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Abstract. In this paper we introduce the class of [∞,C]-isometric operators and study various properties
of this class. In particular, we show that if T is an [∞,C]-isometric operator and Q is a quasi-nilpotent
operator, then T + Q is an [∞,C]-isometric operator under suitable conditions. Also, we show that the class
of [∞,C]-isometric operators is norm closed. Finally, we examine properties of products of [∞,C]-isometric
operators.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a separable complex Hilbert space H,
and letN, C be the sets of natural numbers and complex numbers, respectively.

In 1990s, Agler and Stankus [1] studied the theory of m-isometric operators which are connected to
Toeplitz operators, ordinary differential equations, classical function theory, classical conjugate point theory,
distributions, Fejer-Riesz factorization, stochastic processes, and other topics. For a fixed m ∈N, an operator
T ∈ B(H) is said to be an m-isometric operator if it satisfies an identity;

m∑
j=0

(−1) j(m
j )T∗m− jTm− j = 0.

Several authors have studied the m-isometric operator. We refer the reader to [2–6, 10, 11] for further details.
An antilinear operator C on H is said to be conjugation if C satisfies C2 = I and (Cx,Cy) = (y, x) for

all x, y ∈ H. In [7], M. Chō, E. Ko and J. Lee introduced (m,C)-isometric operators with conjugation C as
follows; For an operator T ∈ B(H) and an integer m ≥ 1, T is said to be an (m,C)-isometric operator if there
exists some conjugation C such that

m∑
j=0

(−1) j(m
j )T∗m− j.CTm− jC = 0.
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In [8], M. Chō, E. Ko and J. Lee introduced (∞,C)-isometric operators with conjugation C as follows; For
an operator T ∈ B(H), T is said to be an (∞,C)-isometric operator if there exists some conjugation C such
that

lim sup
m→∞

||

m∑
j=0

(−1) j(m
j )T∗m− j.CTm− jC||

1
m = 0.

In [9], M. Chō, J. Lee and H. Motoyoshi introduced [m,C]-isometric operators with conjugation C as
follows; For an operator T ∈ B(H) and an integer m ≥ 1, T is said to be an [m,C]-isometric operator if there
exists some conjugation C such that

m∑
j=0

(−1) j(m
j )CTm− jC.Tm− j = 0.

For an operator T ∈ B(H) and a conjugation C, define the operator λm(T) by

λm(T) =

m∑
j=0

(−1) j(m
j )CTm− jC.Tm− j.

Then T is an [m,C]-isometric operator if and only if

λm(T) = 0.

Moreover,
CTC.λm(T).T − λm(T) = λm+1(T)

holds. Hence, an [m,C]-isometric operator is an [n,C]-isometric operator for every n ≥ m.
According to the definitions of m-isometric, (m,C)-isometric, (∞,C)-isometric and [m,C]-isometric oper-

ators, we introduce [∞,C]-isometric operators T as follows; An operator T is said to be an [∞,C]-isometric
operator if

lim sup
m→∞

||λm(T)||
1
m = 0.

An operator T ∈ B(H) is called a finite [m,C]-isometric operator with conjugation C if T is an [m,C]-
isometric operator for some m ≥ 1. The class of [∞,C]-isometric operators is a large class which contains
finite [m,C]-isometric operators with conjugation C.

In this paper we introduce the class of [∞,C]-isometric operators and study various properties of this
class. In particular, we show that if T is an [∞,C]-isometric operator, Q is a quasi-nilpotent operator which
satisfy TQ = QT, then T + Q is an [∞,C]-isometric operator. Also, we prove that the class of [∞,C]-isometric
operators is norm closed. Finally, we investigate properties of products of [∞,C]-isometric operators.

2. [∞,C]-isometric operators

We next investigate the properties of [∞,C]-isometric operators.

