A Note on the Common Spectral Properties for Bounded Linear Operators

Hassane Zguitti ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, BO 1796 Fez-Atlas, 30003 Fez Morocco.

Abstract

Let X and Y be Banach spaces, $A: X \rightarrow Y$ and $B, C: Y \rightarrow X$ be bounded linear operators. We prove that if $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$, then $$
\sigma_{*}(A C) \backslash\{0\}=\sigma_{*}(B A) \backslash\{0\}
$$

where σ_{*} runs over a large of spectra originated by regularities.

1. Introduction

Throughout this paper $\mathcal{L}(X, Y)$ denotes the set of all bounded linear operators acting from a complex Banach space X into another one, Y, and $\mathcal{L}(X)$ is a short for $\mathcal{L}(X, X)$. Given two operators $A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Y, X)$, Jacobson's Lemma asserts that

$$
\begin{equation*}
\sigma(A B) \backslash\{0\}=\sigma(B A) \backslash\{0\} \tag{1}
\end{equation*}
$$

where $\sigma(\cdot)$ denotes the ordinary spectrum.
Several works have been devoted to equality (1) by showing that $A B-I$ and $B A-I$ share many spectral properties. See $[2,3,5,6,13,15,16,18,19]$ and the references therein. Barnes in [2] extended (1) to other part of the spectrum and showed that $A B-I$ and $B A-I$ share some spectral properties. In [3], Benhida and Zerouali investigated equation (1) for various Taylor joint spectra. For A and B satisfying $A B A=A^{2}$ and $B A B=B^{2}$, Schmoeger [15, 16] and Duggal [7] showed that $A, B, A B$ and $B A$ share spectral properties. Corach et al. [6] investigated common properties for $a c-1$ and $b a-1$ where a, b and c are elements in associative ring such that $a b a=a c a$. For bounded linear operators A, B and C, Zeng and Zhong [19] studied spectral properties for $A C$ and $B A$ under the condition $A B A=A C A$. If $C=I$ in the last condition, one can retrieve Schmoeger's result. For operators A, B, C and D satisfying $A C D=D B D$ and $B D A=A C A$, Yan and Fang [17] investigated spectral properties for $A C$ and $B D$. Recently, [5] studied common properties for ac and $b a$ for elements in a ring satisfying $a(b a)^{2}=a b a c a=a c a b a=(a c)^{2} a$.

[^0]The paper is a continuation of [5] and [20]. The aim of this paper is to extend recent results to bounded linear operators $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ satisfying

$$
A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A .
$$

In section two we give basic definitions and notation which we need in the sequel. Section 3 is devoted to the main results of the paper. In Theorem 3.1 we prove that if $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ satisfy $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$, then

$$
\sigma_{*}(A C) \backslash\{0\}=\sigma_{*}(B A) \backslash\{0\}
$$

where σ_{*} runs over a large of spectra originated by regularities.

2. Basic definitions and notations

For an operator $T \in \mathcal{L}(X)$, let $\mathcal{N}(T)$ and $\mathcal{R}(T)$ stand for the kernel, respectively the range of T. An operator $T \in \mathcal{L}(X)$ is said to be an upper semi-Fredholm operator if $\mathcal{R}(T)$ is closed and $\operatorname{dim} \mathcal{N}(T)<\infty$, and T is said to be a lower semi-Fredholm operator if $\operatorname{codim} \mathcal{N}(T)<\infty$. One says that T is a Fredholm operator if $\operatorname{dim} \mathcal{N}(T)<\infty$ and $\operatorname{codim} \mathcal{N}(T)<\infty$. If T is either upper or lower semi-Fredholm then T is said semi-Fredholm operator. In this case the index of T is defined by $\operatorname{ind}(T)=\operatorname{dim} \mathcal{N}(T)-\operatorname{dim} \mathcal{R}(T)$.

The ascent of $T, \operatorname{asc}(T)$, is the smallest nonnegative integer n for which $N\left(T^{n}\right)=N\left(T^{n+1}\right)$, i.e.; $\operatorname{asc}(T)=$ $\inf \left\{n \in \mathbb{Z}_{+}: \mathcal{N}\left(T^{n}\right)=\mathcal{N}\left(T^{n+1}\right)\right\}$. If no such integer exists, we shall say that T has infinite ascent. In a similar way, the descent of $T, d s c(T)$, is defined by $d s c(T)=\inf \left\{n \in \mathbb{Z}_{+}: \mathcal{R}\left(T^{n}\right)=\mathcal{R}\left(T^{n+1}\right)\right\}$ and if no such integer exists, we shall say that T has infinite descent. We say that T is left Drazin invertible if asc $(T)<\infty$ and $\mathcal{R}\left(T^{\text {asc }(T)+1}\right)$ is closed and T is right Drazin invertible if $d s c(T)<\infty$ and $\mathcal{R}\left(T^{d s c(T)}\right)$ is closed. If T is both left and right Drazin invertible, then T is said to be Drazin invertible ; which is equivalent to $\operatorname{asc}(T)=d s c(T)<\infty$ (see [1]). One says that T is upper semi-Browder if T is upper semi-Fredholm with finite ascent, and T is lower semi-Browder if T is lower semi-Fredholm with finite descent. If T is both upper and lower semi-Browder then T is said to be Browder operator (see [14]).

