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Abstract. We determine coefficient bounds for bounded planar biharmonic mappings and generalize
the Landau-Bloch univalency theorems for such bounded biharmonic functions. The univalence radii
presented here improve many related results published to date, including the most recent one [Complex
Var. Elliptic Equ. 58(12) (2013), 1667-1676] and are sharp in some given cases.

1. Introduction

A function f (z) = u(z) + iv(z) defined on a domain Ω ∈ C is a harmonic mapping if and only if f is
twice continuously differentiable and ∆ f = 4 fzz = 0. In a remarkable paper, Clunie and Sheil-Small [7]
explored the class of harmonic functions and showed that if Ω is simply connected, then f can be written
as f = h + 1, where h and 1 are holomorphic in Ω. Harmonic mappings can be regarded as generalizations
of holomorphic functions while biharmonic mappings are generalizations of harmonic mappings. A four
times continuously differentiable complex-valued function F(z) = U(z) + iV(z) is said to be biharmonic in a
domain Ω ∈ C if and only if ∆F is harmonic in Ω, that is, if and only if F satisfies the biharmonic equation
∆2F = ∆(∆F) = 0 in Ω.

For a continuously differentiable function f in Ω we define

Λ f (z) = max
0≤θ≤2π

| fz(z) + e−2iθ fz̄(z)| = | fz(z)| + | fz̄(z)|

and

λ f (z) = min
0≤θ≤2π

| fz(z) + e−2iθ fz̄(z)| = || fz(z)| − | fz̄(z)||.

Lewy [15] showed that a harmonic function f is locally univalent in Ω if its Jacobian J f = | fz|2 − | fz|2 =
|h′|2 − |1′|2 does not vanish anywhere in Ω. We note that local univalence of f does not imply global
univalence in a given domain Ω and also note that |J f | = Λ fλ f .

It is known (e.g. see [2], [3]) that a mapping F is biharmonic in a simply connected domain Ω if and
only if F has the representation

F = |z|2G + K, z ∈ Ω (1)
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where G and K are harmonic in Ω.
Without loss of generality, for functions F = |z|2G + K biharmonic in the open unit diskD = {z : |z| < 1}

we may express G and K by

G(z) = 11(z) + 12(z) =

∞∑
n=1

anzn +

∞∑
n=1

bnzn

(2)

K(z) = k1(z) + k2(z) =

∞∑
n=1

cnzn +

∞∑
n=1

dnzn

where 11, 12, k1, and k2 are analytic inD.
The classical Landau Theorem for bounded holomorphic functions states that if f is a holomorphic

function in D with f (0) = f ′(0) − 1 = 0 and | f (z)| < M for z ∈ D, then f is univalent (schlicht) in the disk
|z| < ρ0 = (M +

√

M2 − 1)−1 and f (|z| < ρ0) contains the disk |z| < Mρ2
0. It is known (e.g. see [14] or [4]) that

these bounds are sharp. Moreover, for f as defined above with f (0) not necessarily zero, there is the Bloch
Theorem which asserts the existence of a positive constant b such that f (D) contains a schlicht disk, that is,
a disk of radius b which is the univalent image of some region in D. The Bloch constant is defined as the
supremum of all such b (e.g. see [8], [11] or [9]).

In the sequel, for ζ ∈ C we let Dρ(ζ) := {z ∈ C : |z − ζ| < ρ}, Dρ = Dρ(0) and for ρ = 1 we simply use
D1 = D. The following theorem is proved by Zhu and Liu ([17], Theorem 3.2).