Theorem 2.1. Let T ∈ B(H). Then the following statements hold:
(i) If T satisfies T = CTC, then

lim sup
m→∞

||λm(T)||
1
m = r(T2

− I)

where r(A) denotes the spectral radius of A. In particular, if r(T2
− I) = 0, the T is an [∞,C]-isometric operator.

(ii) If T is a strict contraction, i.e., ||T|| < 1, then T is not an [∞,C]-isometric operator.
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Proof. (i) Since T = CTC, we have

λm(T) =

m∑
j=0

(−1) j(
m

j )CTm− jC.Tm− j =

m∑
j=0

(−1) j(
m

j )T2(m− j),

and therefore

||λm(T)|| = ||
m∑

j=0

(−1) j(
m

j )T2(m− j)
|| = ||(T2

− I)m
||,

and hence
lim sup

m→∞
||λm(T)||

1
m = lim sup

m→∞
||(T2
− I)m

||
1
m = r(T2

− I).

In particular, if r(T2
− I) = 0, then T is an [∞,C]-isometric operator.

(ii) Suppose that T is an [∞,C]-isometric operator. Then CTC.T , I. Indeed, if T is a [1,C]-isometric
operator, then

1 > ||T||2 = ||C||||T||||C||||T|| ≥ ||CTC.T|| = ||I|| = 1,

which is a contradiction. Since
CTC.λm(T).T − λm(T) = λm+1(T),

we have
||λm(T)|| ≤ ||T||2||λm(T)|| + ||λm+1(T)||.

Thus
(1 − ||T||2)||λm(T)|| ≤ ||λm+1(T)||

for m ∈N. Therefore, we obtain that

(1 − ||T||2)m
||λ1(T)|| ≤ ||λm+1(T)||,

and so
(1 − ||T||2)

m
m+1 ||λ1(T)||

1
m+1 ≤ ||λm+1(T)||

1
m+1 .

Since T is an [∞,C]-isometric operator and λ1(T) , 0, by taking lim sup
m→∞

, we derive that 1 − ||T||2 ≤ 0. Thus

||T|| ≥ 1. So we have a contradiction.

Lemma 2.2. Let T,Q ∈ B(H) satisfy TQ = QT. Then, for m ≥ 2,

||λm(T + Q)|| ≤ Km(max
l≤n≤m

||λn(T)|| + max
l≤n≤m

||Qn
||)

where K = 2((||T|| + ||Q||)2 + ||T|| + ||Q|| + 1) and l = [ m
3 ] is the integer part of m

3 .

Proof. Since

[(a + b)(c + d) − 1]m =[(ac − 1) + (a + b)d + bc]m

=
∑

m1+m2+m3=m

( m
m1,m2,m3

)(a + b)m1 bm2 (ac − 1)m3 cm2 dm1 ,

we have
λm(T + Q) =

∑
m1+m2+m3=m

( m
m1,m2,m3

)(CTC + CQC)m1 CQm2 C.λm3 (T)Tm2 Qm1 .

Suppose that l = [ m
3 ] is the integer part of m

3 . Put

Mi =
∑

m1+m2+m3=m,mi≥l

( m
m1,m2,m3

)||(CTC + CQC)m1 CQm2 C.λm3 (T)Tm2 Qm1 ||
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for i = 1, 2, 3. Since m1 + m2 + m3 = m, it follows that m j ≥ l for some j = 1, 2, 3. Therefore, we obtain that

||λm(T+Q)||

≤

∑
m1+m2+m3=m

( m
m1,m2,m3

)||(CTC + CQC)m1 CQm2 C.λm3 (T)Tm2 Qm1 ||

≤M1 + M2 + M3.