For each $n \in \mathbb{Z}_{+}$, let $c_{n}(T)=\operatorname{dim} R\left(T^{n}\right) / R\left(T^{n+1}\right)$ and $c_{n}^{\prime}(T)=\operatorname{dim} N\left(T^{n+1}\right) / N\left(T^{n}\right)$. It was proved in [8, Lemma 3.2] that for every n, we have

$$
c_{n}(T)=\operatorname{dim} X /\left(R(T)+N\left(T^{n}\right)\right) \text { and } c_{n}^{\prime}(T)=\operatorname{dim} N(T) \cap R\left(T^{n}\right) .
$$

It is easy to see that $\left\{c_{n}(T)\right\}$ and $\left\{c_{n}^{\prime}(T)\right\}$ are decreasing sequences and $d s c(T)=\inf \left\{n \in \mathbb{Z}_{+}: c_{n}(T)=0\right\}$, $\operatorname{asc}(T)=\inf \left\{n \in \mathbb{Z}_{+}: c_{n}^{\prime}(T)=0\right\}$.

Following [12], the essential descent $d s c_{e}(T)$ of T is defined by $d s c_{e}(T)=\inf \left\{n \in \mathbb{Z}_{+}: c_{n}(T)<\infty\right\}$, and the essential ascent $\operatorname{asc}_{e}(T)$ of T is defined by $\operatorname{asc}_{e}(T)=\inf \left\{n \in \mathbb{Z}_{+}: c_{n}^{\prime}(T)<\infty\right\}$, where the infimum over the empty set is taken to be infinite.

Let $\mathcal{N}^{\infty}(T)$ and $\mathcal{R}^{\infty}(T)$ denote the hyper-kernel and the hyper-range of T defined by

$$
\mathcal{N}^{\infty}(T)=\bigcup_{n=1}^{\infty} \mathcal{N}\left(T^{n}\right) \text { and } \mathcal{R}^{\infty}(T)=\bigcap_{n=1}^{\infty} \mathcal{R}\left(T^{n}\right) .
$$

One says that T is semi-regular if $\mathcal{R}(T)$ is closed and $\mathcal{N}^{\infty}(T) \subseteq \mathcal{R}(T)$.
For each $n \in \mathbb{Z}_{+}, T \in \mathcal{L}(X)$ induces a linear maps Γ_{n} from the space $\mathcal{R}\left(T^{n}\right) / \mathcal{R}\left(T^{n+1}\right)$ into $\mathcal{R}\left(T^{n+1}\right) / \mathcal{R}\left(T^{n+2}\right)$. The dimension of the null space of Γ_{n} will be denoted by $k_{n}(T)$, i.e., $k_{n}(T)=\operatorname{dim} \mathcal{N}\left(\Gamma_{n}\right)$. It follows from [8, Theorem 3.7] that for every n,

$$
\begin{aligned}
k_{n}(T) & =\operatorname{dim}\left(\left(\mathcal{R}\left(T^{n}\right) \cap \mathcal{N}(T)\right) /\left(\mathcal{R}\left(T^{n+1}\right) \cap \mathcal{N}(T)\right)\right) \\
& =\operatorname{dim}\left(\mathcal{R}(T)+\mathcal{R}\left(T^{n+1}\right)\right) /\left(\mathcal{R}(T)+\mathcal{N}\left(T^{n}\right)\right) .
\end{aligned}
$$

Let

$$
k(T)=\sum_{n=0}^{\infty} k_{n}(T)
$$

Then it follows from [8, Theorem 3.7] that $k(T)=\operatorname{dim} \mathcal{N}(T) /\left(\mathcal{N}(T) \cap \mathcal{R}^{\infty}(T)\right)=\operatorname{dim}\left(\mathcal{R}(T)+\mathcal{N}^{\infty}(T)\right) / \mathcal{R}(T)$. The stable nullity $c(T)$ and the stable defect $c^{\prime}(T)$ of T are defined by

$$
c(T)=\sum_{n=0}^{\infty} c_{n}(T) \text { and } c^{\prime}(T)=\sum_{n=0}^{\infty} c_{n}^{\prime}(T) .
$$

Then we have $c(T)=\operatorname{dim} X / \mathcal{R}^{\infty}(T)$ and $c^{\prime}(T)=\operatorname{dim} \mathcal{R}^{\infty}(T)$.
According to [11], the degree of stable iteration of $T \in \mathcal{L}(X)$ is defined by

$$
\operatorname{dis}(T)=\inf \left\{n \in \mathbb{Z}_{+}: k_{m}(T)=0 \text { for all } m \geq n\right\}
$$

and the degree of essential stable iteration of T ([18]) is defined is

$$
\operatorname{dis}_{e}(T)=\inf \left\{n \in \mathbb{Z}_{+}: k_{m}(T)<\infty \text { for all } m \geq n\right\}
$$

Definition 2.1. Let R be a non-empty subset of $\mathcal{L}(X) . \quad R$ is called a regularity if it satisfies the following two conditions:
i) if $n \in \mathbb{N}$, then $A \in R$ if and only if $A^{n} \in R$;
ii) if A, B, C and D are mutually commuting operators in $\mathcal{L}(X)$ such that $A C+B D=I$, then $A B \in R$ if and only if $A \in$ R and $B \in R$.
A regularity $R \subset \mathcal{L}(X)$ assigns to each $T \in \mathcal{L}(X)$ a subset of \mathbb{C} defined by

$$
\sigma_{R}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin R\}
$$

and called the spectrum of T corresponding to the regularity R. We note that every regularity R contains all invertible operators, so that $\sigma_{R}(T) \subseteq \sigma(T)$. In general, $\sigma_{R}(T)$ is neither compact nor non-empty (see [10, 12, 14]).

