Filomat 33:14 (2019), 4585–4591 https://doi.org/10.2298/FIL1914585G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Transcendental Continued β -Fraction with Quadratic Pisot Basis over $\mathbb{F}_q((x^{-1}))$

Marwa Gouadri^a, Mohamed Hbaib^a

^aDepartment of Mathematics, University of Sfax, Faculty of Sciences of Sfax, Route de soukra Km 3.5, B.P. 1171, 3000, Sfax Tunisia

Abstract. Let \mathbb{F}_q be a finite field and $\mathbb{F}_q((x^{-1}))$ is the field of formal power series with coefficients in \mathbb{F}_q . Let $\beta \in \mathbb{F}_q((x^{-1}))$ be a quadratic Pisot series with $deg(\beta) = 2$. We establish a transcendence criterion depending on the continued β -fraction of one element of $\mathbb{F}_q((x^{-1}))$.

1. Introduction

Let \mathbb{F}_q be a finite field of characteristic $q \ge 0$, $\mathbb{F}_q[x]$ is the ring of polynomials with coefficients in \mathbb{F}_q and $\mathbb{F}_q((x^{-1}))$ is the field of formal power series of the form:

$$f = \sum_{k \ge l} f_k x^{-k}, \quad f_k \in \mathbb{F}_q, l \in \mathbb{Z},$$

where l = deg(f) and by convention $deg(0) = -\infty$. We define the absolute value $|f| = q^{deg(f)}$ if $f \neq 0$, |f| = 0 otherwise. This absolute value is not archimedean over $\mathbb{F}_q((x^{-1}))$.

Let $\beta \in \mathbb{F}_q((x^{-1}))$ with $|\beta| > 1$. The continued β -fraction is a generalization of classic continued fraction with formal power series basis. Similar to the real case, the β -expansion of a formal power series f is a unique representation $f = \sum_{i \ge n} d_i \beta^{-i}$ where $n \in \mathbb{Z}$ and $(d_i)_{i \ge n}$ is a polynomial sequence such that $deg(d_i) < deg(\beta)$

for all $i \ge n$ (see [4]). Thus, f has a unique decomposition as follows $f = \sum_{i=0}^{N} d_i \beta^i + \sum_{i \in \mathbb{N}^*} d_{-i} \beta^{-i}$. Note that

 $\sum_{i=0}^{N} d_i \beta^i = [f]_{\beta} \text{ is called } \beta \text{-polynomial part of } f \text{ and } \sum_{i \in \mathbb{N}^*} d_{-i} \beta^{-i} = \{f\}_{\beta} \text{ is called } \beta \text{-fractional part of } f. \text{ If } \{f\}_{\beta} = 0, \text{ then } f \text{ is } \beta \text{-polynomial. The } \beta \text{-polynomial's set is denoted } \mathbb{F}_q[x]_{\beta}.$

Let $f \in \mathbb{F}_q((x^{-1}))$. Consider the transformation T_β defined over $\mathbb{F}_q((x^{-1}))$ by $T_\beta(f) = \frac{1}{f} - [\frac{1}{f}]_\beta$. The continued

²⁰¹⁰ Mathematics Subject Classification. Primary 11R06; Secondary 37B50

Keywords. Pisot series, β -polynomial, finite field, continued β -fraction

Received: 03 April 2019; Accepted: 14 June 2019

Communicated by Dragan S. Djordjević

Email addresses: marwagouadri@gmail.com (Marwa Gouadri), mmmhbaib@gmail.com (Mohamed Hbaib)

 β -fraction of *f* has the following form: Set $f = f_0$,

$$f = [f_0]_{\beta} + T_{\beta}(\frac{1}{f_0})$$

= $[f_0]_{\beta} + \frac{1}{f_1}$
= $[f_0]_{\beta} + \frac{1}{[f_1]_{\beta} + T_{\beta}(\frac{1}{f_1})}$
= $[f_0]_{\beta} + \frac{1}{[f_1]_{\beta} + \frac{1}{\ddots \frac{1}{[f_i]_{\beta} + T_{\beta}(\frac{1}{f_i})}}}$

where for all $i \ge 0$ the equality $\frac{1}{f_{i+1}} = T_{\beta}(\frac{1}{f_i})$ is satisfied if $f_i \notin \mathbb{F}_q[x]_{\beta}$. Otherwise, the algorithm ends, and the sequence $(f_i)_i$ is finite.