Theorem 1.1. Suppose that F(z) = |z|2G(z) + H(z) is a biharmonic mapping of the unit diskD such that |G(z)|≤M1
and |H(z)|≤M2 for z ∈D with λF(0) = 1.
(i) If M2 > 1 or M2 = 1 and M1 > 0, then F is univalent in the disk Dr3 , and F(Dσ2 ) contains a schlicht disk
Dσ2 (F(0)), where r3 = r3(M1,M2) is the minimum positive root of the following equation

1 − 2M1r −
4M1r2

π(1 − r2)
−

√
2(M2

2 − 1).
r
√

4 − 3r2 + r4

(1 − r2)3/2
= 0 (3)

and

σ2 = r3 −M1r2
3 −

√
2(M2

2 − 1).
r2

3

(1 − r2
3)1/2

. (4)

(ii) If M2 = 1 and M1 = 0, then F is univalent inD and F(D) = D.

In this paper we give better results than those given in Theorem 1.1 (also see Remark 2.1 and Table 1).
Moreover, we extend these results to Landau-Bloch theorems for the mappings L(F) where the differential
operator L is defined by

L = z
∂
∂z
− z

∂

∂z
.

We observe that (e.g. see [1]) the operator L preserves both harmonicity and biharmonicity and is a complex
linear operator that satisfies the usual product rule L(a f + b1) = aL( f ) + bL(1) and L( f1) = f L(1) + 1L( f )
where a and b are complex constants.

2. Main Results

First we state the following two lemmas, the first of which is a modification of a result due to Zhu and
Liu [17] (also see Liu [16]).
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Lemma 2.1. Let f (z) = 1(z) + h(z) =
∑
∞

n=1 anzn +
∑
∞

n=1 bnzn be a harmonic mapping in the unit diskD.
(i) If | f (z)| < M, then

∞∑
n=1

(|an| + |bn|)2
≤ 2M2.

(ii) If λ f (0) = 1 and | f (z)| < M, then

∞∑
n=2

(|an| + |bn|)2
≤ 2M2

− 2.

(iii) If |J f (0)| = 1 and | f (z)| < M, then√√
∞∑

n=2

(|an| + |bn|)2 ≤ T1(M) := min{
√

2M2 − 2,
√

M4 − 1.λ f (0)},

where

λ f (0) ≥ λ f (M) =

√
2

√

M2 − 1 +
√

M2 + 1
.

Lemma 2.2. Let f (z) = 1(z) + h(z) =
∑
∞

n=1 anzn +
∑
∞

n=1 bnzn be a harmonic mapping in the unit disk D with
|1(z)| + |h(z)| < M inD, an,0 and bn,0; n≥1.
(i) If Λ f (0) = 1 and

arg
anb1

bna1
= 2kπn, k ∈ {0, 1, 2, 3, ...}, (5)

then
∞∑

n=2

(|an| + |bn|)2
≤M2

− 1. (6)

(ii) If λ f (0) = 1 and (5) then (6).
(iii) If J f (0) = 1 and (5) then

∞∑
n=2

(|an| + |bn|)2
≤

λ2
f (0)M2

− 1

λ2
f (0)

.

Proof. We shall provide a brief proof for part (i). The proofs for the other two parts are similar and we
skip them. Set F(z) =

∑
∞

n=1(an + eiφbn)zn where φ = arg a1
b1

. Then by the hypothesis we have |F(z)| < M. So
Parseval’s identity yields

∞∑
n=1

|an + eiφbn|
2r2n =

1
2π

∫ 2π

0
|F(z)|2dθ ≤M2.

Hence in view of Λ f (0) = |a1| + |b1| and letting r→ 1−, we obtain

∞∑
n=2

(|an| + |bn|)2
≤ (M2

− 1).
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Our first theorem provides a sufficient condition for univalency of bounded biharmonic functions.

Theorem 2.1. Let F = r2G + K given by (1) be biharmonic inD so that G and K are given by (2). If

∞∑
n=1

(n + 2)(|an| + |bn|)rn+1 +

∞∑
n=2

n(|cn| + |dn|)rn−1
≤ λF(0) (7)

then F is univalent inD.