The regularities R_{i}, where $1 \leq i \leq 15$, were introduced and studied in $[10,12,14]$ but are in a different form. Regularity R_{18} was introduced by [4], while R_{16}, R_{17} and R_{19} were introduced by [18].

Definition 2.2.

$$
\begin{aligned}
& R_{1}=\{T \in \mathcal{L}(X): c(T)=0\}, \\
& R_{2}=\{T \in \mathcal{L}(X): c(T)<\infty\}, \\
& R_{3}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}(T)=0 \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{4}=\left\{T \in \mathcal{L}(X): c_{n}(T)<\infty, \forall n \in \mathbb{Z}_{+}\right\}, \\
& R_{5}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}(T)<\infty \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{6}=\left\{T \in \mathcal{L}(X): c^{\prime}(T)=0 \text { and } \mathcal{R}(T) \text { is closed }\right\}, \\
& R_{7}=\left\{T \in \mathcal{L}(X): c^{\prime}(T)<\infty \text { and } \mathcal{R}(T) \text { is closed }\right\}, \\
& R_{8}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}^{\prime}(T)=0 \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{9}=\left\{T \in \mathcal{L}(X): c_{n}^{\prime}(T)<\infty \text { for every } n \in \mathbb{Z}_{+} \text {and } \mathcal{R}(T) \text { is closed }\right\}, \\
& R_{10}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}^{\prime}(T)<\infty \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{11}=\{T \in \mathcal{L}(X): k(T)=0 \text { and } \mathcal{R}(T) \text { is closed }\}, \\
& R_{12}=\{T \in \mathcal{L}(X): k(T)<\infty \text { and } \mathcal{R}(T) \text { is closed }\}, \\
& R_{13}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } k_{n}(T)=0 \text { for every } n \geq d \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{14}=\left\{T \in \mathcal{L}(X): k_{n}(T)<\infty \text { for every } n \in \mathbb{Z}_{+} \text {and } \mathcal{R}(T) \text { is closed }\right\}, \\
& R_{15}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } k_{n}(T)<\infty \text { for every } n \geq d \text { and } \mathcal{R}\left(T^{d+1}\right) \text { is closed }\right\}, \\
& R_{16}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}(T)=0 \text { and } \mathcal{R}(T)+N\left(T^{d}\right) \text { is closed }\right\}, \\
& R_{17}=\left\{T \in \mathcal{L}(X): \text { there exists } d \in \mathbb{Z}_{+} \text {such that } c_{d}(T)<\infty \text { and } \mathcal{R}(T)+N\left(T^{d}\right) \text { is closed }\right\}, \\
& R_{18}=\left\{T \in \mathcal{L}(X): \exists d \in \mathbb{Z}_{+} \text {such that } k_{n}(T)=0 \text { for every } n \geq d \text { and } \mathcal{R}(T)+N\left(T^{d}\right) \text { is closed }\right\}, \\
& R_{19}=\left\{T \in \mathcal{L}(X): \exists d \in \mathbb{Z}_{+} \text {such that } k_{n}(T)<\infty \text { for every } n \geq d \text { and } \mathcal{R}(T)+N\left(T^{d}\right) \text { is closed }\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& R_{1} \subseteq R_{2}=R_{3} \cap R_{4} \subseteq R_{3} \cup R_{4} \subseteq R_{5} \subseteq R_{13} \\
& R_{6} \subseteq R_{7}=R_{8} \cap R_{9} \subseteq R_{8} \cup R_{9} \subseteq R_{10} \subseteq R_{13} \\
& R_{11} \subseteq R_{12}=R_{13} \cap R_{14} \subseteq R_{13} \cup R_{14} \subseteq R_{15}
\end{aligned}
$$

It was proved in [18, Proposition 2.7] that

$$
\begin{aligned}
& R_{3}=\left\{T \in \mathcal{L}(X): d s c(T)<\infty \text { and } \mathcal{R}\left(T^{d s c(T)+1}\right) \text { is closed }\right\}, \\
& R_{5}=\left\{T \in \mathcal{L}(X): d s c_{e}(T)<\infty \text { and } \mathcal{R}\left(T^{d s c_{e}(T)+1}\right) \text { is closed }\right\}, \\
& R_{8}=\left\{T \in \mathcal{L}(X): \operatorname{asc}(T)<\infty \text { and } \mathcal{R}\left(T^{a s c}(T)+1\right) \text { is closed }\right\}, \\
& R_{10}=\left\{T \in \mathcal{L}(X): \operatorname{asc}(T)<\infty \text { and } \mathcal{R}\left(T_{e} a c_{e}(T)+1\right) \text { is closed }\right\}, \\
& R_{13}=\left\{T \in \mathcal{L}(X): \operatorname{dis}^{\text {as }}(T)<\infty \text { and } \mathcal{R}\left(T^{d i s(T)+1}\right) \text { is closed }\right\}, \\
& R_{15}=\left\{T \in \mathcal{L}(X): \operatorname{dis}_{e}(T)<\infty \text { and } \mathcal{R}\left(T^{d i s_{e}(T)+1}\right) \text { is closed }\right\} .
\end{aligned}
$$

The operators of $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} are surjective, lower semi-Browder, right Drazin invertible, lower semi-Fredholm and right essentially Drazin invertible operators, respectively. The operators of $R_{6}, R_{7}, R_{8}, R_{9}$ and R_{10} are bounded below, upper semi-Browder, left Drazin invertible, upper semi-Fredholm and left essentially Drazin invertible operators, respectively. The operators of R_{11}, R_{12} and R_{13} are semi-regular, essentially semi-regular and quasi-Fredholm operators. The operators of R_{18} are the operators with eventual topological uniform descent.

