Summability of Subsequences of a Divergent Sequence by Regular Matrices II

Johann Boos ${ }^{\text {a }}$
${ }^{a}$ Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58084 Hagen, Germany

Dedicated to the memory of Professor Harry I. Miller

Abstract

C. Stuart proved in [27. Proposition 7] that the Cesàro matrix C_{1} cannot sum almost every subsequence of a bounded divergent sequence. At the end of the paper he remarked 'It seems likely that this proposition could be generalized for any regular matrix, but we do not have a proof of this'. In [4. Theorem 3.1] Stuart's conjecture is confirmed, and it is even extended to the more general case of divergent sequences. In this note we show that [4. Theorem 3.1] is a special case of Theorem 3.5.5 in [24] by proving that the set of all index sequences with positive density is of the second category. For the proof of that a decisive hint was given to the author by Harry I. Miller a few months before he passed away on 17 December 2018.

1. Introduction

Throughout this note we assume familarity with summability and the standard sequence spaces (see e. g. [3, 28]). So we denote by $\omega, \ell_{\infty}, c, c_{0}$, and ℓ the set of all sequences in $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C})$, of all bounded sequences, of all convergent sequences, of all sequences converging to 0 , and of all absolutely summable sequences, respectively.

If $A=\left(a_{n k}\right)$ is an infinite matrix with scalar entries, then we consider the domain

$$
c_{A}:=\left\{\left(x_{k}\right) \in \omega \mid \sum_{k=1}^{\infty} a_{n k} x_{k} \text { converges for each } n \in \mathbb{N} \text { and } A x:=\left(\sum_{k=1}^{\infty} a_{n k} x_{k}\right)_{n} \in c\right\}
$$

of A. The matrix (method) A is called regular, if $c \subseteq c_{A}$ and $\lim _{A} x:=\lim A x=\lim x(x \in c)$. A characterization of regular matrices is contained in the wellknown Theorem of Toeplitz, Silverman, Kojima and Schur (cf. [3. Th. 2.3.7 II]). The Cesàro matrix $C_{1}=\left(c_{n k}\right)$ with $c_{n k}:=\frac{1}{n}$ if $1 \leq k \leq n(k, n \in \mathbb{N})$ and $c_{n k}:=0$ otherwise is certainly the most famous example of a regular matrix.

[^0]
2. Preliminary considerations and known results

Steinhaus stated in [26] that a regular matrix cannot sum all sequences of $0^{\prime} s$ and $1^{\prime} s$ for which Connor gave in [7] a very short proof based on the Baire Classification Theorem. In particular, the Steinhaus Theorem implies obviously that a regular matrix cannot sum all bounded sequences which is also a corollary of the Schur Theorem (cf. [25] and [3, Corollary 2.4.2]). Moreover, the Hahn Theorem (cf. [10], [3, Theorem 2.4.5]) says that a matrix sums all bounded sequences if it sums all sequences of $0^{\prime} s$ and $1^{\prime} s$.

More general we may determine (small) subsets Q of $\ell_{\infty} \backslash c$ or of $\omega \backslash c$ such that each regular matrix cannot sum all $x \in Q$.

A related problem is based on the question 'How many subsequences of a given divergent sequence can be summed by a given regular matrix (or by any regular matrix)?'. This question makes sense as the following result shows.

Proposition 2.1 (cf. [5, Theorem], [27, Theorem 5]). If x is any bounded divergent sequence, then each regular matrix cannot sum all subsequences of x. (Note, by [24, 3.5.5], the statement holds even for divergent sequences.)

Now, let I denote the set of all index sequences ${ }^{11}\left(n_{i}\right)$ and $x=\left(x_{n}\right)$ be any bounded divergent or divergent sequence. Then we ask for (small) subsets Q of I such that a special regular matrix like C_{1} or, more generally, each regular matrix cannot sum all subsequences $\left(x_{n_{i}}\right)$ of x with $\left(n_{i}\right) \in Q$.

