.

(ii) Let (z,w) ∈ R. Also there exist u ∈ Mz and v ∈ Mw, i.e., (u, v) ∈ R. Hence R isMp−closed.

(iii) Hp(Mz,Mw) ≤ 1
2 p(z,w), (z,w) ∈ R.

(iv) Let {zn} ⊆ Z be a trajectory ofM and {zn} −→ z, since zn+1 ∈ P(zn, 1). Hence (zn, zn+1) ∈ R,n ∈ N. So either
z2 = 0, z2 = z1

2 or z2 = 1
2z1

. If z2 = 0 then z3 = 0 and so on. Following the same pattern for z2 = z1
2 or z2 = 1

2z1
,

we get either or zn+1 = zn
2n if {zn} ⊆ [0, 1] or zn+1 = 1

2nzn
if {zn} ⊆ (1,∞). So zn −→ 0 as n −→ ∞. Therefore,

(zn, 0) ∈ R.

Thus all the hypotheses of Theorem 3.6 are verified and the set of fixed point ofM, F (M) = {0} .
But for z < 0,Hp(M(−1),M(−2)) = 8 > p((−1), (−2)) = 2. Therefore,M is not a Nadlar contraction.

Remark 3.10. It is worth mentioning here that each Nadler contraction is a set-valued relation-theoretic contraction
with the same binary relation R as the universal relationZ×Z and the same contractivity constant. But, each set-
valued relation-theoretic contraction need not be a Nadler contraction in the space under consideration. So Nadler’s
fixed point theorem can not be applied in Examples 3.8 and 3.9.

The following result is a an immediate extension of Theorem 3.6 to an integral type contraction.

Corollary 3.11. Theorem 3.6 is valid even if contraction condition (iii) is replaced by∫
Hp(Mz,Mw)

0 ψ(t)dt ≤ η
∫ p(z,w)

0 ψ(t)dt, (z,w) ∈ R, ψ ∈ ψ.

Remark 3.12. It is intersting to see that, since single-valued map is a particular case of multi-valued map (Mz =
{Mz} , z ∈ Z). Therefore, Theorem 3.6 is an extension of Alam and Imdad [1] to a set-valued case.
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Remark 3.13. Noticeably M is not continuous in Examples 3.8 and 3.9, hence we may conclude that set-valued
relation theoretic contraction does not force the map to be continuous at the fixed point. Further, we have not assumed
any variant of continuity for establishing unique fixed point using set-valued relation theoretic contraction. For
details on the variants of continuity one may refer to Tomar and Karapinar [22]. Thus, we provide one more novel
answer to the open question posed by Rhoades [18]. It is worth to mention here that the question of existence of
a contractive condition which generate a fixed point but does not force a map to be continuous at the fixed point
was posed by Rhoades [18] as an open problem and was first settled in the affirmative by Pant [14]. The study of
contractive conditions which admit discontinuity at the fixed point and applications of such results in neural networks
with discontinuous activation functions is presently a very active area of research e.g. Bisht and Rakoc̆ević [3],Özgür
and Taş [13], Pant et al. [15], Rashid et al. [17], Taş and Özgür [20], Taş et al. [21]. Recently, Pant et al. [15]
demonstrated that the problem of continuity of contractive maps at the fixed point has an affirmative answer in Menger
PM spaces also. Bisht and Rakoc̆ević [3] obtained an interesting theorem which not only provides a new answer to
the problem of continuity at the fixed point but, as shown below, also characterizes completeness of the metric space
under the assumption of k-continuity.

If f is a single-valued self-map of a metric space (X, d), let us denote:

m(x, y) = max
{
d(x, y), a d(x, f x) + (1 − a) d(y, f y), (1 − a) d(x, f x) + a d(y, f y),

b[d(x, f y) + d(y, f x)]
2

}
, 0 ≤ a, b < 1

Bisht and Rakoc̆ević [3] proved the following theorem:

Theorem 3.14 (Theorem 2.1 of [3]). Let (X, d) be a complete metric space. Let f be a self-map on X such that for
any x, y ∈ X:

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < m(x, y) < ε + δ implies d( f x, f y) ≤ ε;
(ii) d(Tx,Ty) < m(x, y), whenever m(x, y) > 0.

Then f has a unique fixed point, say z, and f nx→ z for each x in X. Moreover, f is continuous at z iff limx→z m(x, z) =
0.

Definition 3.15. [15] A self-map f of a metric space X is called k-continuous, where k = 1, 2, 3, . . ., if f kxn → f t
whenever {xn} is a sequence in X such that f k−1xn → t.