On the other hand, since ||C|| = 1, we get that

M3 =
∑

m1+m2+m3=m,m3≥l

( m
m1,m2,m3

)||(CTC + CQC)m1 CQm2 C.λm3 (T)Tm2 Qm1 ||

≤

∑
m1+m2+m3=m,m3≥l

( m
m1,m2,m3

)(||T|| + ||Q||)m1 ||Q||m2 .||λm3 (T)||||T||m2 ||Q||m1

≤max
l≤n≤m

||λn(T)||.
∑

m1+m2+m3=m

( m
m1,m2,m3

)(||T|| + ||Q||)m1 ||Q||m2 ||T||m2 ||Q||m1

= max
l≤n≤m

||λn(T)||.((||T|| + ||Q||)||Q|| + ||T||||Q|| + 1)m

≤max
l≤n≤m

||λn(T)||.(
K
2

)m.

Since ||λk(T)|| ≤ (||T||2 + 1)k for all k ∈N, by the similar fashion, we obtain

M1 ≤max
l≤n≤m

||Qn
||.((||T|| + ||Q||) + ||T||||Q|| + (||T||2 + 1))m

≤max
l≤n≤m

||Qn
||.(

K
2

)m

and

M2 ≤max
l≤n≤m

||Qn
||.((||T|| + ||Q||)||Q|| + ||T|| + (||T||2 + 1))m

≤max
l≤n≤m

||Qn
||.(

K
2

)m,

then

||λm(T + Q)|| ≤max
l≤n≤m

||λn(T)||.(
K
2

)m + 2 max
l≤n≤m

||Qn
||.(

K
2

)m

≤Km(max
l≤n≤m

||λn(T)|| + max
l≤n≤m

||Qn
||).

Hence this completes the proof.

Theorem 2.3. Let T ∈ B(H) and let C be a conjugation on H. Then the following assertions hold:
(i) If T is an [∞,C]-isometric operator and Q is a quasi-nilpotent operator which satisfy TQ = QT, then T + Q is an
[∞,C]-isometric operator.
(ii) If Tn is a sequence of commuting [∞,C]-isometric operators such that lim

n→∞
||Tn − T|| = 0, then T is an [∞,C]-

isometric operator.

Proof. (i) Since T is an [∞,C]-isometric operator and Q is a quasi-nilpotent operator, it follows that for given
0 < ε < 1, there existsN such that

||λn(T)|| ≤ εn and ||Qn
|| ≤ εn
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for all n ≥N. By Lemma 2.2, for m ≥ 3N and l = [ m
3 ] ≥N, we have that

||λm(T + Q)||
1
m ≤K(max

l≤n≤m
||λn(T)|| + max

l≤n≤m
||Qn
||)

1
m

≤K(2εn)
1
m ≤ K(2εl)

1
m

=2
1
m Kε

l
m = 2

1
m Kε

1
m [ m

3 ].

Since ε is arbitrary, lim sup
m→∞

||λm(T + Q)||
1
m = 0. Hence T + Q is an [∞,C]- isometric operator.

(ii) If TnTk = TkTn for all k,n ∈N, then TTn = TnT for all n ≥ 1. For a given 0 < ε < 1, there exists n0 such
that

||T − Tn0 || ≤ ε and ||λn(Tn0 )|| ≤ εn

for all n ≥ n0. By Lemma 2.2, for m ≥ 3n0 and l = [ m
3 ] ≥ n0, we obtain that

||λm(T)||
1
m = ||λm(Tn0 + T − Tn0 )||

1
m

≤ K(max
l≤n≤m

||λn(Tn0 )|| + max
l≤n≤m

||T − Tn0 ||
n)

1
m

≤ 2
1
m Kε

l
m = 2

1
m Kε

1
m [ m

3 ].

Since ε is arbitrary, it follows that lim sup
m→∞

||λm(T)||
1
m = 0. Hence T is an [∞,C]-isometric operator.

We illustrate the following example by Theorem 2.3 (ii).

Example 2.4. Let Cn be the conjugation on Cn defined by

Cn(z1, z2, · · · , zn) := (z1, z2, · · · , zn).

Assume that T = ⊕∞n=1Tn, where Tn is an n × n matrix;

Tn = In + Nn =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0
. . . 1 0

0 0 0 · · · 0 1


+



0 0 0 · · · 0 0
1
n 0 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0
. . . 0 0

0 0 0 · · ·
1
n 0


.