Following Stuart in [27] we consider any set of subsequences (of a bounded divergent sequence) that have index sets with positive density:

Definition 2.2 (positive density). Given a set $S \subseteq \mathbb{N}$ and let $S_{n}:=S \cap \mathbb{N}_{n}$, then the density of S is defined by ${ }^{2)} d(S):=\lim \sup _{n} \frac{\left|S_{n}\right|}{n}$ where $|Y|$ denotes the cardinality of any set Y. (Note $0 \leq d(S) \leq 1$.) A property holds for almost every subsequence of a given sequence if it holds for all the subsequences that have index sets with positive density $)^{3]}$ For any $\left(n_{i}\right) \in \mathcal{I}$ and $n \in \mathbb{N}$ we set $S_{\left(n_{i}\right), n}:=\left\{i \mid n_{i} \leq n\right\}$.

In this sense we consider in the following the set

$$
\begin{equation*}
Q:=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>0\right\} . \tag{1}
\end{equation*}
$$

In particular, we get

$$
\begin{equation*}
{ }^{c} \boldsymbol{Q}=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)=0\right\}=\left\{\left(n_{i}\right) \in \mathcal{I} \left\lvert\,\left(\frac{\left|S_{\left(n_{i}, n\right)}\right|}{n}\right) \in c_{0}\right.\right\} . \tag{2}
\end{equation*}
$$

Stuart presented following two results for the case Q :
Proposition 2.3 (cf. [27, Proposition 6]). The matrix C_{1} cannot sum almost every subsequence of any sequence of 0 's and 1's.

Proposition 2.4 (cf. [27, Proposition 7]). The matrix C_{1} cannot sum almost every subsequence of any bounded divergent sequence.

Boos and Zeltser proved in [4] that Stuarts result holds in general for any regular matrix and any divergent sequence:

Theorem 2.5 (cf. [4, Theorem 3.1]). Let $A=\left(a_{n k}\right)$ be a regular matrix. Then A cannot sum almost every subsequence of any divergent sequence $x=\left(x_{k}\right)$.

In this note we'll show that the last Theorem is a special case of Theorem 3.5.5 in [24].

[^1]
3. A general result due to Keogh and Petersen

To quantify the set Q of index sequences we used the positive density of the members of Q which leads us -in case of a given sequence x - to the notion of 'almost all subsequences ${ }^{4)}$ of x.

In 1958 Keogh and Petersen trod another path to quantify sets Q of index sequences:
Definition 3.1. Let Q be any set of index sequences. Furthermore, if $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, then we identify the index sequence $\left(n_{k}\right)$ with the number $\alpha \in[0,1]$ with binary code.$\alpha_{1} \alpha_{2} \alpha_{3} \ldots$ defined by

$$
\alpha_{r}:=\left\{\begin{array}{ll}
1 & \text { if } r=n_{i}(i \in \mathbb{N}), \tag{3}\\
0 & \text { otherwise }
\end{array} \quad(r \in \mathbb{N})\right.
$$

In this way we identify a set \widehat{Q} of subsequences of $\left(x_{n}\right)$ with the set Q of the corresponding index sequences and —applying correspondingly (3) $-Q$ with the set

$$
Q^{*}:=\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in Q: \alpha_{r} \text { defined by (3) }\right\}
$$

of the corresponding members of $[0,1]$ in binary code. Now we define \widehat{Q} to be of the second category if Q^{*} is of the second category in the set $[0,1]$; otherwise we call it of the first category.

Theorem 3.2 (cf. [24, Theorem 3.5.5] and [15, Theorem on page 1]). Let $x=\left(x_{n}\right) \in \omega$ and A be any given regular matrix. Then A limits a set of subsequences of x, that is of the second category, if and only if $x \in c$. (More exactly: If \widehat{Q} is a set of subsequences of x, that is of the second category, then A limits all members of \widehat{Q} if and only if $x \in c$.)

Remark 3.3. The non-trivial part of the proof of Theorem 3.2 is done in the following way: If x is divergent and A is regular, then

$$
F:=\left\{y \in c_{A} \mid y \text { is a subsequence of } x\right\}
$$

is of the first category. (Thus, F cannot contain any set of the second category.)
In Section 5 we proof that the result in Theorem 2.5 is contained in that of Theorem 3.2 More exactly, we show that, if Q is the set of index sequences defined in (1), then the corresponding set \bar{Q} of subsequences of x is of the second category (in the above sense).