3. Main results

The following is our main result.
Theorem 3.1. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
\sigma_{R_{i}}(A C) \backslash\{0\}=\sigma_{R_{i}}(B A) \backslash\{0\} \text { for } 1 \leq i \leq 19 .
$$

The proof of our main result uses several auxiliary lemmas.
Lemma 3.2. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Let Q be a polynomial. Then we have

1) $A B A \mathcal{R}(Q(C A-I)) \subseteq \mathcal{R}(Q(A B-I))$;
2) $A B A \mathcal{N}(Q(C A-I) \subseteq \mathcal{N}(Q(A B-I))$;
3) $A C A \mathcal{R}(Q(B A-I)) \subseteq \mathcal{R}(Q(A C-I))$;
4) $A C A \mathcal{N}(Q(B A-I)) \subseteq \mathcal{N}(Q(A C-I))$.

Proof. It is easy to see that for each $k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
A B A(C A-I)^{k}=(A B-I)^{k} A B A \text { and } A C A(B A-I)^{k}=(A C-I)^{k} A C A \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
A B A Q(C A-I)=Q(A B-I) A B A \text { and } A C A Q(B A-I)=Q(A C-I) A C A \tag{3}
\end{equation*}
$$

1) Let x belongs to $\mathcal{R}(Q(C A-I))$. Then there exists some $y \in X$ such that $Q(C A-I) y=x$. Hence it follows from (2) that $A B A x=A B A Q(C A-I) x=Q(A B-I) A B A x$ which belongs to $\mathcal{R}(Q(A B-I))$. Thus $A B A \mathcal{R}(Q(C A-I)) \subseteq \mathcal{R}(Q(A B-I))$.
2) Let $x \in \mathcal{N}(Q(C A-I)$. Then $Q(C A-I) x=0$. It follows from (2) that $Q(A B-I) A B A x=A B A Q(C A-I) x=0$. Thus $A B A x \in \mathcal{N}(Q(A B-I))$.

Using (3), 3) and 4) go similarly.

Lemma 3.3. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
c_{n}(A C-I)=c_{n}(B A-I) \text { for all } n \in \mathbb{Z}_{+}
$$

In particular, $c(A C-I)=c(B A-I)$.
Proof. Let

$$
\Gamma_{A C A}: \mathcal{R}\left((B A-I)^{n}\right) / \mathcal{R}\left((B A-I)^{n+1}\right) \rightarrow \mathcal{R}\left((A C-I)^{n}\right) / \mathcal{R}\left((A C-I)^{n+1}\right)
$$

be the linear application defined by

$$
\Gamma_{A C A}\left(x+\mathcal{R}\left((B A-I)^{n+1}\right)\right)=A C A x+\mathcal{R}\left((A C-I)^{n+1}\right)
$$

Since $A C A \mathcal{R}\left((B A-I)^{n}\right) \subseteq \mathcal{R}\left((A C-I)^{n}\right)$ by Lemma 3.2, part 3), then $\Gamma_{A C A}$ is well defined. We shall show that $\Gamma_{A C A}$ is injective.

Let $x \in \mathcal{R}\left((B A-I)^{n}\right)$ such that $\Gamma_{A C A}(x)=0$. Then $A C A x \in \mathcal{R}\left((A C-I)^{n+1}\right)$. Hence $C A C A x \in \mathcal{R}\left((C A-I)^{n+1}\right)$. From Lemma 3.2, part 1), we have $A B A C A C A x \in \mathcal{R}\left((A B-I)^{n+1}\right)$. Then

$$
(B A)^{4} x=B A B A C A C A x \in \mathcal{R}\left((B A-I)^{n+1}\right)
$$

Since $x \in \mathcal{R}\left((B A-I)^{n}\right)$ then $x=(B A-I)^{n} z$ for some $z \in X$. Hence

$$
\begin{aligned}
x & =(B A)^{4} x-\left((B A)^{4}-I\right) x \\
& =(B A)^{4} x-\left((B A)^{3}+(B A)^{2}+(B A)+I\right)(B A-I) x \\
& =(B A)^{4} x-\left((B A)^{3}+(B A)^{2}+(B A)+I\right)(B A-I)^{n+1} z \\
& =(B A)^{4} x-(B A-I)^{n+1}\left(\left((B A)^{3}+(B A)^{2}+(B A)+I\right) z\right) \in \mathcal{R}\left((B A-I)^{n+1}\right) .
\end{aligned}
$$