Proof. Suppose z1 and z2 are inDr so that z1 , z2 and 0 < r < 1. SinceDr is simply connected and convex,
we have z(t) = (1− t)z1 + tz2 ∈ Dr, where 0 ≤ t ≤ 1. Then (using a method first used in [13], Proof of Therem
1) we can write

F(z2) − F(z1) =

∫ 1

0
(|z(t)|2G(z(t)) + K(z(t)))′dt

=

∫ 1

0

{
[z′(t)z(t) + z(t)z′(t)][11(z(t)) + 12(z(t))]

+ |z(t)|2[z′(t)1′1(z(t)) + z′(t)1′2(z(t))] + [z′(t)k′1(z(t)) + z′(t)k′2(z(t))]
}
dt.

Dividing the above equation by z2 − z1 , 0 and letting ω = z(t), we obtain∣∣∣∣∣F(z2) − F(z1)
z2 − z1

∣∣∣∣∣ =

∣∣∣∣∣c1 −
z2 − z1

z2 − z1
d1 +

∫ 1

0
(A(ω) + B(ω))dt

∣∣∣∣∣
≥ ||c1| − |d1|| −

∫ 1

0
|A(ω) + B(ω)|dt

≥ λF(0) −
∫ 1

0
(|A(ω)| + |B(ω)|)dt,

where

A(ω) = ω
∞∑

n=1

anω
n +

∞∑
n=1

bnωn+1 + |ω|2
∞∑

n=1

nanω
n−1 +

∞∑
n=2

ncnω
n−1,

and

B(ω) =
z2 − z1

z2 − z1

( ∞∑
n=1

anω
n+1 + ω

∞∑
n=1

bnωn + |ω|2
∞∑

n=1

nbnωn−1 +

∞∑
n=2

ndnωn−1
)
.

Now for |ω| < r, we have

|A(ω)| + |B(ω)| <
∞∑

n=1

(n + 2)(|an| + |bn|)rn+1 +

∞∑
n=2

n(|cn| + |dn|)rn−1.

This in conjunction with (7) yield∣∣∣∣∣F(z2) − F(z1)
z2 − z1

∣∣∣∣∣ > 0.

Therefore F is biharmonic univalent in the unit discD.

Letting r 7→ 1 in Theorem 2.1 yields a generalization of the well-known sufficient univalency condition for
harmonic functions given in [13].
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Corollary 2.1. Let F = r2G + K given by (1) be biharmonic inD so that G and K are given by (2). If

∞∑
n=1

(n + 2)(|an| + |bn|) +

∞∑
n=2

n(|cn| + |dn|) ≤ λF(0)

then F is univalent inD.

For Theorem 2.1, we give the following example.

Example 2.1. For z ∈ D consider the biharmonic function

F(z) = a|z|2(z + cz) + b(dz + z).

In view of Theorem 2.1, it is easy to see that if ||bd| − 1| ≥ 3|a|(1 + |c|) then F is univalent in the unit disk D and if
||bd| − 1| < 3|a|(1 + |c|) then F is univalent in the diskDρ with ρ =

√
|b|||d| − 1|/3|a|(1 + |c|).

The result is sharp in the second case when arg c = π + arg b/a, arg d = − arg b/a and |d| < 1. In fact, in the second
case, F is not univalent in the diskDr for r ∈ (ρ, 1] with ρ > 1/3. For a brief justification, set r ∈ (ρ, 1], arg b

a = θ0,
ε =

r−ρ
2 > 0, r1 = ρ + ε and r2 = ρ − δ with

δ =
3ρ + ε −

√
3(ρ − ε)(3ρ + ε)

2
∈ (0, 2ε).

Now for z1 = r1ei(π+θ0)/2 and z2 = r2ei(π+θ0)/2 inDr we obtain

F(z1) = a|z1|
2(z1 + cz1) + b(dz1 + z1)

= a
(
r2

1(r1ei(π+θ0)/2 + |c|ei(π+θ0)r1e−i(π+θ0)/2)

+ |
b
a
|eiθ0 (|d|e−iθ0 r1ei(π+θ0)/2 + r1e−i(π+θ0)/2)

)
= aei(π+θ0)/2)

(
r3

1(1 + |c|) − |
b
a
|r1(1 − |d|)

)
= aei(π+θ0)/2)

(
r3

2(1 + |c|) − |
b
a
|r2(1 − |d|)

)
= F(z2).