We now prove that under the assumption of k-continuity Theorem 3.14 (Theorem 2.1 of [3]) of Bisht and
Rakoc̆ević [3] characterizes completeness of the metric space.

Theorem 3.16. Let (X, d) be a metric space. If every k-continuous self-map of X satisfying conditions (i) and (ii) of
Theorem 3.14 has a fixed point, then X is complete.

Proof. Suppose that every k-continuous self-map of X satisfying conditions (i) and (ii) of Theorem 3.14
possesses a fixed point. We assert that X is complete. If possible, suppose X is not complete. Then there
exists a Cauchy sequence in X, say S = {u1,u2,u3, . . .}, consisting of distinct points which does not converge.
Let x ∈ X be given. Then since x is not a limit point of the sequence S, d(x,S− {x}) > 0 and there exists a least
positive integer N(x) such that x , uN(x) and for each m ≥ N(x) we have

d(uN(x),um) <
1
3

d(x,uN(x)). (5)

Let us define a map f : X → X by f (x) = uN(x). Then, f (x) , x for each x and, using (5), for any x, y ∈ X we
get

d( f x, f y) = d(uN(x),uN(y)) <
1
3

d(x,uN(x)) =
1
3

d(x, f x) if N(x) ≤ N(y)

or

d( f x, f y) = d(uN(x),uN(y)) <
1
3

d(y,uN(y)) =
1
3

d(y, f y) if N(x) > N(y).
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This implies that

d( f x, f y) <
1
3

max
{
d(x, y), a d(x, f x) + (1 − a) d(y, f y), (1 − a) d(x, f x) + a d(y, f y),

b[d(x, f y) + d(y, f x)]
2

}
=

1
3

m(x, y) (6)

In other words, given ε > 0 we can select δ(ε) = ε such that

ε < m(x, y) < ε + δ⇒ d( f x, f y) ≤ ε. (7)

It is clear from (6) and (7) that the map f satisfies conditions (i) and (ii) of Theorem 3.14. Moreover, f is a
fixed point free map whose range is contained in the non-convergent Cauchy sequence S = {un}. Hence,
there exists no sequence {xn} in X for which { f xn} converges; that is, there exists no sequence {xn} in X for
which the condition f xn → t⇒ f kxn → f t is violated. Therefore, f is a k-continuous map. Thus, we have a
self-map f of X which satisfies all the conditions of Theorem 3.14, but does not possess a fixed point. This
contradicts the hypotheses of Theorem 3.14. Hence, X is complete.

4. Application

Now, we solve an integral inclusion as an application of Theorem 3.6 .

Theorem 4.1. Consider an integral inclusion of Fredholm type

ξ(t) ∈ φ(t) +

∫ 1

0
K(t, s, ξ(s))ds, t ∈ [0, 1], (8)

where K : I × I ×R→ 2R is lower semicontinuous (t,u) ∈ I × I and ξ, φ ∈ C(I,R).
Also for each t ∈ I, there exists f (t, .) ∈ L1(I) such that supt∈I

∫ 1

0 f (t, s)ds = u
4 with u ∈ [0, 1] and if ξ(t) ≤ φ(t) for

all t ∈ I thenHp(K(t, s, ξ(s)) −K (t, s, φ(s)) ≤ f (t, s)(maxs∈I |ξ(s)| ,
∣∣∣φ(s)

∣∣∣).
Then the integral inclusion has at least one solution.

Proof. TakeZ = C(I,R). Consider the set-valued operatorM : Z→ 2Z defined by

Mz(t) =
{
ξ(t) ∈ C(I,R) : ξ(t) ∈ φ(t) +

∫ 1

0 K(t, s, ξ(s))ds, t ∈ I
}
.

M is well defined, since by Michael selection theorem, for each K(t, s, ξ(s)) : I × I ×R → 2R there exists a
continuous operator k : I × I ×R→ 2R such that k(t, s, ξ(s)) ∈ K(t, s, ξ(s)), t, s ∈ I.
Mz(t) , φ, since φ(t) +

∫ 1

0 K(t, s, ξ(s))ds ∈ Mz(t). So, the solution of an integral inclusion is the fixed point of
the operatorM.
Let partial metric p : Z×Z→ R+ and binary relationZ be defined as
p(z(t),w(t)) = maxt∈I {|z(t)| , |w(t)|} and R = {(z,w) : z ≤ w iff z(t) ≤ w(t), t ∈ I}.

