Transcendental Continued β-Fraction with Quadratic Pisot Basis over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$

Marwa Gouadri ${ }^{\text {a }}$, Mohamed Hbaib ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, University of Sfax,Faculty of Sciences of Sfax, Route de soukra Km 3.5, B.P. 1171, 3000, Sfax Tunisia

Abstract

Let \mathbb{F}_{q} be a finite field and $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is the field of formal power series with coefficients in \mathbb{F}_{q}. Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$. We establish a transcendence criterion depending on the continued β-fraction of one element of $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.

1. Introduction

Let \mathbb{F}_{q} be a finite field of characteristic $q \geq 0, \mathbb{F}_{q}[x]$ is the ring of polynomials with coefficients in \mathbb{F}_{q} and $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is the field of formal power series of the form:

$$
f=\sum_{k \geq l} f_{k} x^{-k}, \quad f_{k} \in \mathbb{F}_{q}, l \in \mathbb{Z}
$$

where $l=\operatorname{deg}(f)$ and by convention $\operatorname{deg}(0)=-\infty$. We define the absolute value $|f|=q^{\operatorname{deg}(f)}$ if $f \neq 0,|f|=0$ otherwise. This absolute value is not archimedean over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.
Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ with $|\beta|>1$. The continued β-fraction is a generalization of classic continued fraction with formal power series basis. Similar to the real case, the β-expansion of a formal power series f is a unique representation $f=\sum_{i \geq n} d_{i} \beta^{-i}$ where $n \in \mathbb{Z}$ and $\left(d_{i}\right)_{i \geq n}$ is a polynomial sequence such that $\operatorname{deg}\left(d_{i}\right)<\operatorname{deg}(\beta)$ for all $i \geq n$ (see [4]). Thus, f has a unique decomposition as follows $f=\sum_{i=0}^{N} d_{i} \beta^{i}+\sum_{i \in \mathbb{N}^{*}} d_{-i} \beta^{-i}$. Note that $\sum_{i=0}^{N} d_{i} \beta^{i}=[f]_{\beta}$ is called β-polynomial part of f and $\sum_{i \in \mathbb{N}^{*}} d_{-i} \beta^{-i}=\{f\}_{\beta}$ is called β-fractional part of f. If $\{f\}_{\beta}=0$, then f is β-polynomial. The β-polynomial's set is denoted $\mathbb{F}_{q}[x]_{\beta}$.
Let $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. Consider the transformation T_{β} defined over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ by $T_{\beta}(f)=\frac{1}{f}-\left[\frac{1}{f}\right]_{\beta}$. The continued

[^0]β-fraction of f has the following form: Set $f=f_{0}$,
\[

$$
\begin{aligned}
f & =\left[f_{0}\right]_{\beta}+T_{\beta}\left(\frac{1}{f_{0}}\right) \\
& =\left[f_{0}\right]_{\beta}+\frac{1}{f_{1}} \\
& =\left[f_{0}\right]_{\beta}+\frac{1}{\left[f_{1}\right]_{\beta}+T_{\beta}\left(\frac{1}{f_{1}}\right)} \\
& =\left[f_{0}\right]_{\beta}+\frac{1}{\left[f_{1}\right]_{\beta}+\frac{1}{\ddots \cdot \frac{1}{\left[f_{i}\right]_{\beta}+T_{\beta}\left(\frac{1}{f_{i}}\right)}}}
\end{aligned}
$$
\]

where for all $i \geq 0$ the equality $\frac{1}{f_{i+1}}=T_{\beta}\left(\frac{1}{f_{i}}\right)$ is satisfied if $f_{i} \notin \mathbb{F}_{q}[x]_{\beta}$. Otherwise, the algorithm ends, and the sequence $\left(f_{i}\right)_{i}$ is finite.
In this paper, we give a transcendence criterion of continued β-fraction with quadratic Pisot series basis β over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. This result has been developed on several researchers works $[1,7,8]$, which contributes to prove Khintchine conjecture [5].
In [1] Baker proved that if $\left[a_{0}, a_{1}, a_{2}, \ldots.\right]$ is classic continued fraction of real number x such that
$a_{n}=a_{n+1}=\ldots=a_{n+\alpha(n)-1}$, where $\alpha(n)$ is a sequence of integers satisfying certain increasing properties, then x is transcendental. In 2004, Mkaouar [7] built an other transcendence criterion of the classic continued fraction over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.
This paper is organized as follows. In section 2 , basic arithmetics properties of continued β-fraction with Pisot series basis are introduced in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. In section 3 , the main results are proved.