Thus $\Gamma_{A C A}$ is injective and consequently

$$
\begin{equation*}
c_{n}(B A-I) \leq c_{n}(A C-I) \tag{4}
\end{equation*}
$$

In similar way, we show that

$$
\begin{equation*}
c_{n}(C A-I) \leq c_{n}(A B-I) \tag{5}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
c_{n}(B A-I) & \leq c_{n}(A C-I) \\
& =c_{n}(C A-I)([18, \text { Lemma 3.9] } \\
& \leq c_{n}(A B-I) \text { by }(5) \\
& =c_{n}(B A-I)([18, \text { Lemma 3.9]. }
\end{aligned}
$$

Therefore $c_{n}(B A-I)=c_{n}(A C-I)$ for all $n \in \mathbb{Z}_{+}$. In particular, $c(A C-I)=c(B A-I)$.
For $T \in \mathcal{L}(X)$, let $\sigma_{d s c}(T)$ and $\sigma_{d s c}^{e}(T)$ be, respectively, the descent spectrum and the essential descent spectrum of T defined by

$$
\sigma_{d s c}(T)=\{\lambda \in \mathbb{C}: d s c(T)=\infty\} \text { and } \sigma_{d s c}^{e}(T)=\left\{\lambda \in \mathbb{C}: d s c_{e}(T)=\infty\right\}
$$

The following is an immediate consequence of Lemma 3.3.
Corollary 3.4. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
\sigma_{*} A C \backslash\{0\}=\sigma_{*} B A \backslash\{0\}, \text { for } \sigma_{*} \in\left\{\sigma_{d s c}, \sigma_{d s c}^{e}\right\}
$$

Lemma 3.5. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
c_{n}^{\prime}(A C-I)=c_{n}^{\prime}(B A-I) \text { for all } n \in \mathbb{Z}_{+}
$$

In particular, $c^{\prime}(A C-I)=c^{\prime}(B A-I)$.

Proof. Let

$$
\Psi_{A C A}: \mathcal{N}\left((B A-I)^{n+1}\right) / \mathcal{N}\left((B A-I)^{n}\right) \rightarrow \mathcal{N}\left((A C-I)^{n+1}\right) / \mathcal{N}\left((A C-I)^{n}\right)
$$

be the linear application defined by

$$
\Psi_{A C A}\left(x+\mathcal{N}\left((B A-I)^{n}\right)\right)=A C A x+\mathcal{N}\left((A C-I)^{n}\right)
$$

Since $A C A \mathcal{N}\left((B A-I)^{n+1}\right) \subseteq \mathcal{N}\left((A C-I)^{n+1}\right)$ by Lemma 3.2, part 4), then $\Psi_{A C A}$ is well defined.
Now we show that $\Psi_{A C A}$ is injective. Let $x \in \mathcal{N}\left((B A-I)^{n+1}\right)$ such that $\Psi_{A C A}(x)=0$, which means that $A C A x \in \mathcal{N}\left((A C-I)^{n}\right)$. Hence $C A C A x \in \mathcal{N}\left((C A-I)^{n}\right)$. It follows from Lemma 3.2, part ii), that $A B A C A C A x \in \mathcal{N}\left((A B-I)^{n}\right)$. Then

$$
(B A)^{4} x=B A B A C A C A x \in \mathcal{N}\left((B A-I)^{n}\right)
$$

Hence

$$
\begin{aligned}
x & =(B A)^{4} x-\left((B A)^{4}-I\right) x \\
& =(B A)^{4} x-\left[(B A)^{3}+(B A)^{2}+(B A)+I\right](B A-I) x \in \mathcal{N}\left((B A-I)^{n}\right) .
\end{aligned}
$$

Which implies that $\Psi_{A C A}$ is injective and then

$$
\begin{equation*}
c_{n}^{\prime}(B A-I) \leq c_{n}^{\prime}(A C-I) \tag{6}
\end{equation*}
$$

Similarly, we prove that

$$
\begin{equation*}
c_{n}^{\prime}(C A-I) \leq c_{n}^{\prime}(A B-I) \tag{7}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
c_{n}^{\prime}(B A-I) & \leq c_{n}^{\prime}(A C-I) \\
& =c_{n}^{\prime}(C A-I)([18, \text { Lemma } 3.10] \\
& \leq c_{n}^{\prime}(A B-I) \text { by }(7) \\
& =c_{n}^{\prime}(B A-I)([18, \text { Lemma } 3.10]
\end{aligned}
$$

Therefore $c_{n}^{\prime}(B A-I)=c_{n}^{\prime}(A C-I)$ for all $n \in \mathbb{Z}_{+}$. In particular, $c^{\prime}(A C-I)=c^{\prime}(B A-I)$.
For $T \in \mathcal{L}(X)$ let $\sigma_{\text {asc }}(T)$ and $\sigma_{\text {asc }}^{e}(T)$ be respectively the ascent spectrum and the essential ascent spectrum of T defined by

$$
\sigma_{\text {asc }}(T)=\{\lambda \in \mathbb{C}: \operatorname{asc}(T)=\infty\} \text { and } \sigma_{\text {asc }}^{e}(T)=\left\{\lambda \in \mathbb{C}: \operatorname{asc}_{e}(T)=\infty\right\}
$$

Then the following is an immediate consequence of Lemma 3.5
Corollary 3.6. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
\sigma_{*} A C \backslash\{0\}=\sigma_{*} B A \backslash\{0\}, \text { for } \sigma_{*} \in\left\{\sigma_{a s c}, \sigma_{a s c}^{e}\right\}
$$