Since Nn is nilpotent of order n, then Tn is a [2n − 1,Cn]-isometric operator by [9]. Hence T is an [∞,C]-isometric
operator with a conjugation C = ⊕∞n=1Cn. Indeed, if Rn = T1 ⊕ · · · ⊕Tn ⊕ I⊕ I⊕ · · · , then Rn is a [2n− 1,C]-isometric
operator and RnRk = RkRn for all n, k ≥ 1. Since Rn → T in the operator norm, it follows from Theorem 2.3(ii) that
T is an [∞,C]-isometric operator with a conjugation C = ⊕∞n=1Cn.

Finally, we study properties of products of [∞,C]-isometric operators.

Lemma 2.5. Let T,S ∈ B(H) satisfy TS = ST and T(CSC) = (CSC)T. Then

λm(TS) =

m∑
j=0

(m
j )CT jCλm− j(T)T jλ j(S)

where λ0(∗) = I.
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Proof. Assume that TS = ST and T(CSC) = (CSC)T. Since

(abcd − 1)m = [(ab − 1) + a(cd − 1)b]m

=

m∑
j=0

(m
j )a j(ab − 1)m− jb j(cd − 1) j,

we have

λm(TS) =

m∑
j=0

(−1) j(m
j )C(TS)m− jC(TS)m− j

=

m∑
j=0

(m
j )CT jCλm− j(T)T jλ j(S)

where λ0(∗) = I.

Theorem 2.6. Let T and S be [∞,C]-isometric operators. Assume that TS = ST and T(CSC) = (CSC)T. Then TS
is an [∞,C]-isometric operator.

Proof. Assume that T and S are [∞,C]-isometric operators. Then for a given 0 < ε < 1, there exist N1 and
N2 such that

||λn1 (T)|| ≤ εn and ||λn2 (S)|| ≤ εn

for n1 ≥ N1 and n2 ≥ N2. Put N = max{N1,N2}. Then it’s sufficient to show that there exists a constant
K > 0 such that for m ≥ 2N,

||λm(TS)|| ≤ Kmε
m
2 .

Let l = [ m
2 ] denote the integer part of m

2 . Then by Lemma 2.5

λm(TS) =

l∑
j=0

(m
j )CT jCλm− j(T)T jλ j(S)

+

m∑
j=l+1

(m
j )CT jCλm− j(T)T jλ j(S).

If j ≤ l = [ m
2 ], then m − j ≥ [ m

2 ] = l ≥ N, and so ||λm− j(T)|| ≤ εm− j
≤ εl. Since ||C|| = 1, it follows that

||λ j(S)|| ≤ (||S||2 + 1) j for all j ≥ 1. Thus we have

||

l∑
j=0

(m
j )CT jCλm− j(T)T jλ j(S)||

≤

l∑
j=0

(m
j )||λm− j(T)||||CT jC||||T j

||||λ j(S)||

≤

l∑
j=0

(m
j )εm− j

||T|| j||T|| j(||S||2 + 1) j

≤ εl
m∑

j=0

(m
j )||T||2 j(||S||2 + 1) j

= εl(1 + ||T||2(||S||2 + 1))m.
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Similarly, if j ≥ l + 1 ≥N, then ||λ j(S)|| ≤ εl and hence we have

||

m∑
j=l+1

(m
j )CT jCλm− j(T)T jλ j(S)|| ≤ εl(||T||2 + (||T||2 + 1))m.

Then for m ≥ 2N

||λm(TS)|| ≤ ε[ m
2 ]((1 + ||T||2(||S||2 + 1))m + (||T||2 + (||T||2 + 1))m).

Thus lim sup
m→∞

||λm(TS)||
1
m = 0. Hence TS is an [∞,C]-isometric operator.

We illustrate the following example by Theorem 2.6.