2. Continued β-fraction with Pisot series basis over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$

Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ with $|\beta|>1$ and $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, we have $f=[f]_{\beta}+\{f\}_{\beta}$. If $\lambda_{0}=[f]_{\beta}$. Then, we get

$$
f=\lambda_{0}+\frac{1}{\lambda_{1}+\frac{1}{\lambda_{2}+\frac{1}{\ddots}}}
$$

where $\lambda_{i}=\left[\frac{1}{T_{\beta}^{i}\left(\frac{1}{f}\right)}\right]_{\beta} \in \mathbb{F}_{q}[x]_{\beta}$ for all $i \geq 1$ and the map $T_{\beta}: f \rightarrow\left\{\frac{1}{f}\right\}_{\beta}$. The previous continued β-fraction of f is denoted by $\left[\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots\right]_{\beta}$. The sequence $\left(\lambda_{i}\right)_{i \geq 0}$ is called the partial β-quotients of f and the expansion [$\left.\lambda_{n}, \lambda_{n+1}, \ldots\right]_{\beta}$ is called the $n^{\text {th }}$-complete β-quotients of f, denoted by f_{n}.
Similarly, let $f=\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}, \ldots\right]_{\beta}$, we define two sequences $\left(P_{n}\right)_{n \geq 0}$ and $\left(Q_{n}\right)_{n \geq 0} \in \mathbb{F}_{q}\left[x, \beta^{-1}\right]$ as follows:
$\left\{\begin{array}{l}P_{0}=\lambda_{0}, P_{1}=\lambda_{0} \lambda_{1}+1 \\ Q_{0}=1, Q_{1}=\lambda_{1}\end{array}\right.$ and $\left\{\begin{array}{l}P_{n}=\lambda_{n} P_{n-1}+P_{n-2} \\ Q_{n}=\lambda_{n} Q_{n-1}+Q_{n-2}\end{array} \quad \forall n \geq 2\right.$.
$\frac{P_{n}}{Q_{n}}=\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right]_{\beta}$ is called the $n^{\text {th }} \beta$-convergent of f.
Recall that $\mathbb{F}_{q}[x]_{\beta}$ is not stable under usual multiplication. Let

$$
L_{\otimes}=\left\{n \in \mathbb{N} / \forall P_{1}, P_{2} \in \mathbb{F}_{q}[x]_{\beta} ; d_{\beta}\left(P_{1} P_{2}\right) \text { is finite } \Rightarrow \beta^{n} P_{1} P_{2} \in \mathbb{F}_{q}[x]_{\beta}\right\} .
$$

In [3], the value of L_{\otimes} is already calculated for some Pisot series over $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.
Corollary 2.1. [3] Let β be a quadratic Pisot series with $\operatorname{deg}(\beta) \geq 2$. Then, $L_{\otimes}=1$.

3. Results

Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$. For $P=a_{s} \beta^{s}+\ldots+a_{0} \in \mathbb{F}_{q}[x]_{\beta}$. Define $\gamma(P)$ as the β-degree of P as follows:

$$
\operatorname{deg}(\beta) \operatorname{deg}_{\beta}(P)+\operatorname{deg}\left(a_{s}\right)=2 s+\operatorname{deg}\left(a_{s}\right) .
$$

In this case, we have $|P|=q^{\gamma(P)}$.
Theorem 3.1. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$ and f is a formal power series such that its continued β-fraction is $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots\right]_{\beta}$. If

$$
\limsup _{n \rightarrow+\infty} \frac{\log \left(\sum_{i=1}^{n} \gamma\left(\lambda_{i}\right)\right)}{n}=+\infty,
$$

then f is transcendental.
First, we use the following proposition and lemma.
Proposition 3.2. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$. If f is a formal power series such that its $n^{\text {th }}$ β-convergent is $\frac{P_{n}}{Q_{n}}$, then

$$
\left(\beta^{\frac{n}{2}} P_{n}\right) \in \mathbb{F}_{q}[x]_{\beta}, \quad\left(\beta^{\frac{n}{2}} Q_{n}\right) \in \mathbb{F}_{q}[x]_{\beta}
$$

and

$$
\beta^{\frac{2 n+1}{2}}\left(P_{n+1} Q_{n}-P_{n} Q_{n+1}\right) \in \mathbb{F}_{q}[x]_{\beta} .
$$