Lemma 3.7. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
k_{n}(A C-I)=k_{n}(B A-I) \text { for all } n \in \mathbb{Z}_{+} .
$$

In particular, $k(A C-I)=k(B A-I)$.
Proof. Let $\Phi_{A C A}$ be the linear application from $\mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n+1}\right) / \mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)$ to $\mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n+1}\right) / \mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right)$ defined by

$$
\Phi_{A C A}\left(x+\mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)\right)=A C A x+\mathcal{R}(B A-I)+\mathcal{N}\left((A C-I)^{n}\right)
$$

Since, by Lemme 3.2, parts 3) and 4),

$$
\left.A C A(\mathcal{R}(B A-I))+\mathcal{N}\left((B A-I)^{n+1}\right) \subseteq \mathcal{R}(B A-I)\right)+\mathcal{N}\left((B A-I)^{n+1}\right)
$$

then $\Phi_{A C A}$ is well defined.
We prove that $\Phi_{A C A}$ is injective. Let $x \in \mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n+1}\right)$ such that $\Phi_{A C A}(x)=0$. Then $A C A x \in \mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right)$. So, there exist some $y \in \mathcal{R}(B A-I)$ and $z \in \mathcal{N}\left((A C-I)^{n}\right)$ such that $A C A x=y+z$. Then $C A C A x=C y+C z \in \mathcal{R}(C A-I)+\mathcal{N}\left((C A-I)^{n}\right)$. Thus by Lemma 3.2, parts 1$)$ and 2$)$, we get that $A B A C A C A x \in \mathcal{R}(A B-I)+\mathcal{N}\left((A B-I)^{n}\right)$ and consequently $(B A)^{4} x=B A B A C A C A x \in \mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)$. Thus

$$
\begin{aligned}
x & =(B A)^{4} x-\left((B A)^{4}-I\right) x \\
& =(B A)^{4} x-(B A-I)\left((B A)^{3}+(B A)^{2}+(B A)+I\right) x \in \mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right) .
\end{aligned}
$$

Hence $\Phi_{A C A}$ is injective. Thus

$$
\begin{equation*}
k_{n}(B A-I) \leq k_{n}(A C-I) \tag{8}
\end{equation*}
$$

In similar way, we show that

$$
\begin{equation*}
k_{n}(C A-I) \leq k_{n}(A B-I) \tag{9}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
k_{n}(B A-I) & \leq k_{n}(A C-I) \\
& =k_{n}(C A-I)([18, \text { Lemma 3.8] } \\
& \leq k_{n}(A B-I) \text { by }(9) \\
& =k_{n}(B A-I)([18, \text { Lemma 3.8]. }
\end{aligned}
$$

Lemma 3.8. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then for all $n \in \mathbb{Z}_{+}, \mathcal{R}\left((A C-I)+\mathcal{N}\left((A C-I)^{n}\right)\right.$ is closed if and only if $\mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)$ is closed.

In particular $\mathcal{R}(A C-I)$ is closed if and only if $\mathcal{R}(B A-I)$ is closed.
Proof. Assume that $\mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right)$ is closed. Let $\left\{x_{p}\right\}$ be a sequence in $\mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)$ which converges to $x \in X$. Then $A C A x_{p}$ converge to $A C A x$. Since $A C A\left(\mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right)\right) \subset$ $\mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right)$ by Lemma 3.2, part 3) and 4), then $A C A x_{p}$ belongs to $\mathcal{R}\left((A C-I)+\mathcal{N}\left((A C-I)^{n}\right)\right.$. Since $\mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right)$ is closed and $A C A x_{p}$ converges to $A C A x$.

$$
\begin{aligned}
& \Longrightarrow A C A x \in \mathcal{R}(A C-I)+\mathcal{N}\left((A C-I)^{n}\right) \\
& \Longrightarrow C A C A x \in \mathcal{R}(C A-I)+\mathcal{N}\left((C A-I)^{n}\right) \\
& \Longrightarrow A B A(C A C A x) \in \mathcal{R}(A B-I)+\mathcal{N}\left((A B-I)^{n}\right) \quad(\text { by Lemma 3.2) } \\
& \Longrightarrow \quad(B A)^{4} x=A B A(C A C A x) \in \mathcal{R}(A B-I)+\mathcal{N}\left((A B-I)^{n}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
x & =(B A)^{4} x-\left((B A)^{4}-I\right) x \\
& =(B A)^{4} x-(B A-I)\left((B A)^{3}+(B A)^{2}+(B A)+I\right) x \in \mathcal{R}(B A-I)+\mathcal{N}\left((B A-I)^{n}\right) .
\end{aligned}
$$

Therefore $\mathcal{R}(B A-I))+\mathcal{N}\left((B A-I)^{n}\right)$ is closed.
The opposite implication goes similarly.
Lemma 3.9. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then for all $n \in \mathbb{N}, \mathcal{R}\left((A C-I)^{n}\right)$ is closed if and only if $\left.\mathcal{R}(B A-I)^{n}\right)$ is closed.