(i) Cosider a R−presereving sequence {zn} in Mz such that zn → z and zn+1 ∈ φ(t) +
∫ 1

0 K(t, s, zn(s)).
Therefore P(zn, 1) ∩Mzn , φ, n ∈N.

(ii) Let z,w ∈ Zwith (z,w) ∈ R, so z(t) ≤ w(t) for all t ∈ Z. Also by hypothesis
Hp(K(t, s, z(s)) − K(t, s,w(s)) ≤ f (t, s) maxs∈I {|z(s)| , |w(s)|} , t, s ∈ I.
Let 1 ∈ Mz, h ∈ Mw then there exists k(t, s, z(s)) ∈ K(t, s, z(s)),k(t, s,w(s)) ∈ K(t, s,w(s)), t, s ∈ I such that
1(t) = φ(t) +

∫ 1

0 k(t, s, z(s))ds, h(t) = φ(t) +
∫ 1

0 k(t, s,w(s))ds, t ∈ I and
|k(t, s, z(s)) − k(t, s,w(s))| ≤ f (t, s)[max |z(s)| , |w(s)|], t, s ∈ I.
Therefore,
δp(Mz(t),Mw(t)) = sup

1∈Mz infh∈Mw(p(1(t), h(t))

= sup
1∈Mz infh∈Mw maxt∈I

{∣∣∣∣φ(t) +
∫ 1

0 k(t, s, z(s))ds
∣∣∣∣ , ∣∣∣∣φ(t) +

∫ 1

0 k(t, s,w(s))ds
∣∣∣∣}
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= sup
1∈Mz infh∈Mw maxt∈I

{∣∣∣∣∫ 1

0 k(t, s, z(s))
∣∣∣∣ , ∣∣∣∣∫ 1

0 k(t, s,w(s))
∣∣∣∣}

≤ sup
1∈Mz infh∈Mw

∫ 1

0 maxt∈I {|k(t, s, z(s))| , |k(t, s,w(s))|} ds

≤ sup
1∈Mz infh∈Mw

∫ 1

0 f (t, s) maxt∈I {|z(s)| , |w(s)|} ds

≤ maxt∈I {|z(s)| , |w(s)|} supt∈I

∫ 1

0 f (t, s)ds
= u

4 p(z(t),w(t)), u ∈ [0, 1].
Similiarly δp(Mw(t),Mz(t) ≤ u

4 p(w(t), z(t)), u ∈ [0, 1].
Now,Hp(Mz(t),Mw(t)) = max

{
δp(Mz(t),Mw(t)), δp(Mw(t),Mz(t))

}
≤

u
4 p(z(t),w(t)),

i.e.,M is a set-valued relation theoretic contraction.

(iii) Let (z,w) ∈ R, i.e., z(t) ≤ w(t), t ∈ I and 1(t) ∈ Mz(t), h(t) ∈ Mw(t). Then
p(1(t), h(t)) = maxt∈I

{∣∣∣1(t)∣∣∣ , |h(t)|
}

= maxt∈I

{∣∣∣∣φ(t) +
∫ 1

0 k(t, s, z(s))ds
∣∣∣∣ , ∣∣∣∣φ(t) +

∫ 1

0 k(t, s,w(s))ds
∣∣∣∣}

= maxt∈I

{∣∣∣∣∫ 1

0 k(t, s, z(s))ds
∣∣∣∣ , ∣∣∣∣∫ 1

0 k(t, s,w(s))ds
∣∣∣∣}

≤ maxt∈I

∫ 1

0 {|k(t, s, z(s))| , |k(t, s,w(s))|} ds

≤ maxt∈I {z(s),w(s)}
∫ 1

0 f (t, s)ds
≤

u
4 p(z(t),w(t),

i.e., R isMp−closed.

(iv) SinceMz , φ. So it is easy to proveMz is closed.
Hence, all the hypotheses of Theorem 3.6 are verified and consequently, the integral inclusion has a
solution inZ.

5. Conclusion

We have used an arbitrary binary relation to establish a fixed point in partial Pompeiu-Hausdorff
metric spaces for set-valued relation-theoretic map. However, different binary relations, e.g., preorder,
partial order, transitive relation, strict order, tolerance symmetric closure and so on, are being used by
numerous authors to establish fixed point in a metric space for single-valued map. Further we have
provided illustrative examples and solved an integral inclusion to demonstrate the validity of our main
result and significance of partial Pompeiu-Haudorff metric for relation theoretic contraction. In the sequel
we provided one more answer to the open question of Rhoades [18] for a set-valued relation-theoretic
nonlinear contraction in a partial Pompeiu-Hausdorff metric space equipped with a binary relation. We
also demonstrated that the result of Bisht and Rakoc̆ević [3] also characterizes the completeness of metric
space via k−continuity.
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[20] N. Taş, N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory, 20(2) (2019), 715–728.
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