In this paper, we give a transcendence criterion of continued β -fraction with quadratic Pisot series basis β over $\mathbb{F}_q((x^{-1}))$. This result has been developed on several researchers works [1, 7, 8], which contributes to prove Khintchine conjecture [5].

In [1] Baker proved that if $[a_0, a_1, a_2, ...]$ is classic continued fraction of real number x such that $a_n = a_{n+1} = ... = a_{n+\alpha(n)-1}$, where $\alpha(n)$ is a sequence of integers satisfying certain increasing properties, then x is transcendental. In 2004, Mkaouar [7] built an other transcendence criterion of the classic continued fraction over $\mathbb{F}_q((x^{-1}))$.

This paper is organized as follows. In section 2, basic arithmetics properties of continued β -fraction with Pisot series basis are introduced in $\mathbb{F}_q((x^{-1}))$. In section 3, the main results are proved.

2. Continued β -fraction with Pisot series basis over $\mathbb{F}_q((x^{-1}))$

Let $\beta \in \mathbb{F}_q((x^{-1}))$ with $|\beta| > 1$ and $f \in \mathbb{F}_q((x^{-1}))$, we have $f = [f]_{\beta} + \{f\}_{\beta}$. If $\lambda_0 = [f]_{\beta}$. Then, we get

$$f = \lambda_0 + \frac{1}{\lambda_1 + \frac{1}{\lambda_2 + \frac{1}{\cdot}}},$$

where $\lambda_i = \left[\frac{1}{T_{\beta}^i(\frac{1}{f})}\right]_{\beta} \in \mathbb{F}_q[x]_{\beta}$ for all $i \ge 1$ and the map $T_{\beta} : f \to \{\frac{1}{f}\}_{\beta}$. The previous continued β -fraction of f is denoted by $[\lambda_0, \lambda_1, \lambda_2, ...]_{\beta}$. The sequence $(\lambda_i)_{i\ge 0}$ is called the partial β -quotients of f and the expansion $[\lambda_n, \lambda_{n+1}, ...]_{\beta}$ is called the n^{th} -complete β -quotients of f, denoted by f_n .

Similarly, let $f = [\lambda_0, \lambda_1, ..., \lambda_n, ...]_{\beta}$, we define two sequences $(P_n)_{n\geq 0}$ and $(Q_n)_{n\geq 0} \in \mathbb{F}_q[x, \beta^{-1}]$ as follows: $\begin{cases}
P_0 = \lambda_0, P_1 = \lambda_0 \lambda_1 + 1 \\
Q_0 = 1, Q_1 = \lambda_1
\end{cases} \text{ and } \begin{cases}
P_n = \lambda_n P_{n-1} + P_{n-2} \\
Q_n = \lambda_n Q_{n-1} + Q_{n-2}
\end{cases} \forall n \geq 2.$ $\frac{P_n}{Q_n} = [\lambda_0, \lambda_1, ..., \lambda_n]_{\beta} \text{ is called the } n^{th} \beta \text{-convergent of } f.$

Recall that $\mathbb{F}_{q}[x]_{\beta}$ is not stable under usual multiplication. Let

$$L_{\otimes} = \{n \in \mathbb{N} / \forall P_1, P_2 \in \mathbb{F}_q[x]_{\beta}; d_{\beta}(P_1P_2) \text{ is finite } \Rightarrow \beta^n P_1P_2 \in \mathbb{F}_q[x]_{\beta}\}.$$

In [3], the value of L_{\otimes} is already calculated for some Pisot series over $\mathbb{F}_q((x^{-1}))$.

