Landau-Bloch Theorems for Bounded Biharmonic Mappings

Rasoul Aghalary ${ }^{\text {a }}$, Ali Mohammadian ${ }^{\text {a }}$, Jay Jahangiri ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
${ }^{b}$ Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A.

Abstract

We determine coefficient bounds for bounded planar biharmonic mappings and generalize the Landau-Bloch univalency theorems for such bounded biharmonic functions. The univalence radii presented here improve many related results published to date, including the most recent one [Complex Var. Elliptic Equ. 58(12) (2013), 1667-1676] and are sharp in some given cases.

1. Introduction

A function $f(z)=u(z)+i v(z)$ defined on a domain $\Omega \in \mathbb{C}$ is a harmonic mapping if and only if f is twice continuously differentiable and $\Delta f=4 f_{z \bar{z}}=0$. In a remarkable paper, Clunie and Sheil-Small [7] explored the class of harmonic functions and showed that if Ω is simply connected, then f can be written as $f=h+\bar{g}$, where h and g are holomorphic in Ω. Harmonic mappings can be regarded as generalizations of holomorphic functions while biharmonic mappings are generalizations of harmonic mappings. A four times continuously differentiable complex-valued function $F(z)=U(z)+i V(z)$ is said to be biharmonic in a domain $\Omega \in \mathbb{C}$ if and only if ΔF is harmonic in Ω, that is, if and only if F satisfies the biharmonic equation $\Delta^{2} F=\Delta(\Delta F)=0$ in Ω.

For a continuously differentiable function f in Ω we define

$$
\Lambda_{f}(z)=\max _{0 \leq \theta \leq 2 \pi}\left|f_{z}(z)+e^{-2 i \theta} f_{\bar{z}}(z)\right|=\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right|
$$

and

$$
\lambda_{f}(z)=\min _{0 \leq \theta \leq 2 \pi}\left|f_{z}(z)+e^{-2 i \theta} f_{\bar{z}}(z)\right|=\left\|f_{z}(z)|-| f_{\bar{z}}(z)\right\| .
$$

Lewy [15] showed that a harmonic function f is locally univalent in Ω if its Jacobian $J_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=$ $\left|h^{\prime}\right|^{2}-\left|g^{\prime}\right|^{2}$ does not vanish anywhere in Ω. We note that local univalence of f does not imply global univalence in a given domain Ω and also note that $\left|J_{f}\right|=\Lambda_{f} \lambda_{f}$.

It is known (e.g. see [2], [3]) that a mapping F is biharmonic in a simply connected domain Ω if and only if F has the representation

$$
\begin{equation*}
F=|z|^{2} G+K, \quad z \in \Omega \tag{1}
\end{equation*}
$$

[^0]where G and K are harmonic in Ω.
Without loss of generality, for functions $F=|z|^{2} G+K$ biharmonic in the open unit disk $\mathbb{D}=\{z:|z|<1\}$ we may express G and K by
\[

$$
\begin{align*}
& G(z)=g_{1}(z)+\overline{g_{2}(z)}=\sum_{n=1}^{\infty} a_{n} z^{n}+\overline{\sum_{n=1}^{\infty} b_{n} z^{n}} \\
& K(z)=k_{1}(z)+\overline{k_{2}(z)}=\sum_{n=1}^{\infty} c_{n} z^{n}+\overline{\sum_{n=1}^{\infty} d_{n} z^{n}} \tag{2}
\end{align*}
$$
\]

where g_{1}, g_{2}, k_{1}, and k_{2} are analytic in \mathbb{D}.
The classical Landau Theorem for bounded holomorphic functions states that if f is a holomorphic function in \mathbb{D} with $f(0)=f^{\prime}(0)-1=0$ and $|f(z)|<M$ for $z \in \mathbb{D}$, then f is univalent (schlicht) in the disk $|z|<\rho_{0}=\left(M+\sqrt{M^{2}-1}\right)^{-1}$ and $f\left(|z|<\rho_{0}\right)$ contains the disk $|z|<M \rho_{0}^{2}$. It is known (e.g. see [14] or [4]) that these bounds are sharp. Moreover, for f as defined above with $f(0)$ not necessarily zero, there is the Bloch Theorem which asserts the existence of a positive constant b such that $f(\mathbb{D})$ contains a schlicht disk, that is, a disk of radius b which is the univalent image of some region in \mathbb{D}. The Bloch constant is defined as the supremum of all such b (e.g. see [8], [11] or [9]).

In the sequel, for $\zeta \in \mathbb{C}$ we let $\mathbb{D}_{\rho}(\zeta):=\{z \in \mathbb{C}:|z-\zeta|<\rho\}, \mathbb{D}_{\rho}=\mathbb{D}_{\rho}(0)$ and for $\rho=1$ we simply use $\mathbb{D}_{1}=\mathbb{D}$. The following theorem is proved by Zhu and Liu ([17], Theorem 3.2).