Hence F is not univalent in the discDr.

The Landau-Bloch Theorem for the bounded biharmonic functions F = r2G + K is given in the following
theorem.

Theorem 2.2. Let F = r2G + K given by (1) be biharmonic inD so that G and K are given by (2). Also let |G| < M1,
|K| < M2 and λF(0) = 1.
(i) If either M2 > 1 or M2 = 1 and M1 > 0, then there exists a constant ρ (0 < ρ < 1) so that F is univalent in Dρ

where ρ is the smallest positive root of the equation√
2M2

1(9ρ4 − 11ρ6 + 4ρ8)

(1 − ρ2)3 +

√
2(M2

2 − 1)(4ρ2 − 3ρ4 + ρ6)

(1 − ρ2)3 − 1 = 0.

Moreover, F(Dρ) covers the schlicht diskDr1 where

r1 = ρ −

√
2M1ρ3√
1 − ρ2

−

√
2(M2

2 − 1) ρ2√
1 − ρ2

.

(ii) If M1 = 0 and M2 = 1, then F is univalent inD and F(D) containsD.
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Proof. According to Lemma 2.1, we have
∞∑

n=1

(|an| + |bn|)2
≤ 2M2

1 and
∞∑

n=2

(|cn| + |dn|)2
≤ 2M2

2 − 2.

(i) For z ∈ D set Fρ(z) = F(ρz). So in view of Theorem 2.1, it suffices to show that the inequality (7) holds for
|z| < ρ. This is the case since

∞∑
n=1

(n + 2)(|an| + |bn|)ρn+1 +

∞∑
n=2

n(|cn| + |dn|)ρn−1

≤ (
∞∑

n=1

(|an| + |bn|)2)1/2(
∞∑

n=1

(n + 2)2ρ2n+2)1/2

+ (
∞∑

n=2

(|cn| + |dn|)2)1/2(
∞∑

n=2

n2ρ2n−2)1/2

≤M1ρ
2

√
18 − 22ρ2 + 8ρ4

(1 − ρ2)3 +
√

2M2
2 − 2

√
4ρ2 − 3ρ4 + ρ6

(1 − ρ2)3 = 1.

To show that F(Dρ) contains the diskDr1 , let z ∈ ∂Dρ. Then

|F(z) − F(0)| = ||z|2G(z) + K(z)| = |ρ2
∞∑

n=1

(anzn + bnzn) +

∞∑
n=1

(cnzn + dnzn)|

≥ |c1z + d1z| − ρ2(
∞∑

n=1

(|an| + |bn|)2)
1
2 (
∞∑

n=1

ρ2n)
1
2 − (

∞∑
n=2

(|cn| + |dn|)2)
1
2 (
∞∑

n=2

ρ2n)
1
2

≥ ρλF(0) −

√
2M1ρ3√
1 − ρ2

−

ρ2
√

2M2
2 − 2√

1 − ρ2

= ρ −

√
2M1ρ3√
1 − ρ2

−

ρ2
√

2M2
2 − 2√

1 − ρ2
= r1.

(ii) If M1 = 0 and M2 = 1 then by Lemma 2.1, an = bn = 0; n ≥ 1 and cn = dn = 0; n ≥ 2 and so F(z) = c1z + d1z.
Now for z1, z2 ∈ Dwith z1 , z2 we have

|F(z1) − F(z2)| = |c1(z1 − z2) − d1(z1 − z2)|
≥ ||c1| − |d1|||z1 − z2| = λF(0)|z1 − z2| = |z1 − z2|.