Corollary 2.1. [3] Let β be a quadratic Pisot series with deg(β) \geq 2. Then, $L_{\otimes} = 1$.

3. Results

Let β be a quadratic Pisot series with $deg(\beta) = 2$. For $P = a_s\beta^s + ... + a_0 \in \mathbb{F}_q[x]_{\beta}$. Define $\gamma(P)$ as the β -degree of P as follows:

$$deg(\beta)deg_{\beta}(P) + deg(a_s) = 2s + deg(a_s).$$

In this case, we have $|P| = q^{\gamma(P)}$.

Theorem 3.1. Let β be a quadratic Pisot series with $deg(\beta) = 2$ and f is a formal power series such that its continued β -fraction is $[\lambda_1, \lambda_2, ..., \lambda_n, ...]_{\beta}$. If

$$\limsup_{n \to +\infty} \frac{\log(\sum_{i=1}^{n} \gamma(\lambda_i))}{n} = +\infty,$$

then *f* is transcendental.

First, we use the following proposition and lemma.

Proposition 3.2. Let β be a quadratic Pisot series with $deg(\beta) = 2$. If f is a formal power series such that its n^{th} β -convergent is $\frac{P_n}{\Omega}$, then

and

$$\beta^{\frac{2n+1}{2}}(P_{n+1}Q_n - P_nQ_{n+1}) \in \mathbb{F}_q[x]_{\beta}.$$

 $(\beta^{\frac{n}{2}}P_n) \in \mathbb{F}_q[x]_{\beta}, \quad (\beta^{\frac{n}{2}}Q_n) \in \mathbb{F}_q[x]_{\beta}$

Proof. According to Corollary 2.1, if $A_1, ..., A_n \in \mathbb{F}_q[x]_\beta$, then $\beta^{\frac{n}{2}}(A_1A_2...A_n) \in \mathbb{F}_q[x]_\beta$. \Box

Lemma 3.3. Let β be a quadratic Pisot series with $deg(\beta) = 2$ and f is an algebraic series of algebraic degree d. Then, there exists c = c(f) > 0 such that, for all $P, Q \in \mathbb{F}_q[x]_{\beta}$,

$$|\frac{P}{Q} - f| > \frac{c}{|\beta|^{\frac{d+1}{2}} |Q|^d}.$$

Proof. Similar to Liouville's inequality [6]. Let $K(y) = A_d y^d + ... + A_0 \in \mathbb{F}_q[x][y]$ be an irreducible polynomial of f such that K(f) = 0. According to Proposition 3.2, for all $P, Q \in \mathbb{F}_q[x]_\beta$ we get

$$\beta^{\frac{d+1}{2}}Q^d K(\frac{P}{Q}) \in \mathbb{F}_q[x]_{\beta}.$$

So

$$|K(\frac{P}{Q})| \geq \frac{1}{|\beta|^{\frac{d+1}{2}}|Q|^d}.$$

As K(f) = 0, then

$$|K(\frac{P}{Q})| = |K(\frac{P}{Q}) - K(f)| \le |\frac{P}{Q} - f| \max_{1 \le i \le d} |A_i f^{i-1}|.$$

Let $c_1 = \max_{1 \le i \le d} |A_i f^{i-1}|$ and $c = \min(1, \frac{1}{2c_1})$. We obtain

$$|\frac{P}{Q} - f| \ge \frac{1}{c_1 |\beta|^{\frac{d+1}{2}} |Q|^d} > \frac{c}{|\beta|^{\frac{d+1}{2}} |Q|^d}.$$

Proof. of Theorem 3.1 Let $(\frac{P_n}{Q_n})_n$ be a β -convergent sequence of f. Similar to the classical case,

$$|f - \frac{P_n}{Q_n}| = |\frac{P_{n+1}Q_n - P_nQ_{n+1}}{Q_{n+1}Q_n}|.$$

By Proposition 3.2, we obtain

$$|\beta^{\frac{2n+1}{2}}(f-\frac{P_n}{Q_n})| \le \frac{|\beta|^{\frac{2n+1}{2}}}{|Q_{n+1}||Q_n|}.$$