Theorem 1.1. Suppose that $F(z)=|z|^{2} G(z)+H(z)$ is a biharmonic mapping of the unit disk \mathbb{D} such that $|G(z)| \leq M_{1}$ and $|H(z)| \leq M_{2}$ for $z \in \mathbb{D}$ with $\lambda_{F}(0)=1$.
(i) If $M_{2}>1$ or $M_{2}=1$ and $M_{1}>0$, then F is univalent in the disk $\mathbb{D}_{r_{3}}$, and $F\left(\mathbb{D}_{\sigma_{2}}\right)$ contains a schlicht disk $\mathbb{D}_{\sigma_{2}}(F(0))$, where $r_{3}=r_{3}\left(M_{1}, M_{2}\right)$ is the minimum positive root of the following equation

$$
\begin{equation*}
1-2 M_{1} r-\frac{4 M_{1} r^{2}}{\pi\left(1-r^{2}\right)}-\sqrt{2\left(M_{2}^{2}-1\right)} \cdot \frac{r \sqrt{4-3 r^{2}+r^{4}}}{\left(1-r^{2}\right)^{3 / 2}}=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2}=r_{3}-M_{1} r_{3}^{2}-\sqrt{2\left(M_{2}^{2}-1\right)} \cdot \frac{r_{3}^{2}}{\left(1-r_{3}^{2}\right)^{1 / 2}} . \tag{4}
\end{equation*}
$$

(ii) If $M_{2}=1$ and $M_{1}=0$, then F is univalent in \mathbb{D} and $F(\mathbb{D})=\mathbb{D}$.

In this paper we give better results than those given in Theorem 1.1 (also see Remark 2.1 and Table 1). Moreover, we extend these results to Landau-Bloch theorems for the mappings $L(F)$ where the differential operator L is defined by

$$
L=z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}} .
$$

We observe that (e.g. see [1]) the operator L preserves both harmonicity and biharmonicity and is a complex linear operator that satisfies the usual product rule $L(a f+b g)=a L(f)+b L(g)$ and $L(f g)=f L(g)+g L(f)$ where a and b are complex constants.

2. Main Results

First we state the following two lemmas, the first of which is a modification of a result due to Zhu and Liu [17] (also see Liu [16]).

Lemma 2.1. Let $f(z)=\overline{g(z)}+h(z)=\overline{\sum_{n=1}^{\infty} a_{n} z^{n}}+\sum_{n=1}^{\infty} b_{n} z^{n}$ be a harmonic mapping in the unit disk \mathbb{D}.
(i) If $|f(z)|<M$, then

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq 2 M^{2}
$$

(ii) If $\lambda_{f}(0)=1$ and $|f(z)|<M$, then

$$
\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq 2 M^{2}-2
$$

(iii) If $\left|J_{f}(0)\right|=1$ and $|f(z)|<M$, then

$$
\sqrt{\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}} \leq T_{1}(M):=\min \left\{\sqrt{2 M^{2}-2}, \sqrt{M^{4}-1} \cdot \lambda_{f}(0)\right\}
$$

where

$$
\lambda_{f}(0) \geq \lambda_{f}(M)=\frac{\sqrt{2}}{\sqrt{M^{2}-1}+\sqrt{M^{2}+1}}
$$

Lemma 2.2. Let $f(z)=\overline{g(z)}+h(z)=\overline{\sum_{n=1}^{\infty} a_{n} z^{n}}+\sum_{n=1}^{\infty} b_{n} z^{n}$ be a harmonic mapping in the unit disk \mathbb{D} with $|g(z)|+|h(z)|<M$ in $\mathbb{D}, a_{n} \neq 0$ and $b_{n} \neq 0 ; n \geq 1$.
(i) If $\Lambda_{f}(0)=1$ and

$$
\begin{equation*}
\arg \frac{a_{n} b_{1}}{b_{n} a_{1}}=2 k \pi n, \quad k \in\{0,1,2,3, \ldots\} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq M^{2}-1 \tag{6}
\end{equation*}
$$

(ii) If $\lambda_{f}(0)=1$ and (5) then (6).
(iii) If $J_{f}(0)=1$ and (5) then

$$
\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq \frac{\lambda_{f}^{2}(0) M^{2}-1}{\lambda_{f}^{2}(0)}
$$

Proof. We shall provide a brief proof for part (i). The proofs for the other two parts are similar and we skip them. Set $F(z)=\sum_{n=1}^{\infty}\left(a_{n}+e^{i \phi} b_{n}\right) z^{n}$ where $\phi=\arg \frac{a_{1}}{b_{1}}$. Then by the hypothesis we have $|F(z)|<M$. So Parseval's identity yields

$$
\sum_{n=1}^{\infty}\left|a_{n}+e^{i \phi} b_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|F(z)|^{2} d \theta \leq M^{2}
$$

Hence in view of $\Lambda_{f}(0)=\left|a_{1}\right|+\left|b_{1}\right|$ and letting $r \rightarrow 1^{-}$, we obtain

$$
\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq\left(M^{2}-1\right)
$$