Proof. As in the presentation before [2, Proposition], for each $n \in \mathbb{N}$ there exists B_{n} and $C_{n} \in \mathcal{L}(Y, X)$ such that

$$
(I-A C)^{n}=I-A C_{n} \text { and }(I-B A)^{n}=I-B_{n} A .
$$

Indeed, we have $B_{n}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} B(A B)^{k-1}$ and $C_{n}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}(C A)^{k-1} C$. It is easy to check that

$$
A\left(B_{n} A\right)^{2}=A B_{n} A C_{n} A=A C_{n} A B_{n} A=\left(A C_{n}\right)^{2} A
$$

Then it follows from Lemma 3.8 that $\mathcal{R}\left((A C-I)^{n}\right)$ is closed if and only if $\mathcal{R}\left((B A-I)^{n}\right)$ is closed.
Proof of Theorem 3.1: The proof follows at once from Lemmas 3.2-3.9.

4. Applications and concluding remarks

A bounded operator $T \in \mathcal{L}(X)$ is said to be upper semi-Weyl operator if T is upper semi-Fredholm with $\operatorname{ind}(T) \leq 0$, and T is said to be lower semi-Weyl operator if T is lower semi-Fredholm with $\operatorname{ind}(T) \geq 0$. If T is both upper and lower semi-Fredholm then T is said to Weyl operator. Then T is weyl operator precisely when T is a Fredholm operator with index zero. The upper semi-Weyl spectrum $\sigma_{u w}(T)$, the lower semi-Weyl spectrum $\sigma_{l w}(T)$ and the Weyl spectrum $\sigma_{w}(T)$ of T are defined by

$$
\begin{gathered}
\sigma_{u v}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not upper semi-Weyl }\}, \\
\sigma_{l w}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not lower semi-Weyl }\}, \\
\sigma_{w}(T)=\sigma_{u w v}(T) \cup \sigma_{l w}(T) .
\end{gathered}
$$

From Lemma 3.3 and Lemma 3.5 we deduce the following result
Proposition 4.1. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then

$$
\sigma_{*}(A C) \backslash\{0\}=\sigma_{*}(B A) \backslash\{0\} \text { for } \sigma_{*} \in\left\{\sigma_{u w w}, \sigma_{l w}, \sigma_{w v}\right\}
$$

An operator $T \in \mathcal{L}(X)$ is said to be Riesz operator if $T-\lambda I$ is a Fredholm operator for all $0 \neq \lambda \in \mathbb{C}$. Then the following proposition is an immediate consequence of Theorem 3.1

Proposition 4.2. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then $A C$ is a Riesz operator if and only if $B A$ is a Riesz operator.

Following [21], an operator $T \in \mathcal{L}(X)$ is said to be generalized Drazin-Riesz operator if there exists $S \in \mathcal{L}(X)$ such that

$$
T S=S T, S T S=S \text { and } T^{2} S-T \text { is a Riesz operator. }
$$

The operator S is called a generalized Drazin-Riesz inverse of T.
Theorem 4.3. Let $A \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$. Then $A C$ is generalized Drazin-Riesz invertible if and only if $B A$ is generalized Drazin-Riesz invertible. In this case, if S is a generalized Drazin-Riesz inverse of $A C$ then $B S^{2} A$ is a generalized Drazin-inverse of $B A$.

Proof. Assume that $A C$ is generalized Drazin-Riesz invertible. then there exists $S \in \mathcal{L}(X)$ such that $S(A C)=$ $(A C) S, S(A C) S=S$ and $(A C)^{2} S-A C$ is Riesz. Set $T=B S^{2} A$ and we shall show that

$$
T(B A)=(B A) T, T(B A) T=T \text { and }(B A)^{2} T-B A \text { is Riesz operator. }
$$

For the first equality, we have

$$
\begin{aligned}
T(B A) & =B S^{2} A(B A) \\
& =B S^{2}(A C) S^{2}(A C) A(B A) \\
& =B S^{4}(A C)^{2} A(C A) \\
& =B(A C)^{3} S^{4} A \\
& =B(A B) S^{2} A \\
& =B A T .
\end{aligned}
$$

For the second,

$$
\begin{aligned}
T^{2}(B A) & =B S^{2} A B S^{2} A B A \\
& =B S^{2} A B S^{2}(A C) S^{2}(A C) A B A \\
& =B S^{2} A B S^{2}(A C) S^{2}(A C) A C A \\
& =B S^{2} A B(A C)(A C) S^{4} A C A \\
& =B S^{2} A C(A C)(A C) S^{4} A C A \\
& =B S^{2} A C S^{2} A C A \\
& =B S^{2} A \\
& =T .
\end{aligned}
$$

Set $P=A C S-I=S A C-I$. Then

$$
\begin{aligned}
T(B A)^{2}-B A & =B S^{2} A(B A)^{2}-B A \\
& =B S^{2}(A C)^{2} A-B A \\
& =B S^{A} C A-B A \\
& =B(S A C-I) A \\
& =B P A .
\end{aligned}
$$

Hence it remains to show that $B P A$ is a Riesz operator. We have

$$
\begin{aligned}
(P A) B(P A) B(P A) & =(S A C A-A) B(S A C A-A) B(A C S A-A) \\
& =(S A C A-A) B(S A C A B A-A B A)(C S A-A) \\
& =(S A C A-A) B(S A C A C A-A B A)(C S A-A) \\
& =[(S A C A-A) B(S A C A C A)-(S A C A-A) B A B A](C S A-A) \\
& =[(S A C A-A) B(S A C A C A)-(S A C A-A) B A C A](C S A-A) \\
& =(S A C A-A) B(S A C A C A-A C A)(C S A-A) \\
& =(S A C A-A) B(S A C A-A) C(A C S A-A) \\
& =(P A) B(P A) C(P A) .
\end{aligned}
$$

In the same way, one can prove that

$$
(P A) B(P A) B(P A)=(P A) B(P A) C(P A)=(P A) C(P A) B(P A)=(P A) C(P A) C(P A)
$$

Since $(P A) C=(A C)^{2} S-A C$ is a Riesz operator by assumption, then it follows from Proposition 4.2 that $B(P A)$ is a Riesz operator. Therefore $B A$ is generalized Drazin-Riesz invertible and $B S^{2} A$ is a generalized Drazin-inverse of $B A$.