If *f* is an algebraic series of algebraic degree d > 1. Then, according to Lemma 3.3, there exists c > 0 such that

$$\frac{c}{|\beta|^{\frac{nd+1}{2}}|Q_n|^d} < |f - \frac{P_n}{Q_n}| < \frac{|\beta|^{\frac{nd+1}{2}}}{|Q_n||Q_{n+1}|}.$$
$$|Q_{n+1}| < \frac{1}{c}|\beta|^{\frac{n(d+2)+2}{2}}|Q_n|^{d-1}.$$

Let $c_1 = \frac{1}{c}$. Then,

$$|Q_{n+1}| < c_1^{(d-1)^n} |\beta|^{\frac{(n(d+2)+2)(d-1)^n}{2}} |Q_1|^{(d-1)^n}$$

This implies,

So,

$$|Q_n| < c_1^{(d-1)^n} |\beta|^{\frac{(n(d+2)+2)(d-1)^n}{2}} |Q_1|^{(d-1)^n}.$$

Moreover,

$$\sum_{i=1}^{n} \gamma(\lambda_i) < (d-1)^n [\log(c_1) + \log(|\beta|^{\frac{n(d+2)+2}{2}}) + \log(|Q_1|)].$$

Hence,

$$\log(\sum_{i=1}^{n} \gamma(\lambda_i)) < n \log(d-1) + \log[\log(c_1) + (\frac{n(d+2)+2}{2})\log(|\beta|) + \log(|Q_1|)],$$

which is a contradiction with the fact that

$$\limsup_{n \to +\infty} \frac{\log(\sum_{i=1}^{n} \gamma(\lambda_i))}{n} = +\infty.$$

Theorem 3.4. Let β be a quadratic Pisot series with $deg(\beta) = 2$ and f is a formal power series such that its continued β -fraction $[B_1, B_2, B_3, ...]_{\beta}$ is not ultimately periodic, where B_i are finite blocks beginning with the repetition n_i -times of same partial β -quotient λ and $\gamma(\lambda) > 1$. We denote by d_i the sum of β -degrees of B_i 's terms. If

$$\liminf_{i\to+\infty}\frac{\sum_{j=1}^{i-1}d_j}{n_i}=0,$$

then f is transcendental.

The proof of Theorem 3.4 requires the following lemmas indeed. Let *f* be an algebraic formal power series of minimal polynomial $P(Y) = A_m Y^m + ... + A_0$ where $A_i \in \mathbb{F}_q[x]$. Set $H(f) = \max_{0 \le i \le m} |A_i|$ and $\sigma(f) = A_m$.

Lemma 3.5. Let β be a quadratic Pisot series with $deg(\beta) = 2$. If f is an algebraic series of algebraic degree d such that

$$f = \lambda_1 + \frac{1}{\lambda_2 + \frac{1}{\ddots + \frac{1}{\lambda_t + \frac{1}{h}}}},$$

where $\lambda_i \in \mathbb{F}_q[x]_{\beta}$, $h \in \mathbb{F}_q((x^{-1}))$ and |h| > 1. Then h is an algebraic series of algebraic degree d and

$$H(h) \le H(f)|\beta|^{\frac{td}{2}} |\prod_{i=1}^t \lambda_i|^d.$$

Proof. Assume that *f* is an algebraic series of algebraic degree *d*. Then,

$$A_d f^d + A_{d-1} f^{d-1} + \dots + A_0 = 0,$$

where $A_i \in \mathbb{F}_q[x]$. If $f = \lambda_1 + \frac{1}{h}$ such that $\lambda_1 \in \mathbb{F}_q[x]_\beta$, $h \in \mathbb{F}_q((x^{-1}))$ and |h| > 1. Thus, according to Proposition 3.2, we obtain

$$\beta^{\frac{d}{2}}h^{d}(A_{d}(\lambda_{1}+\frac{1}{h})^{d}+A_{d-1}(\lambda_{1}+\frac{1}{h})^{d-1}+\ldots+A_{0})=0.$$