Our first theorem provides a sufficient condition for univalency of bounded biharmonic functions.
Theorem 2.1. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that G and K are given by (2). If

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n+1}+\sum_{n=2}^{\infty} n\left(\left|c_{n}\right|+\left|d_{n}\right|\right) r^{n-1} \leq \lambda_{F}(0) \tag{7}
\end{equation*}
$$

then F is univalent in \mathbb{D}.
Proof. Suppose z_{1} and z_{2} are in \mathbb{D}_{r} so that $z_{1} \neq z_{2}$ and $0<r<1$. Since \mathbb{D}_{r} is simply connected and convex, we have $z(t)=(1-t) z_{1}+t z_{2} \in \mathbb{D}_{r}$, where $0 \leq t \leq 1$. Then (using a method first used in [13], Proof of Therem 1) we can write

$$
\begin{aligned}
& F\left(z_{2}\right)-F\left(z_{1}\right)=\int_{0}^{1}\left(|z(t)|^{2} G(z(t))+K(z(t))\right)^{\prime} d t \\
& =\int_{0}^{1}\left\{\left[z^{\prime}(t) \overline{z(t)}+z(t) \overline{z^{\prime}(t)}\right]\left[g_{1}(z(t))+\overline{g_{2}(z(t))}\right]\right. \\
& \left.+|z(t)|^{2}\left[z^{\prime}(t) g_{1}^{\prime}(z(t))+\overline{z^{\prime}(t) g_{2}^{\prime}(z(t))}\right]+\left[z^{\prime}(t) k_{1}^{\prime}(z(t))+\overline{z^{\prime}(t) k_{2}^{\prime}(z(t))}\right]\right\} d t
\end{aligned}
$$

Dividing the above equation by $z_{2}-z_{1} \neq 0$ and letting $\omega=z(t)$, we obtain

$$
\begin{aligned}
\left|\frac{F\left(z_{2}\right)-F\left(z_{1}\right)}{z_{2}-z_{1}}\right| & =\left|c_{1}-\frac{\overline{z_{2}-z_{1}}}{z_{2}-z_{1}} \overline{d_{1}}+\int_{0}^{1}(A(\omega)+B(\omega)) d t\right| \\
& \geq\left\|c_{1}\left|-\left|d_{1} \|-\int_{0}^{1}\right| A(\omega)+B(\omega)\right| d t\right. \\
& \geq \lambda_{F}(0)-\int_{0}^{1}(|A(\omega)|+|B(\omega)|) d t
\end{aligned}
$$

where

$$
A(\omega)=\bar{\omega} \sum_{n=1}^{\infty} a_{n} \omega^{n}+\overline{\sum_{n=1}^{\infty} b_{n} \omega^{n+1}}+|\omega|^{2} \sum_{n=1}^{\infty} n a_{n} \omega^{n-1}+\sum_{n=2}^{\infty} n c_{n} \omega^{n-1}
$$

and

$$
B(\omega)=\overline{\overline{z_{2}-z_{1}}} \overline{z_{2}-z_{1}}\left(\sum_{n=1}^{\infty} a_{n} \omega^{n+1}+\omega \overline{\sum_{n=1}^{\infty} b_{n} \omega^{n}}+|\omega|^{2} \sum_{n=1}^{\infty} n b_{n} \omega^{n-1}+\overline{\sum_{n=2}^{\infty} n d_{n} \omega^{n-1}}\right)
$$

Now for $|\omega|<r$, we have

$$
|A(\omega)|+|B(\omega)|<\sum_{n=1}^{\infty}(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) r^{n+1}+\sum_{n=2}^{\infty} n\left(\left|c_{n}\right|+\left|d_{n}\right|\right) r^{n-1}
$$

This in conjunction with (7) yield

$$
\left|\frac{F\left(z_{2}\right)-F\left(z_{1}\right)}{z_{2}-z_{1}}\right|>0
$$

Therefore F is biharmonic univalent in the unit disc \mathbb{D}.
Letting $r \mapsto 1$ in Theorem 2.1 yields a generalization of the well-known sufficient univalency condition for harmonic functions given in [13].

Corollary 2.1. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that G and K are given by (2). If

$$
\sum_{n=1}^{\infty}(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right)+\sum_{n=2}^{\infty} n\left(\left|c_{n}\right|+\left|d_{n}\right|\right) \leq \lambda_{F}(0)
$$

then F is univalent in \mathbb{D}.
For Theorem 2.1, we give the following example.
Example 2.1. For $z \in \mathbb{D}$ consider the biharmonic function

$$
F(z)=a|z|^{2}(z+c \bar{z})+b(d z+\bar{z}) .
$$

In view of Theorem 2.1, it is easy to see that if $\| b d|-1| \geq 3|a|(1+|c|)$ then F is univalent in the unit disk \mathbb{D} and if $||b d|-1|<3|a|(1+|c|)$ then F is univalent in the disk \mathbb{D}_{ρ} with $\rho=\sqrt{|b|| | d|-1| / 3|a|(1+|c|)}$.
The result is sharp in the second case when $\arg c=\pi+\arg b / a, \arg d=-\arg b / a$ and $|d|<1$. In fact, in the second case, F is not univalent in the disk \mathbb{D}_{r} for $r \in(\rho, 1]$ with $\rho>1 / 3$. For a brief justification, set $r \in(\rho, 1], \arg \frac{b}{a}=\theta_{0}$, $\varepsilon=\frac{r-\rho}{2}>0, r_{1}=\rho+\varepsilon$ and $r_{2}=\rho-\delta$ with

$$
\delta=\frac{3 \rho+\varepsilon-\sqrt{3(\rho-\varepsilon)(3 \rho+\varepsilon)}}{2} \in(0,2 \varepsilon)
$$