Proof. According to Corollary 2.1, if $A_{1}, \ldots, A_{n} \in \mathbb{F}_{q}[x]_{\beta}$, then $\beta^{\frac{n}{2}}\left(A_{1} A_{2} \ldots A_{n}\right) \in \mathbb{F}_{q}[x]_{\beta}$.
Lemma 3.3. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$ and f is an algebraic series of algebraic degree d. Then, there exists $c=c(f)>0$ such that, for all $P, Q \in \mathbb{F}_{q}[x]_{\beta}$,

$$
\left|\frac{P}{Q}-f\right|>\frac{c}{|\beta|^{\frac{d+1}{2}}|Q|^{d}}
$$

Proof. Similar to Liouville's inequality [6]. Let $K(y)=A_{d} y^{d}+\ldots+A_{0} \in \mathbb{F}_{q}[x][y]$ be an irreducible polynomial of f such that $K(f)=0$. According to Proposition 3.2, for all $P, Q \in \mathbb{F}_{q}[x]_{\beta}$ we get

$$
\beta^{\frac{d+1}{2}} Q^{d} K\left(\frac{P}{Q}\right) \in \mathbb{F}_{q}[x]_{\beta} .
$$

So

$$
\left|K\left(\frac{P}{Q}\right)\right| \geq \frac{1}{|\beta|^{\frac{d+1}{2}}|Q|^{d}}
$$

As $K(f)=0$, then

$$
\left|K\left(\frac{P}{Q}\right)\right|=\left|K\left(\frac{P}{Q}\right)-K(f)\right| \leq\left|\frac{P}{Q}-f\right| \max _{1 \leq i \leq d}\left|A_{i} f^{i-1}\right| .
$$

Let $c_{1}=\max _{1 \leq i \leq d}\left|A_{i} f^{i-1}\right|$ and $c=\min \left(1, \frac{1}{2 c_{1}}\right)$. We obtain

$$
\left|\frac{P}{Q}-f\right| \geq \frac{1}{c_{1}|\beta|^{\frac{d+1}{2}}|Q|^{d}}>\frac{c}{|\beta|^{\frac{d+1}{2}}|Q|^{d}}
$$

Proof. of Theorem 3.1

Let $\left(\frac{P_{n}}{Q_{n}}\right)_{n}$ be a β-convergent sequence of f. Similar to the classical case,

$$
\left|f-\frac{P_{n}}{Q_{n}}\right|=\left|\frac{P_{n+1} Q_{n}-P_{n} Q_{n+1}}{Q_{n+1} Q_{n}}\right| .
$$

By Proposition 3.2, we obtain

$$
\left|\beta^{\frac{2 n+1}{2}}\left(f-\frac{P_{n}}{Q_{n}}\right)\right| \leq \frac{|\beta|^{\frac{2 n+1}{2}}}{\left|Q_{n+1}\right|\left|Q_{n}\right|} .
$$

If f is an algebraic series of algebraic degree $d>1$. Then, according to Lemma 3.3, there exists $c>0$ such that

$$
\frac{c}{|\beta|^{\frac{n+1}{2}}\left|Q_{n}\right|^{d}}<\left|f-\frac{P_{n}}{Q_{n}}\right|<\frac{|\beta|^{\frac{2 n+1}{2}}}{\left|Q_{n}\right|\left|Q_{n+1}\right|} .
$$

So,

$$
\left|Q_{n+1}\right|<\frac{1}{c}|\beta|^{\frac{n(d+2)+2}{2}}\left|Q_{n}\right|^{d-1} .
$$

Let $c_{1}=\frac{1}{c}$. Then,

$$
\left|Q_{n+1}\right|<c_{1}^{(d-1)^{n}}|\beta|^{\frac{(\underline{n}(d+2)+2)(d-1)^{n}}{2}}\left|Q_{1}\right|^{(d-1)^{n}} .
$$

This implies,

$$
\left|Q_{n}\right|<c_{1}^{(d-1)^{n}}|\beta|^{\frac{(n d d+2)+2)(d-1)^{n}}{2}}\left|Q_{1}\right|^{(d-1)^{n}} .
$$