Hence F is univalent in the discD.
The covering result is also immediate since for any z ∈ ∂Dwe have

|F(z) − F(0)| = |c1z − d1z| ≥ λF(0)|z| = 1.

Remark 2.1. It is claimed in [17] that Theorem 1.1 for certain values of M1 and M2 improves the results given in
([1], [5], [6], [9], [10], [12], [16]). Our Theorem 2.2 is an improvement to all those results published prior to [17]
including that given by Zhu and Liu ([17], Theorem 3.2). The following table of values demonstrates examples of
cases that Theorem 2.2 provides better results than those given by Zhu and Liu [17].
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Table 1: Values of ρ are for Theorem 2.2 and the values of r are for Theorem 1.1.
M1 M2 ρ r M1 M2 ρ r
1 2 0.1889 0.1391 3/4 2 0.1904 0.1498
1 3 0.1211 0.0979 3/4 3 0.1215 0.1031
2 1 0.7071 0.2181 1/3 2 0.1931 0.1721
2 2 0.1832 0.1081 1/3 3 0.1222 0.1132
2 3 0.1194 0.0815 1/2 2 0.1920 0.1624
3 1 0.5773 0.1516 1/2 3 0.1219 0.1089
3 2 0.1780 0.0886 0.56 2 0.1916 0.1592
3 3 0.1179 0.0698 0.56 3 0.1218 0.1074

Next we extend Theorem 2.2 to the case where the coefficients of the biharmonic function F = r2G + K
satisfy certain varying argument conditions.

Theorem 2.3. Let F = r2G + K given by (1) be biharmonic in D so that G and K are given by (2) with ΛG(0) =
λF(0) = 1, |11| + |12| ≤ M1 and |k1| + |k2| ≤ M2. Also for bna1 , 0 and dnc1 , 0 let the coefficients an, bn, cn and dn
satisfy the following varying argument conditions

arg
anb1

bna1
= 2kπn, arg

cnd1

dnc1
= 2mπn k,m ∈ {0, 1, 2, 3, ...}.

(i) If M1 > 1 and M2 > 1, then there exists a constant ρ (0 < ρ < 1) so that F is univalent in Dρ where ρ is the
smallest positive root of the equation

3ρ2 + ρ3

√
(M2

1 − 1)(16 − 23ρ2 + 9ρ4)

(1 − ρ2)3 +

√
(M2

2 − 1)(4ρ2 − 3ρ4 + ρ6)

(1 − ρ2)3 − 1 = 0.

Moreover, F(Dρ) covers the schlicht diskDρ1 , where

ρ1 = ρ −
ρ2

√
M2

1 − 1√
1 − ρ2

− ρ3
−

ρ4
√

M2
2 − 1√

1 − ρ2
.

(ii) If M1 = 1 and M2 = 1, then F is univalent in the diskD√1/3.
Moreover, F(D√1/3) covers the discD 2

√
3

9
and the result is sharp.

Proof. It follows from Lemma 2.2 that

∞∑
n=2

(|an| + |bn|)2
≤M2

1 − 1 and
∞∑

n=2

(|cn| + |dn|)2
≤M2

2 − 1.

(i) Letting Fρ(z) = F(ρz) and using Theorem 2.1, the proof for this part is similar to that of Theorem 2.2.(i).
In brief, for the inequality (7), we get

∞∑
n=1

(n + 2)(|an| + |bn|)ρn+1 +

∞∑
n=2

n(|cn| + |dn|)ρn−1

≤ 3ρ2 + ρ3
√

M2
1 − 1

√
16 − 23ρ2 + 9ρ4

(1 − ρ2)3 +
√

M2
2 − 1

√
4ρ2 − 3ρ4 + ρ6

(1 − ρ2)3 = 1.
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Similarly, to show that F(Dρ) contains the diskDr1 we observe that

|F(z) − F(0)| = ||z|2G(z) + K(z)| = |ρ2
∞∑

n=1

(anzn + bnzn) +

∞∑
n=1

(cnzn + dnzn)|

≥ρ − ρ3
−

ρ4
√

M2
1 − 1√

1 − ρ2
−

ρ2
√

M2
2 − 1√

1 − ρ2
= r1.