Now for $z_{1}=r_{1} e^{i\left(\pi+\theta_{0}\right) / 2}$ and $z_{2}=r_{2} e^{i\left(\pi+\theta_{0}\right) / 2}$ in \mathbb{D}_{r} we obtain

$$
\begin{aligned}
F\left(z_{1}\right) & =a\left|z_{1}\right|^{2}\left(z_{1}+c \overline{z_{1}}\right)+b\left(d z_{1}+\overline{z_{1}}\right) \\
& =a\left(r_{1}^{2}\left(r_{1} e^{i\left(\pi+\theta_{0}\right) / 2}+|c| e^{i\left(\pi+\theta_{0}\right)} r_{1} e^{-i\left(\pi+\theta_{0}\right) / 2}\right)\right. \\
& \left.+\left|\frac{b}{a}\right| e^{i \theta_{0}}\left(|d| e^{-i \theta_{0}} r_{1} e^{i\left(\pi+\theta_{0}\right) / 2}+r_{1} e^{-i\left(\pi+\theta_{0}\right) / 2}\right)\right) \\
& \left.=a e^{i\left(\pi+\theta_{0}\right) / 2}\right)\left(r_{1}^{3}(1+|c|)-\left|\frac{b}{a}\right| r_{1}(1-|d|)\right) \\
& \left.=a e^{i\left(\pi+\theta_{0}\right) / 2}\right)\left(r_{2}^{3}(1+|c|)-\left|\frac{b}{a}\right| r_{2}(1-|d|)\right)=F\left(z_{2}\right) .
\end{aligned}
$$

Hence F is not univalent in the disc \mathbb{D}_{r}.
The Landau-Bloch Theorem for the bounded biharmonic functions $F=r^{2} G+K$ is given in the following theorem.

Theorem 2.2. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that G and K are given by (2). Also let $|G|<M_{1}$, $|K|<M_{2}$ and $\lambda_{F}(0)=1$.
(i) If either $M_{2}>1$ or $M_{2}=1$ and $M_{1}>0$, then there exists a constant $\rho(0<\rho<1)$ so that F is univalent in \mathbb{D}_{ρ} where ρ is the smallest positive root of the equation

$$
\sqrt{\frac{2 M_{1}^{2}\left(9 \rho^{4}-11 \rho^{6}+4 \rho^{8}\right)}{\left(1-\rho^{2}\right)^{3}}}+\sqrt{\frac{2\left(M_{2}^{2}-1\right)\left(4 \rho^{2}-3 \rho^{4}+\rho^{6}\right)}{\left(1-\rho^{2}\right)^{3}}}-1=0
$$

Moreover, $F\left(\mathbb{D}_{\rho}\right)$ covers the schlicht disk $\mathbb{D}_{r_{1}}$ where

$$
r_{1}=\rho-\frac{\sqrt{2} M_{1} \rho^{3}}{\sqrt{1-\rho^{2}}}-\frac{\sqrt{2\left(M_{2}^{2}-1\right)} \rho^{2}}{\sqrt{1-\rho^{2}}}
$$

(ii) If $M_{1}=0$ and $M_{2}=1$, then F is univalent in \mathbb{D} and $F(\mathbb{D})$ contains \mathbb{D}.

Proof. According to Lemma 2.1, we have

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq 2 M_{1}^{2} \quad \text { and } \quad \sum_{n=2}^{\infty}\left(\left|c_{n}\right|+\left|d_{n}\right|\right)^{2} \leq 2 M_{2}^{2}-2
$$

(i) For $z \in \mathbb{D}$ set $F_{\rho}(z)=F(\rho z)$. So in view of Theorem 2.1, it suffices to show that the inequality (7) holds for $|z|<\rho$. This is the case since

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \rho^{n+1}+\sum_{n=2}^{\infty} n\left(\left|c_{n}\right|+\left|d_{n}\right|\right) \rho^{n-1} \\
& \leq\left(\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}(n+2)^{2} \rho^{2 n+2}\right)^{1 / 2} \\
& +\left(\sum_{n=2}^{\infty}\left(\left|c_{n}\right|+\left|d_{n}\right|\right)^{2}\right)^{1 / 2}\left(\sum_{n=2}^{\infty} n^{2} \rho^{2 n-2}\right)^{1 / 2} \\
& \leq M_{1} \rho^{2} \sqrt{\frac{18-22 \rho^{2}+8 \rho^{4}}{\left(1-\rho^{2}\right)^{3}}}+\sqrt{2 M_{2}^{2}-2} \sqrt{\frac{4 \rho^{2}-3 \rho^{4}+\rho^{6}}{\left(1-\rho^{2}\right)^{3}}}=1
\end{aligned}
$$