Moreover,

$$
\sum_{i=1}^{n} \gamma\left(\lambda_{i}\right)<(d-1)^{n}\left[\log \left(c_{1}\right)+\log \left(|\beta|^{\frac{n(d+2)+2}{2}}\right)+\log \left(\left|Q_{1}\right|\right)\right] .
$$

Hence,

$$
\log \left(\sum_{i=1}^{n} \gamma\left(\lambda_{i}\right)\right)<n \log (d-1)+\log \left[\log \left(c_{1}\right)+\left(\frac{n(d+2)+2}{2}\right) \log (|\beta|)+\log \left(\left|Q_{1}\right|\right)\right]
$$

which is a contradiction with the fact that

$$
\limsup _{n \rightarrow+\infty} \frac{\log \left(\sum_{i=1}^{n} \gamma\left(\lambda_{i}\right)\right)}{n}=+\infty .
$$

Theorem 3.4. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$ and f is a formal power series such that its continued β-fraction $\left[B_{1}, B_{2}, B_{3}, \ldots\right]_{\beta}$ is not ultimately periodic, where B_{i} are finite blocks beginning with the repetition n_{i}-times of same partial β-quotient λ and $\gamma(\lambda)>1$. We denote by d_{i} the sum of β-degrees of B_{i} 's terms. If

$$
\liminf _{i \rightarrow+\infty} \frac{\sum_{j=1}^{i-1} d_{j}}{n_{i}}=0
$$

then f is transcendental.
The proof of Theorem 3.4 requires the following lemmas indeed.
Let f be an algebraic formal power series of minimal polynomial $P(Y)=A_{m} Y^{m}+\ldots+A_{0}$ where $A_{i} \in \mathbb{F}_{q}[x]$. Set $H(f)=\max _{0 \leq i \leq m}\left|A_{i}\right|$ and $\sigma(f)=A_{m}$.

Lemma 3.5. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$. If f is an algebraic series of algebraic degree d such that

$$
f=\lambda_{1}+\frac{1}{\lambda_{2}+\frac{1}{\ddots+\frac{1}{\lambda_{t}+\frac{1}{h}}}}
$$

where $\lambda_{i} \in \mathbb{F}_{q}[x]_{\beta}, h \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ and $|h|>1$. Then h is an algebraic series of algebraic degree d and

$$
H(h) \leq H(f)|\beta|^{\frac{t d}{2}}\left|\prod_{i=1}^{t} \lambda_{i}\right|^{d} .
$$

Proof. Assume that f is an algebraic series of algebraic degree d. Then,

$$
A_{d} f^{d}+A_{d-1} f^{d-1}+\ldots+A_{0}=0
$$

where $A_{i} \in \mathbb{F}_{q}[x]$.
If $f=\lambda_{1}+\frac{1}{h}$ such that $\lambda_{1} \in \mathbb{F}_{q}[x]_{\beta}, h \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ and $|h|>1$. Thus, according to Proposition 3.2, we obtain

$$
\beta^{\frac{d}{2}} h^{d}\left(A_{d}\left(\lambda_{1}+\frac{1}{h}\right)^{d}+A_{d-1}\left(\lambda_{1}+\frac{1}{h}\right)^{d-1}+\ldots+A_{0}\right)=0 .
$$

This implies,

$$
\begin{equation*}
B_{d} h^{d}+B_{d-1} h^{d-1}+\ldots+B_{0}=0 \tag{*}
\end{equation*}
$$

where

$$
B_{d-k}=\beta^{\frac{d}{2}} \sum_{j=k}^{d}\binom{j}{k} A_{j} \lambda_{1}^{j-k} \in \mathbb{F}_{q}[x]_{\beta} .
$$

Let $P=a_{s} \beta^{s}+\ldots+a_{1} \beta+a_{0} \in \mathbb{F}_{q}[x]_{\beta}$, we denote by $T C_{\beta}(P)=a_{0}$. Then, by ($*$) we have

$$
T C_{\beta}\left(B_{d}\right) h^{d}+T C_{\beta}\left(B_{d-1}\right) h^{d-1}+\ldots+T C_{\beta}\left(B_{0}\right)=0
$$