Example 2.7. Let C : H→ H be the conjugation given by

C(
∞∑

n=1

xnen) =

∞∑
n=1

xnen

where {xn} is a sequence in C with
∞∑

n=1
|xn|

2 < ∞. Suppose that A,B ∈ B(H) satisfy Aen = αen and Ben = βnen+1 with

βn = 1
n for all n ≥ 1. If |α|2 = 1, then A and B + I are [∞,C]-isometric operators, and it is easy to compute

ACBCen = ACBen = AC(βnen+1) = Aβnen+1 = αβnen+1

and
CBCAen = CBC(αen) = CB(αen) = C(αβnen+1) = αβnen+1.

Moreover, ABen = Aβnen+1 = βnαen+1 and BAen = Bαen = αβnen+1. Hence A(I + B) is an [∞,C]- isometric operator
from Theorem 2.6.

Corollary 2.8. Let T and S be [∞,C]-isometric operators with conjugation C. Suppose that T(CTC) = (CTC)T.
Then the following statements hold.
(i) If TS = ST, T(CSC) = (CSC)T and S(CSC) = (CSC)S, then TkS j and S jTk are [∞,C]-isometric operators for any
k, j ∈N.
(ii) Tn is an [∞,C]-isometric operator for any n ∈N.

Proof. (i) By Theorem 2.6, TS is an [∞,C]-isometric operator. It suffices to show that TkS is an [∞,C]-isometric
operator. Since TS = ST, T(CSC) = (CSC)T and T(CTC) = (CTC)T, it follows that Tk−1(TS) = (TS)Tk−1 and
Tk−1(CTSC) = (CTC)(CSC)Tk−1 = (CTSC)Tk−1. By Theorem 2.6, Tk−1TS = TkS is an [∞,C]-isometric operator.
Similarly, TkS j is an [∞,C]-isometric operator. Also, we can show that S jTk is an [∞,C]-isometric operator
by a similar way.

(ii) It is easy to show Tn is an [∞,C]-isometric operator by (i).

Theorem 2.9. Let T ∈ B(H). Then the following statements hold.
(i) T is an [∞,C]-isometric operator if and only if T∗ is an [∞,C]-isometric operator.
(ii) If T is an invertible [∞,C]-isometric operator, then T−1 is an [∞,C]-isometric operator.

Proof. (i) Suppose that T is an [∞,C]-isometric operator. Since λm(T∗) =
m∑

j=0
(−1) jCT∗m− jCT∗m− j, it follows that

Cλm(T∗)C =

m∑
j=0

(−1) jT∗m− jCT∗m− jC

= (λm(T))∗
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i..e., Cλm(T∗)C = (λm(T))∗. Therefore, we have

lim sup
m→∞

||λm(T∗)||
1
m = lim sup

m→∞
||Cλm(T∗)C||

1
m

= lim sup
m→∞

||(λm(T))∗||
1
m

= lim sup
m→∞

||λm(T)||
1
m

= 0.

Hence T∗ is an [∞,C]-isometric operator. The converse implication holds by the same way.
(ii) Note for any a, b ∈ C,

am(1 − a−1b−1)mbm = (ab − 1)m =

m∑
j=0

(−1) j(m
j )am− jbm− j.

Take a = CTC and b = T. Then we get

λm(T) = (−1)m(CTC)mλm(T−1)Tm.

Therefore, so
(−1)m(CTC)−mλm(T)T−m = λm(T−1).

Hence
lim sup

m→∞
||λm(T−1)||

1
m ≤ lim sup

m→∞
||T−1
||||λm(T)||

1
m ||T−1

||.

So T−1 is an [∞,C]-isometric operator.

Corollary 2.10. Let T ∈ B(H) be an invertible [∞,C]-isometric operator and T(CTC) = (CTC)T. Then T−n and T∗−n

are [∞,C]-isometric operators for any n ∈N.

Proof. The proof follows from Theorem 2.9 and Corollary 2.8.
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