To show that $F\left(\mathbb{D}_{\rho}\right)$ contains the disk $\mathbb{D}_{r_{1}}$, let $z \in \partial \mathbb{D}_{\rho}$. Then

$$
\begin{aligned}
& |F(z)-F(0)|=\left||z|^{2} G(z)+K(z)\right|=\left|\rho^{2} \sum_{n=1}^{\infty}\left(a_{n} z^{n}+\overline{b_{n} z^{n}}\right)+\sum_{n=1}^{\infty}\left(c_{n} z^{n}+\overline{d_{n} z^{n}}\right)\right| \\
& \geq\left|c_{1} z+\overline{d_{1}} \bar{z}\right|-\rho^{2}\left(\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{\infty} \rho^{2 n}\right)^{\frac{1}{2}}-\left(\sum_{n=2}^{\infty}\left(\left|c_{n}\right|+\left|d_{n}\right|\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{n=2}^{\infty} \rho^{2 n}\right)^{\frac{1}{2}} \\
& \geq \rho \lambda_{F}(0)-\frac{\sqrt{2} M_{1} \rho^{3}}{\sqrt{1-\rho^{2}}}-\frac{\rho^{2} \sqrt{2 M_{2}^{2}-2}}{\sqrt{1-\rho^{2}}} \\
& =\rho-\frac{\sqrt{2} M_{1} \rho^{3}}{\sqrt{1-\rho^{2}}}-\frac{\rho^{2} \sqrt{2 M_{2}^{2}-2}}{\sqrt{1-\rho^{2}}}=r_{1} .
\end{aligned}
$$

(ii) If $M_{1}=0$ and $M_{2}=1$ then by Lemma 2.1, $a_{n}=b_{n}=0 ; n \geq 1$ and $c_{n}=d_{n}=0 ; n \geq 2$ and so $F(z)=c_{1} z+\overline{d_{1} z}$. Now for $z_{1}, z_{2} \in \mathbb{D}$ with $z_{1} \neq z_{2}$ we have

$$
\begin{aligned}
& \left|F\left(z_{1}\right)-F\left(z_{2}\right)\right|=\left|c_{1}\left(z_{1}-z_{2}\right)-\overline{d_{1}\left(z_{1}-z_{2}\right)}\right| \\
& \quad \geq\left|\left|c_{1}\right|-\left|d_{1}\right|\right|\left|z_{1}-z_{2}\right|=\lambda_{F}(0)\left|z_{1}-z_{2}\right|=\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

Hence F is univalent in the disc \mathbb{D}.
The covering result is also immediate since for any $z \in \partial \mathbb{D}$ we have

$$
|F(z)-F(0)|=\left|c_{1} z-\overline{d_{1} z}\right| \geq \lambda_{F}(0)|z|=1
$$

Remark 2.1. It is claimed in [17] that Theorem 1.1 for certain values of M_{1} and M_{2} improves the results given in ([1], [5], [6], [9], [10], [12], [16]). Our Theorem 2.2 is an improvement to all those results published prior to [17] including that given by Zhu and Liu ([17], Theorem 3.2). The following table of values demonstrates examples of cases that Theorem 2.2 provides better results than those given by Zhu and Liu [17].

Table 1: Values of ρ are for Theorem 2.2 and the values of r are for Theorem 1.1.

M_{1}	M_{2}	ρ	r	M_{1}	M_{2}	ρ	r
1	2	0.1889	0.1391	$3 / 4$	2	0.1904	0.1498
1	3	0.1211	0.0979	$3 / 4$	3	0.1215	0.1031
2	1	0.7071	0.2181	$1 / 3$	2	0.1931	0.1721
2	2	0.1832	0.1081	$1 / 3$	3	0.1222	0.1132
2	3	0.1194	0.0815	$1 / 2$	2	0.1920	0.1624
3	1	0.5773	0.1516	$1 / 2$	3	0.1219	0.1089
3	2	0.1780	0.0886	0.56	2	0.1916	0.1592
3	3	0.1179	0.0698	0.56	3	0.1218	0.1074

Next we extend Theorem 2.2 to the case where the coefficients of the biharmonic function $F=r^{2} G+K$ satisfy certain varying argument conditions.