Thus, we get

$$
\begin{aligned}
\left|T C_{\beta}\left(B_{d}\right)\right| & =\left|T C_{\beta}\left(\beta^{\frac{d}{2}} \sum_{j=0}^{d-1}\left({ }_{0}^{j}\right) A_{j} \lambda_{1}^{j}+\left({ }_{0}^{d}\right) A_{d} \beta^{\frac{d}{2}} \lambda_{1}^{d}\right)\right| \\
& \left.=\left\lvert\, T C_{\beta}\left(\binom{d}{0} A_{d} \beta^{\frac{d}{2}} \lambda_{1}^{d}\right)\right.\right) \mid \\
& \leq\left|A_{d}\right|\left|\beta^{\frac{d}{2}} \lambda_{1}^{d}\right| \\
& \leq H(f)|\beta|^{\frac{d}{2}}\left|\lambda_{1}\right|^{d}
\end{aligned}
$$

and for $k \geq 1$,

$$
\left|T C_{\beta}\left(B_{d-k}\right)\right| \leq\left|T C_{\beta}\left(B_{d}\right)\right| \leq H(f)|\beta|^{\frac{d}{2}}\left|\lambda_{1}\right|^{d} .
$$

Hence,

$$
H(h) \leq \sup _{0 \leq k \leq d}\left|T C_{\beta}\left(B_{k}\right)\right| \leq H(f)|\beta|^{\frac{d}{2}}\left|\lambda_{1}\right|^{d}
$$

Consequently, if $f=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}, h\right]_{\beta}$ where $\lambda_{i} \in \mathbb{F}_{q}[x]_{\beta}, h \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ and $|h|>1$, and set $f_{i}=\left[\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{t}, h\right]_{\beta}$.
Then, we get by iterating the last case $H(h) \leq H(f)|\beta|^{\frac{t d}{2}}\left|\prod_{i=1}^{t} \lambda_{i}\right|^{d}$.

Lemma 3.6. Let f be an algebraic series of algebraic degree d and g is a formal power series such that its continued β-fraction is purely periodic with its period is $\operatorname{Per}(g)=1$. We denote by $\sigma(g)=Q_{1}$ such that $\frac{P_{1}}{Q_{1}}$ is the first β-convergent of g. If $f \neq g$, then

$$
|f-g| \geq \frac{1}{|g|^{d-2}|\beta|^{2}|\sigma(g)|^{(2 d-1)} H(f)^{2}}
$$

Proof. Combine Lemma (2) in [7] and Proposition 3.2, we get $|f-g| \geq \frac{1}{|g|^{d-2}|\beta|^{2}|\sigma(g)|^{(2 d-1)} H(f)^{2}}$.
Proof. of Theorem3.4
Assume that f is an algebraic series of algebraic degree d such that its continued β-fraction $\left[B_{1}, B_{2}, B_{3}, \ldots\right]_{\beta}$ is not ultimately periodic where, for all $i \geq 1, B_{i}$ is finite block which begins with n_{i}-times of $\lambda \in \mathbb{F}_{q}[x]_{\beta}$ and $\gamma(\lambda)>1$. We denote by $g=[\lambda, \lambda, \lambda, \ldots]_{\beta}$ and we set $f_{i}=\left[B_{i}, B_{i+1}, B_{i+2}, \ldots\right]_{\beta}$ such that its $n_{i}^{\text {th }} \beta$-convergent is $\frac{P_{n_{i}}}{Q_{n_{i}}}$. As f_{i} and g have same first n_{i}-terms of their continued β-fraction, then according to Proposition 3.2, we have

$$
\begin{aligned}
|\beta|^{\frac{2 n_{i}+1}{2}}\left|f_{i}-g\right| & \leq \sup \left\{|\beta|^{\frac{2 n_{i+1}+1}{2}}\left|f_{i}-\frac{P_{n_{i}}}{Q_{n_{i}}}\right||\beta|^{\frac{2 n_{i+1}}{2}}\left|g-\frac{P_{n_{i}}}{Q_{n_{i}}}\right|\right\} \\
& \leq \frac{|\beta| \frac{2 n_{i+1}}{2}}{\left|Q_{n_{i}}\right|^{2}} .
\end{aligned}
$$