This implies,

$$B_d h^d + B_{d-1} h^{d-1} + \dots + B_0 = 0 \tag{(*)}$$

where

$$B_{d-k} = \beta^{\frac{d}{2}} \sum_{j=k}^{d} {\binom{j}{k}} A_j \lambda_1^{j-k} \in \mathbb{F}_q[x]_{\beta}.$$

Let $P = a_s \beta^s + ... + a_1 \beta + a_0 \in \mathbb{F}_q[x]_\beta$, we denote by $TC_\beta(P) = a_0$. Then, by (*) we have

$$TC_{\beta}(B_d)h^d + TC_{\beta}(B_{d-1})h^{d-1} + \dots + TC_{\beta}(B_0) = 0.$$

Thus, we get

$$\begin{split} |TC_{\beta}(B_{d})| &= |TC_{\beta}(\beta^{\frac{d}{2}} \sum_{j=0}^{d-1} {\binom{j}{0}} A_{j} \lambda_{1}^{j} + {\binom{d}{0}} A_{d} \beta^{\frac{d}{2}} \lambda_{1}^{d})| \\ &= |TC_{\beta}({\binom{d}{0}} A_{d} \beta^{\frac{d}{2}} \lambda_{1}^{d}))| \\ &\leq |A_{d}| |\beta^{\frac{d}{2}} \lambda_{1}^{d}| \\ &\leq H(f) |\beta|^{\frac{d}{2}} |\lambda_{1}|^{d} \end{split}$$

and for $k \ge 1$,

$$|TC_{\beta}(B_{d-k})| \le |TC_{\beta}(B_d)| \le H(f)|\beta|^{\frac{u}{2}}|\lambda_1|^d$$

Hence,

$$H(h) \leq \sup_{0 \leq k \leq d} |TC_{\beta}(B_k)| \leq H(f)|\beta|^{\frac{d}{2}} |\lambda_1|^d.$$

Consequently, if $f = [\lambda_1, \lambda_2, ..., \lambda_t, h]_{\beta}$ where $\lambda_i \in \mathbb{F}_q[x]_{\beta}, h \in \mathbb{F}_q((x^{-1}))$ and |h| > 1, and set $f_i = [\lambda_i, \lambda_{i+1}, ..., \lambda_t, h]_{\beta}$. Then, we get by iterating the last case $H(h) \leq H(f)|\beta|^{\frac{td}{2}} |\prod_{i=1}^t \lambda_i|^d$. \Box **Lemma 3.6.** Let f be an algebraic series of algebraic degree d and g is a formal power series such that its continued β -fraction is purely periodic with its period is Per(g) = 1. We denote by $\sigma(g) = Q_1$ such that $\frac{P_1}{Q_1}$ is the first β -convergent of g. If $f \neq g$, then

$$|f - g| \ge \frac{1}{|g|^{d-2}|\beta|^2 |\sigma(g)|^{(2d-1)} H(f)^2}$$

Proof. Combine Lemma (2) in [7] and Proposition 3.2, we get $|f - g| \ge \frac{1}{|g|^{d-2}|\beta|^2 |\sigma(g)|^{(2d-1)} H(f)^2}$. \Box

Proof. of Theorem3.4

Assume that *f* is an algebraic series of algebraic degree *d* such that its continued β -fraction $[B_1, B_2, B_3, ...]_\beta$ is not ultimately periodic where, for all $i \ge 1$, B_i is finite block which begins with n_i -times of $\lambda \in \mathbb{F}_q[x]_\beta$ and $\gamma(\lambda) > 1$. We denote by $g = [\lambda, \lambda, \lambda, ...]_\beta$ and we set $f_i = [B_i, B_{i+1}, B_{i+2}, ...]_\beta$ such that its $n_i^{th} \beta$ -convergent is $\frac{P_{n_i}}{Q_{n_i}}$. As f_i and g have same first n_i -terms of their continued β -fraction, then according to Proposition 3.2, we have