Theorem 2.3. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that G and K are given by (2) with $\Lambda_{G}(0)=$ $\lambda_{F}(0)=1,\left|g_{1}\right|+\left|g_{2}\right| \leq M_{1}$ and $\left|k_{1}\right|+\left|k_{2}\right| \leq M_{2}$. Also for $b_{n} a_{1} \neq 0$ and $d_{n} c_{1} \neq 0$ let the coefficients a_{n}, b_{n}, c_{n} and d_{n} satisfy the following varying argument conditions

$$
\arg \frac{a_{n} b_{1}}{b_{n} a_{1}}=2 k \pi n, \quad \arg \frac{c_{n} d_{1}}{d_{n} c_{1}}=2 m \pi n \quad k, m \in\{0,1,2,3, \ldots\} .
$$

(i) If $M_{1}>1$ and $M_{2}>1$, then there exists a constant $\rho(0<\rho<1)$ so that F is univalent in \mathbb{D}_{ρ} where ρ is the smallest positive root of the equation

$$
3 \rho^{2}+\rho^{3} \sqrt{\frac{\left(M_{1}^{2}-1\right)\left(16-23 \rho^{2}+9 \rho^{4}\right)}{\left(1-\rho^{2}\right)^{3}}}+\sqrt{\frac{\left(M_{2}^{2}-1\right)\left(4 \rho^{2}-3 \rho^{4}+\rho^{6}\right)}{\left(1-\rho^{2}\right)^{3}}}-1=0
$$

Moreover, $F\left(\mathbb{D}_{\rho}\right)$ covers the schlicht disk $\mathbb{D}_{\rho_{1}}$, where

$$
\rho_{1}=\rho-\frac{\rho^{2} \sqrt{M_{1}^{2}-1}}{\sqrt{1-\rho^{2}}}-\rho^{3}-\frac{\rho^{4} \sqrt{M_{2}^{2}-1}}{\sqrt{1-\rho^{2}}}
$$

(ii) If $M_{1}=1$ and $M_{2}=1$, then F is univalent in the disk $\mathbb{D}_{\sqrt{1 / 3}}$.

Moreover, $F\left(\mathbb{D}_{\sqrt{1 / 3}}\right)$ covers the disc $\mathbb{D}_{\frac{2 \sqrt{3}}{9}}$ and the result is sharp.
Proof. It follows from Lemma 2.2 that

$$
\sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{2} \leq M_{1}^{2}-1 \quad \text { and } \quad \sum_{n=2}^{\infty}\left(\left|c_{n}\right|+\left|d_{n}\right|\right)^{2} \leq M_{2}^{2}-1
$$

(i) Letting $F_{\rho}(z)=F(\rho z)$ and using Theorem 2.1, the proof for this part is similar to that of Theorem 2.2.(i). In brief, for the inequality (7), we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \rho^{n+1}+\sum_{n=2}^{\infty} n\left(\left|c_{n}\right|+\left|d_{n}\right|\right) \rho^{n-1} \\
& \leq 3 \rho^{2}+\rho^{3} \sqrt{M_{1}^{2}-1} \sqrt{\frac{16-23 \rho^{2}+9 \rho^{4}}{\left(1-\rho^{2}\right)^{3}}}+\sqrt{M_{2}^{2}-1} \sqrt{\frac{4 \rho^{2}-3 \rho^{4}+\rho^{6}}{\left(1-\rho^{2}\right)^{3}}}=1
\end{aligned}
$$

Similarly, to show that $F\left(\mathbb{D}_{\rho}\right)$ contains the disk $\mathbb{D}_{r_{1}}$ we observe that

$$
\begin{aligned}
& |F(z)-F(0)|=\left||z|^{2} G(z)+K(z)\right|=\left|\rho^{2} \sum_{n=1}^{\infty}\left(a_{n} z^{n}+\overline{b_{n} z^{n}}\right)+\sum_{n=1}^{\infty}\left(c_{n} z^{n}+\overline{d_{n} z^{n}}\right)\right| \\
& \geq \rho-\rho^{3}-\frac{\rho^{4} \sqrt{M_{1}^{2}-1}}{\sqrt{1-\rho^{2}}}-\frac{\rho^{2} \sqrt{M_{2}^{2}-1}}{\sqrt{1-\rho^{2}}}=r_{1} .
\end{aligned}
$$

(ii) For the second part, since $M_{1}=1$ and $M_{2}=1$, we get $a_{n}=b_{n}=0$ and $c_{n}=d_{n}=0$ for $n \geq 2$. This yields $F(z)=|z|^{2}\left(a_{1} z+\overline{b_{1} z}\right)+c_{1} z+\overline{d_{1} z}$. By comparing this F with that in Example 2.1 we find that $a=a_{1}, \overline{a c}=b_{1}, b d=c_{1}$ and $\bar{b}=d_{1}$. Once again, Example 2.1 for $1=\Lambda_{G}(0)=\left|a_{1}\right|+\left|b_{1}\right|=|a|(1+|c|)$ and $1=\lambda_{F}(0)=\| c_{1}\left|-\left|d_{1}\right|\right|=|c||d|-1 \mid$ yields the sharp bound $\rho=\frac{\sqrt{3}}{3}$.
On the other hand, if $z \in \partial \mathbb{D}_{\frac{\sqrt{3}}{3}}$ then

$$
|F(z)-F(0)| \geq\left|z \|\left|\left|c_{1}\right|-\left|d_{1}\right|\right|-|z|^{3}\left(\left|a_{1}\right|+\left|b_{1}\right|\right)=|z|-|z|^{3}=\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{9}=\frac{2 \sqrt{3}}{9}\right.
$$