In similar way, we prove the opposite implication.
Remark 4.4. If A and $B \in \mathcal{L}(X)$ such that $A B A=A^{2}$ and $B A B=B^{2}$, then

$$
\begin{equation*}
A(B A)^{2}=A B A I A=A I A B A=(A I)^{2} A \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
B(A B)^{2}=B A B I B=B I B A B=(B I)^{2} B \tag{11}
\end{equation*}
$$

Then it follows from (10) and (11 that $A, B, B A$ and $A B$ share above spectral properties. So we retrieve the results of [7].

In the following two examples, the common spectral properties for $A C$ and $B A$ can only followed directly from the above results, but not from the corresponding ones in [7, 9, 15, 16, 19].

Example 4.5. Let P be a non trivial idempotent on X. Let A, B and C defined on $X \oplus X \oplus X$ by

$$
A=\left(\begin{array}{lll}
0 & I & 0 \\
0 & P & 0 \\
0 & 0 & 0
\end{array}\right), B=\left(\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
I & 0 & 0 \\
0 & I & 0
\end{array}\right)
$$

Then $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$, while $A B A \neq A C A$ and $B A B \neq B^{2}$.
Example 4.6. Let A and B be as in Example 4.5 and let C be defined on $X \oplus X \oplus X$ by

$$
C=\left(\begin{array}{lll}
0 & 0 & 0 \\
P & 0 & 0 \\
0 & I & 0
\end{array}\right)
$$

Then $A(B A)^{2}=A B A C A=A C A B A=(A C)^{2} A$, while $A B A \neq A C A$ and $B A B \neq B^{2}$.

References

[1] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (8) (2008), 2839-2848.
[2] B. A. Barnes, Common operator properties of the linear operators RS and SR. Proc. Amer. Math. Soc., 126, (1998), 10551061.
[3] C. Benhida and E. H. Zerouali, On Taylor and other joint spectra for commuting n-tuples of operators. J. Math. Anal. Appl., 326 (2007), 521-532.
[4] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163-175.
[5] H. Chen and M. Sheibani, Cline's formula for g-Drazin inverses, Arxiv math. 1805.06133v1
[6] G. Corach, B. Duggal and R. Harte, Extensions of Jacobsons lemma. Comm. Algebra, 41 (2013), 520-531.
[7] B. P. Duggal, Operator equations $A B A=A^{2}$ and $B A B=B^{2}$, Fun. Anal. Approx. Comp. 3 (1) (2011), 9-18.
[8] S. Grabiner, Uniform ascent and descent of bounded operators. J. Math. Soc. Japan, 34 (1982), 317-337.
[9] M. Karmouni and A. Tajmouati, A Cline's formula for the generalized Drazin-Riesz inverses, Fun. Anal. Approx. Comp. 10 (1) (2018), 35-39.
[10] V. Kordula and V. Müller, On the axiomatic theory of spectrum. Studia Math. 119 (1996), 109-128.
[11] J. Ph. Labrousse, Les opérateurs quasi-Fredholm : une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo 29 (2) (1980), 161-258.
[12] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II. Studia Math., 119, (1996), 129-147.
[13] V. G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo 67 (2018), 105-114.
[14] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Operator Theory: Advances and Applications, Vol. 139, Birkhauser Verlag, Basel-Boston- Berlin, 2007.
[15] C. Schmoeger, On the operator equations $A B A=A^{2}$ and $B A B=B^{2}$, Publ. Inst. Math. (N.S.) 78 (92) (2005), 127-133.
[16] C. Schmoeger, Common spectral properties of linear operators A and B such that $A B A=A^{2}$ and $B A B=B^{2}$, Publ. Inst. Math. (N.S.) 79(93) (2006), 109-114.
[17] K. Yan and X. Fang, Common properties of the operator products in spectral theory, Ann. Funct. Anal. 6 (4) (2015), 60-69.
[18] Q.P. Zeng, H.J. Zhong, New results on common properties of the bounded linear operators RS and SR, Acta Math. Sinica (English Series) 29 (10) (2013), 1871-1884.
[19] Q.P. Zeng, H.J. Zhong, Common properties of bounded linear operators AC and BA: Spectral theory, Math. Nachr. 287 (2014), 717-725.
[20] H. Zguitti, Further common local spectral properties for bounded linear operators, to appear in Proyecciones J. Math. (2019).
[21] S. Č. Živković-Zlatanović, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, 65 (6) (2017), 11711193.

[^0]: 2010 Mathematics Subject Classification. Primary 47A10; Secondary 47A53, 47A55
 Keywords. Jacobson's lemma, common spectral properties, regularity
 Received: 30 March 2019; Accepted: 25 June 2019
 Communicated by Dragan S. Djordjević
 Email address: hassane.zguitti@usmba.ac.ma (Hassane Zguitti)