(ii) For the second part, since M1 = 1 and M2 = 1, we get an = bn = 0 and cn = dn = 0 for n ≥ 2.
This yields F(z) = |z|2(a1z + b1z) + c1z + d1z. By comparing this F with that in Example 2.1 we find that
a = a1, ac = b1, bd = c1 and b = d1. Once again, Example 2.1 for 1 = ΛG(0) = |a1| + |b1| = |a|(1 + |c|) and
1 = λF(0) = ||c1| − |d1|| = |c|||d| − 1| yields the sharp bound ρ =

√
3

3 .
On the other hand, if z ∈ ∂D √

3
3

then

|F(z) − F(0)|≥|z|||c1| − |d1|| − |z|3(|a1| + |b1|) = |z| − |z|3 =

√
3

3
−

√
3

9
=

2
√

3
9
.

Finally, for arg d = − arg(b/a) := θ0, arg c = π+ arg(b/a) and z =
√

3
3 ei(π+θ0)/2 we obtain |F(z)−F(0)| = 2

√
3

9 .

The next two theorems are extensions of Theorem 2.2 and Theorem 2.3 to Landau-Bloch theorems for the
mapping L(F).

Theorem 2.4. Let F = r2G + K given by (1) be biharmonic inD so that G and K are given by (2). Also let |G| < M1,
|K| < M2 and λF(0) = λL(F)(0) = 1.
(i) If either M2 > 1 or M2 = 1 and M1 > 0 then there is a constant ρ (0 < ρ < 1) so that L(F) is univalent in Dρ

where ρ is the smallest positive root of the equation

M1ρ
2

√
18 + 38ρ2 − 10ρ4 + 2ρ6

(1 − ρ2)5 + ρ

√
2(M2

2 − 1)(16 + ρ2 + 11ρ4 − 5ρ6 + ρ8)

(1 − ρ2)5 − 1 = 0.

Moreover, L(F(Dρ)) contains a schlicht diskDr1 where

r1 = ρ −M1ρ
3

√
2 + 2ρ2

(1 − ρ2)3 − ρ
√

2M2
2 − 2

√
4 − 3ρ2 + ρ4

(1 − ρ2)3 .

(ii) If M1 = 0 and M2 = 1, then L(F) is univalent inD and L(F(D)) containsD.

Proof. Of course, by Lemma 2.1 the inequality (7) holds for the coefficients of G and K. The rest of the proof
will be similar to that given for Theorem 2.2, only if we note that for part (i) we have

∞∑
n=1

n(n + 2)(|an| + |bn|)ρn+1 +

∞∑
n=2

n2(|cn| + |dn|)ρn−1

≤M1ρ
2

√
18 + 38ρ2 − 10ρ4 + 2ρ6

(1 − ρ2)5 +
√

2M2
2 − 2ρ

√
16 + ρ2 + 11ρ4 − 5ρ6 + ρ8

(1 − ρ2)5 = 1

and that L(F(Dρ)) contains the diskDr1 since

|L(F(z)) − L(F(0))| = ||z|2L(G(z)) + L(K(z))|

≥ρ −M1ρ
3

√
2 + 2ρ2

(1 − ρ2)3 − ρ
√

2M2
2 − 2

√
4 − 3ρ2 + ρ4

(1 − ρ2)3 = r1.
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For part (ii) we get L(F(z)) = c1z − d1z which is univalent in the discD and

|L(F(z)) − L(F(0))| = |c1z − d1z| ≥ λF(0)|z| = 1.

The extension to L(F) for F = r2G + K with varying arguments is given next.