Finally, for $\arg d=-\arg (b / a):=\theta_{0}, \arg c=\pi+\arg (b / a)$ and $z=\frac{\sqrt{3}}{3} e^{i\left(\pi+\theta_{0}\right) / 2}$ we obtain $|F(z)-F(0)|=\frac{2 \sqrt{3}}{9}$.
The next two theorems are extensions of Theorem 2.2 and Theorem 2.3 to Landau-Bloch theorems for the mapping $L(F)$.
Theorem 2.4. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that G and K are given by (2). Also let $|G|<M_{1}$, $|K|<M_{2}$ and $\lambda_{F}(0)=\lambda_{L(F)}(0)=1$.
(i) If either $M_{2}>1$ or $M_{2}=1$ and $M_{1}>0$ then there is a constant $\rho(0<\rho<1)$ so that $L(F)$ is univalent in \mathbb{D}_{ρ} where ρ is the smallest positive root of the equation

$$
M_{1} \rho^{2} \sqrt{\frac{18+38 \rho^{2}-10 \rho^{4}+2 \rho^{6}}{\left(1-\rho^{2}\right)^{5}}}+\rho \sqrt{\frac{2\left(M_{2}^{2}-1\right)\left(16+\rho^{2}+11 \rho^{4}-5 \rho^{6}+\rho^{8}\right)}{\left(1-\rho^{2}\right)^{5}}}-1=0
$$

Moreover, $L\left(F\left(\mathbb{D}_{\rho}\right)\right)$ contains a schlicht disk $\mathbb{D}_{r_{1}}$ where

$$
r_{1}=\rho-M_{1} \rho^{3} \sqrt{\frac{2+2 \rho^{2}}{\left(1-\rho^{2}\right)^{3}}}-\rho \sqrt{2 M_{2}^{2}-2} \sqrt{\frac{4-3 \rho^{2}+\rho^{4}}{\left(1-\rho^{2}\right)^{3}}}
$$

(ii) If $M_{1}=0$ and $M_{2}=1$, then $L(F)$ is univalent in \mathbb{D} and $L(F(\mathbb{D})$) contains \mathbb{D}.

Proof. Of course, by Lemma 2.1 the inequality (7) holds for the coefficients of G and K. The rest of the proof will be similar to that given for Theorem 2.2, only if we note that for part (i) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n(n+2)\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \rho^{n+1}+\sum_{n=2}^{\infty} n^{2}\left(\left|c_{n}\right|+\left|d_{n}\right|\right) \rho^{n-1} \\
& \leq M_{1} \rho^{2} \sqrt{\frac{18+38 \rho^{2}-10 \rho^{4}+2 \rho^{6}}{\left(1-\rho^{2}\right)^{5}}}+\sqrt{2 M_{2}^{2}-2} \rho \sqrt{\frac{16+\rho^{2}+11 \rho^{4}-5 \rho^{6}+\rho^{8}}{\left(1-\rho^{2}\right)^{5}}}=1
\end{aligned}
$$

and that $L\left(F\left(\mathbb{D}_{\rho}\right)\right)$ contains the disk $\mathbb{D}_{r_{1}}$ since

$$
\begin{aligned}
& |L(F(z))-L(F(0))|=\left||z|^{2} L(G(z))+L(K(z))\right| \\
& \geq \rho-M_{1} \rho^{3} \sqrt{\frac{2+2 \rho^{2}}{\left(1-\rho^{2}\right)^{3}}}-\rho \sqrt{2 M_{2}^{2}-2} \sqrt{\frac{4-3 \rho^{2}+\rho^{4}}{\left(1-\rho^{2}\right)^{3}}}=r_{1} .
\end{aligned}
$$

For part (ii) we get $L(F(z))=c_{1} z-\overline{d_{1} z}$ which is univalent in the disc \mathbb{D} and

$$
|L(F(z))-L(F(0))|=\left|c_{1} z-\overline{d_{1} z}\right| \geq \lambda_{F}(0)|z|=1
$$

The extension to $L(F)$ for $F=r^{2} G+K$ with varying arguments is given next.
Theorem 2.5. Let $F=r^{2} G+K$ given by (1) be biharmonic in \mathbb{D} so that $\Lambda_{G}(0)=\lambda_{F}(0)=1,\left|g_{1}\right|+\left|g_{2}\right| \leq M_{1}$ and $\left|k_{1}\right|+\left|k_{2}\right| \leq M_{2}$ for $z \in \mathbb{D}$. Also for $b_{n} a_{1} \neq 0$ and $d_{n} c_{1} \neq 0$ let the coefficients a_{n}, b_{b}, c_{n} and d_{n} satisfy

$$
\arg \frac{a_{n} b_{1}}{b_{n} a_{1}}=2 k \pi n, \quad \arg \frac{c_{n} d_{1}}{d_{n} c_{1}}=2 m \pi n \quad k, m \in\{0,1,2,3, \ldots\} .
$$