$$\begin{split} |\beta|^{\frac{2n_i+1}{2}} |f_i - g| &\leq \sup\{|\beta|^{\frac{2n_i+1}{2}} |f_i - \frac{P_{n_i}}{Q_{n_i}}|, |\beta|^{\frac{2n_i+1}{2}} |g - \frac{P_{n_i}}{Q_{n_i}}|\} \\ &\leq \frac{|\beta|^{\frac{2n_i+1}{2}}}{|Q_{n_i}|^2}. \end{split}$$

By Lemma 3.6, we obtain

$$\frac{1}{|g|^{d-2}|\beta|^2|\sigma(g)|^{(2d-1)}H(f_i)^2} \le |\beta|^{\frac{2n_i+1}{2}}|f_i-g| \le \frac{|\beta|^{\frac{2n_i+1}{2}}}{|Q_{n_i}|^2}$$

Thus,

$$|Q_{n_i}|^2 \le |\beta|^{\frac{2n_i+5}{2}} |g|^{d-2} |\sigma(g)|^{(2d-1)} H(f_i)^2.$$

As $deg(Q_{n_i}) = n_i \gamma(\lambda) - deg(g)$, then

$$2n_i\gamma(\lambda) \le \left(\frac{2n_i+5}{2}\right)deg(\beta) + 2deg(H(f_i)) + d \ deg(g) + (2d-1) \ deg(\sigma(g)).$$

Let $\alpha = \sum_{j=1}^{i-1} \alpha_j$, with α_j is the number of B_j 's terms. Then, by Lemma 3.5, we get

$$2n_i\gamma(\lambda) \le 2deg(H(f)) + (\alpha d + \frac{2n_i + 5}{2})deg(\beta) + 2d\sum_{j=1}^{i-1} d_j + d \ deg(g) + (2d - 1) \ deg(\sigma(g)).$$

Hence

$$n_i(\gamma(\lambda)-1) \leq deg(H(f)) + (\alpha d + \frac{5}{2}) + d\sum_{j=1}^{i-1} d_j + d deg(g) + d deg(\sigma(g)).$$

Therefore, we get

$$\liminf_{i \to +\infty} \frac{\sum_{j=1}^{i-1} d_j}{n_i} > 0$$

Example 3.7. Let β be a quadratic Pisot series with $deg(\beta) = 2$. Consider $f = [B_1, B_2, B_3, ...]_{\beta}$ where

$$B_i = [\underbrace{h\beta, \dots, h\beta}_{i^i - terms}, (h+1)\beta]_{\beta}$$

with $h \in \mathbb{F}_{q}[X]$ and deg(h) = 1. We get:

$$\lim_{i \to +\infty} \frac{\sum_{j=1}^{i-1} j^j + 1}{i^i} = 0$$

Then, by Theorem 3.4, f is transcendental.

References

- [1] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962) 1-8.
- [2] P. Bateman, A. L. Duquette, The analogue of Pisot-Vijayaraghvan numbers in fields of power series, Ill. J. Math. (1962) 594-606.
- [3] M. Hbaib, Y. Laabidi, Computation of L_{\otimes} for some Pisot series in $\mathbb{F}_q((x^{-1}))$, J. Number Theory (2017).
- [4] M. Hbaib, M. Mkaouar, Sur le bêta- développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006) 365-377.
- [5] A. Khintchine, Continued fractions (In Russian), Gosudarstv. Izdat. Tech.-Teor. Lit. Moscow-Leningrad, 2nd edition (1949).
- [6] K. Mahler, On a theorem of Liouville in fields of positive characteristic, Canad. J. Math 1 (1949) 397–400.
- [7] M. Mkaouar, Transcendance de certaines fractions continues dans le corps des series formelles, J. Algebra 281 (2004) 502–507.
- [8] W. Schmidt, On simultanous approximations of two algebraic numbers by rationals, Acta Math 119 (1967) 27–50.