By Lemma 3.6, we obtain

$$
\frac{1}{|g|^{d-2}|\beta|^{2}|\sigma(g)|^{(2 d-1)} H\left(f_{i}\right)^{2}} \leq|\beta|^{\frac{2 n_{i}+1}{2}}\left|f_{i}-g\right| \leq \frac{|\beta|^{\frac{2 n_{i}+1}{2}}}{\left|Q_{n_{i}}\right|^{2}}
$$

Thus,

$$
\left|Q_{n_{i}}\right|^{2} \leq|\beta|^{\frac{2 n_{i}+5}{2}}|g|^{d-2}|\sigma(g)|^{(2 d-1)} H\left(f_{i}\right)^{2} .
$$

As $\operatorname{deg}\left(Q_{n_{i}}\right)=n_{i} \gamma(\lambda)-\operatorname{deg}(g)$, then

$$
2 n_{i} \gamma(\lambda) \leq\left(\frac{2 n_{i}+5}{2}\right) \operatorname{deg}(\beta)+2 \operatorname{deg}\left(H\left(f_{i}\right)\right)+d \operatorname{deg}(g)+(2 d-1) \operatorname{deg}(\sigma(g))
$$

Let $\alpha=\sum_{j=1}^{i-1} \alpha_{j}$, with α_{j} is the number of B_{j} 's terms. Then, by Lemma 3.5, we get

$$
2 n_{i} \gamma(\lambda) \leq 2 \operatorname{deg}(H(f))+\left(\alpha d+\frac{2 n_{i}+5}{2}\right) \operatorname{deg}(\beta)+2 d \sum_{j=1}^{i-1} d_{j}+d \operatorname{deg}(g)+(2 d-1) \operatorname{deg}(\sigma(g))
$$

Hence

$$
n_{i}(\gamma(\lambda)-1) \leq \operatorname{deg}(H(f))+\left(\alpha d+\frac{5}{2}\right)+d \sum_{j=1}^{i-1} d_{j}+d \operatorname{deg}(g)+d \operatorname{deg}(\sigma(g))
$$

Therefore, we get

$$
\liminf _{i \rightarrow+\infty} \frac{\sum_{j=1}^{i-1} d_{j}}{n_{i}}>0
$$

Example 3.7. Let β be a quadratic Pisot series with $\operatorname{deg}(\beta)=2$. Consider $f=\left[B_{1}, B_{2}, B_{3}, \ldots\right]_{\beta}$ where

$$
B_{i}=[\underbrace{h \beta, \ldots, h \beta}_{i^{i}-\text { terms }},(h+1) \beta]_{\beta},
$$

with $h \in \mathbb{F}_{q}[X]$ and $\operatorname{deg}(h)=1$. We get:

$$
\lim _{i \rightarrow+\infty} \frac{\sum_{j=1}^{i-1} j^{j}+1}{i^{i}}=0
$$

Then, by Theorem 3.4, f is transcendental.

References

[1] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962) 1-8.
[2] P. Bateman, A. L. Duquette, The analogue of Pisot-Vijayaraghvan numbers in fields of power series, Ill. J. Math. (1962) 594-606.
[3] M. Hbaib, Y. Laabidi, Computation of L_{\otimes} for some Pisot series in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, J. Number Theory (2017).
[4] M. Hbaib, M. Mkaouar, Sur le bêta- développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006) 365-377.
[5] A. Khintchine, Continued fractions (In Russian), Gosudarstv. Izdat. Tech.-Teor. Lit. Moscow-Leningrad, 2nd edition (1949).
[6] K. Mahler, On a theorem of Liouville in fields of positive characteristic, Canad. J. Math 1 (1949) 397-400.
[7] M. Mkaouar, Transcendance de certaines fractions continues dans le corps des series formelles, J. Algebra 281 (2004) 502-507.
[8] W. Schmidt, On simultanous approximations of two algebraic numbers by rationals, Acta Math 119 (1967) 27-50.

[^0]: 2010 Mathematics Subject Classification. Primary 11R06; Secondary 37B50
 $K e y w o r d s$. Pisot series, β-polynomial, finite field, continued β-fraction
 Received: 03 April 2019; Accepted: 14 June 2019
 Communicated by Dragan S. Djordjević
 Email addresses: marwagouadri@gmail.com (Marwa Gouadri), mmmhbaib@gmail.com (Mohamed Hbaib)