Theorem 2.5. Let F = r2G + K given by (1) be biharmonic in D so that ΛG(0) = λF(0) = 1, |11| + |12| ≤ M1 and
|k1| + |k2| ≤M2 for z ∈ D. Also for bna1 , 0 and dnc1 , 0 let the coefficients an, bb, cn and dn satisfy

arg
anb1

bna1
= 2kπn, arg

cnd1

dnc1
= 2mπn k,m ∈ {0, 1, 2, 3, ...}.

(i) If M1 > 1 and M2 > 1 then there is a constant ρ (0 < ρ < 1) such that L(F) is univalent in Dρ, where ρ is the
minimum positive root of the equation

3ρ2 + ρ3

√
(M2

1 − 1)(64 − 95ρ2 + 91ρ4 − 45ρ6 + 9ρ8)

(1 − ρ2)5

+ ρ

√
(M2

2 − 1)(16 + ρ2 + 11ρ4 − 5ρ6 + ρ8)

(1 − ρ2)5 − 1 = 0.

Moreover, L(F(Dρ)) covers a schlicht discDr1 , where

r1 = ρ − ρ3
− (ρ2

√
M2

1 − 1 + ρ2
√

M2
2 − 1)

√
4 − 3ρ2 + ρ6

(1 − ρ2)3 .

(ii) If M1 = 1 and M2 = 1, then L(F) is univalent inD√1/3.
Moreover,L(F(D√1/3)) contains the diskD 2

√
3

9
and the result is sharp.

Proof. The proof will be similar to that given for Theorems 2.2 and 2.4 only if we note that L(F(z)) =

|z|2(a1z − b1z) + c1z − d1z for part (ii).

References

[1] Z. Abdulhadi and Y. Abu Muhanna, Landau’s theorem for biharmonic mappings, J. Math. Anal. Appl. 338(1) (2008), 705-709.
[2] Z. Abdulhadi, Y. Abu Muhanna, and S. Khuri, On univalent solutions of the biharmonic equation. J. Inequal. Appl. 5 (2005), 1-10.
[3] Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation. Appl. Math. Comput.

177(1) (2006), 346-351.
[4] H. H. Chen, On the Bloch constant, Approximation, complex analysis, and potential theory (Montreal, QC, 2000), 129-161, NATO

Sci. Ser. II Math. Phys. Chem., 37, Kluwer Acad. Publ., Dordrecht, (2001), 129-161.
[5] H. H. Chen, P. M. Gauthier, and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128(11)

(2000), 3231-3240.
[6] S. H. Chen, S. Ponnusamy, and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings,

Complex Anal. Oper. Theory 5(3) (2011), 901-916.
[7] J. G. Clunie and T. B. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[8] J. B. Conway, Functions of One Complex Variable, 2nd ed. Graduate Texts in Mathematics, 11. Springer-Verlag, New York, Berlin,

1978.
[9] M. Dorff and M. Nowak, Landau’s theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4(1) (2004), 151-158.

[10] A. Grigoryan, Landau and Bloch theorems for harmonic mappings, Complex Var. Elliptic Equ. 51(1) (2006), 81-87.
[11] W. K. Hayman, Multivalent Functions, 2nd ed. Cambridge Tracts in Mathematics, 110. Cambridge University Press, Cambridge,

1994.
[12] X. Z. Huang, Estimates on Bloch constants for planar harmonic mappings, J. Math. Anal. Appl. 337(2) (2008), 880-887.
[13] J. M. Jahangiri, Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 235(2) (1999), 470-477.
[14] E. Landau, Der Picard-Schottysche Satz und die Blochsche Konstanten, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl.

(1926), 467-474.
[15] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 42(10) (1936), 689-692.
[16] M. S. Liu, Landau,s theorem for planar harmonic mapping. Comput. Math. Appl. 57(7) (2009), 1142-1146.
[17] Y. C. Zhu and M. S. Liu, Landau-type theorems for certain planar harmonic mappings or biharmonic mappings, Complex Var.

Elliptic Equ. 58(12) (2013) 1667-1676.