(i) If $M_{1}>1$ and $M_{2}>1$ then there is a constant $\rho(0<\rho<1)$ such that $L(F)$ is univalent in \mathbb{D}_{ρ}, where ρ is the minimum positive root of the equation

$$
\begin{aligned}
& 3 \rho^{2}+\rho^{3} \sqrt{\frac{\left(M_{1}^{2}-1\right)\left(64-95 \rho^{2}+91 \rho^{4}-45 \rho^{6}+9 \rho^{8}\right)}{\left(1-\rho^{2}\right)^{5}}} \\
& +\rho \sqrt{\frac{\left(M_{2}^{2}-1\right)\left(16+\rho^{2}+11 \rho^{4}-5 \rho^{6}+\rho^{8}\right)}{\left(1-\rho^{2}\right)^{5}}}-1=0
\end{aligned}
$$

Moreover, $L\left(F\left(\mathbb{D}_{\rho}\right)\right)$ covers a schlicht disc $\mathbb{D}_{r_{1}}$, where

$$
r_{1}=\rho-\rho^{3}-\left(\rho^{2} \sqrt{M_{1}^{2}-1}+\rho^{2} \sqrt{M_{2}^{2}-1}\right) \sqrt{\frac{4-3 \rho^{2}+\rho^{6}}{\left(1-\rho^{2}\right)^{3}}}
$$

(ii) If $M_{1}=1$ and $M_{2}=1$, then $L(F)$ is univalent in $\mathbb{D}_{\sqrt{1 / 3}}$.

Moreover, $L\left(F\left(\mathbb{D}_{\sqrt{1 / 3}}\right)\right)$ contains the disk $\mathbb{D}_{\frac{2 \sqrt{3}}{9}}$ and the result is sharp.
Proof. The proof will be similar to that given for Theorems 2.2 and 2.4 only if we note that $L(F(z))=$ $|z|^{2}\left(a_{1} z-\overline{b_{1} z}\right)+c_{1} z-\overline{d_{1} z}$ for part (ii).

References

[1] Z. Abdulhadi and Y. Abu Muhanna, Landau's theorem for biharmonic mappings, J. Math. Anal. Appl. 338(1) (2008), 705-709.
[2] Z. Abdulhadi, Y. Abu Muhanna, and S. Khuri, On univalent solutions of the biharmonic equation. J. Inequal. Appl. 5 (2005), 1-10.
[3] Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation. Appl. Math. Comput. 177(1) (2006), 346-351.
[4] H. H. Chen, On the Bloch constant, Approximation, complex analysis, and potential theory (Montreal, QC, 2000), 129-161, NATO Sci. Ser. II Math. Phys. Chem., 37, Kluwer Acad. Publ., Dordrecht, (2001), 129-161.
[5] H. H. Chen, P. M. Gauthier, and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128(11) (2000), 3231-3240.
[6] S. H. Chen, S. Ponnusamy, and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, Complex Anal. Oper. Theory 5(3) (2011), 901-916.
[7] J. G. Clunie and T. B. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[8] J. B. Conway, Functions of One Complex Variable, 2nd ed. Graduate Texts in Mathematics, 11. Springer-Verlag, New York, Berlin, 1978.
[9] M. Dorff and M. Nowak, Landau's theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4(1) (2004), 151-158.
[10] A. Grigoryan, Landau and Bloch theorems for harmonic mappings, Complex Var. Elliptic Equ. 51(1) (2006), 81-87.
[11] W. K. Hayman, Multivalent Functions, 2nd ed. Cambridge Tracts in Mathematics, 110. Cambridge University Press, Cambridge, 1994.
[12] X. Z. Huang, Estimates on Bloch constants for planar harmonic mappings, J. Math. Anal. Appl. 337(2) (2008), 880-887.
[13] J. M. Jahangiri, Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 235(2) (1999), 470-477.
[14] E. Landau, Der Picard-Schottysche Satz und die Blochsche Konstanten, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl. (1926), 467-474.
[15] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 42(10) (1936), 689-692.
[16] M. S. Liu, Landa u^{\prime} s theorem for planar harmonic mapping. Comput. Math. Appl. 57(7) (2009), 1142-1146.
[17] Y. C. Zhu and M. S. Liu, Landau-type theorems for certain planar harmonic mappings or biharmonic mappings, Complex Var. Elliptic Equ. 58(12) (2013) 1667-1676.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
 Keywords. Landau-Bloch Theorems, Biharmonic Mappings
 Received: 28 June 2018; Accepted: 30 July 2019
 Communicated by Dragan S. Djordjević
 Email addresses: raghalary@yahoo.com and r.aghalary@urmia.ac.ir (Rasoul Aghalary), a.mohammadian@urmia.ac.ir (Ali Mohammadian), jjahangi@kent. edu (Jay Jahangiri)