4. Some density properties of Q and ${ }^{c} Q$

First of all, we remark that the set χ of all sequences of 0 's and 1 's is obviously a closed subset of the FK-space ω because convergence of sequences in χ is equivalent to coordinatewise convergence.
Proposition 4.1. The set Q, identified as set of sequences of 0 's and $1^{\prime} s$, is dense in χ (provided with the topology induced by the FK-topology τ_{ω} of ω).

Proof. For any $x \in \chi \backslash Q$ we define a sequence $\left(x^{(n)}\right)$ with $x^{(n)}=\left(x_{k}^{(n)}\right) \in Q$ converging to an $x=\left(x_{k}\right)$ in $\left(\chi,\left.\tau_{\omega}\right|_{\chi}\right)$. Let $x \in \chi$ be given, then we set

$$
x_{k}^{(n)}:=\left\{\begin{array}{ll}
x_{k} & \text { if } k \leq n, \\
1 & \text { if } k>n
\end{array} \quad(k, n \in \mathbb{N})\right.
$$

Obviously, $x^{(n)}$ is (coordinatewise) convergent to x, and $x^{(n)} \in Q$ for all $n \in \mathbb{N}$ since $x_{k}^{(n)}=1$ if $k>n$.

[^2]In the following considerations we identify the complement

$$
{ }^{c} Q=\left\{\left(n_{i}\right) \in \mathcal{I} \quad \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)=0\right\}
$$

of Q in I with the corresponding set of sequences of 0 's and 1^{\prime} s and —applying (3)—cQ again with the set

$$
{ }^{c} Q^{*}=\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in{ }^{c} Q: \alpha_{r} \text { defined by (3) }\right\}
$$

of the corresponding members of $[0,1]$ in binary code.

Proposition 4.2. Both, Q^{*} and ${ }^{c} Q^{*}$ are dense ${ }^{5)}$ thus somewhere dense, in $[0,1]$.
Proof. For that we prove that the closure of Q^{*} as well as ${ }^{c} Q^{*}$ equals [0, 1].
Let $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in{ }^{c} Q^{*}$ be given and $v(\alpha)=\sum_{r} 2^{-r} \alpha_{r}$ denote the real value of α. For any $t \in \mathbb{N}$ we consider $\beta^{(t)}=. \beta_{1}^{(t)} \beta_{2}^{(t)} \beta_{3}^{(t)} \ldots \in Q^{*}$ defined by

$$
\beta_{i}^{(t)}:=\left\{\begin{array}{ll}
\alpha_{i} & \text { if } i \leq t, \\
1 & \text { otherwise }
\end{array} \quad(i \in \mathbb{N})\right.
$$

Then we have

$$
\left|v(\alpha)-v\left(\beta^{(t)}\right)\right| \leq 2 \cdot \sum_{i=t+1}^{\infty} 2^{-i}=2^{-t+1} \xrightarrow{t \rightarrow \infty} 0
$$

consequently $\alpha \in \overline{Q^{*}}$, thus $\overline{Q^{*}}=[0,1]$.
Now let $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in Q^{*}$ be given and $v(\alpha)=\sum_{r} 2^{-r} \alpha_{r}$ denote the real value of α. For any $t \in \mathbb{N}$ we consider $\beta^{(t)}=. \beta_{1}^{(t)} \beta_{2}^{(t)} \beta_{3}^{(t)} \ldots \in^{c} Q^{*}$ defined by

$$
\beta_{i}^{(t)}:=\left\{\begin{array}{ll}
\alpha_{i} & \text { if } i \leq t, \\
0 & \text { otherwise }
\end{array} \quad(i \in \mathbb{N})\right.
$$

Then we have

$$
\left|v(\alpha)-v\left(\beta^{(t)}\right)\right| \leq \sum_{i=t+1}^{\infty} 2^{-i}=2^{-t} \xrightarrow{t \rightarrow \infty} 0
$$

thus $\alpha \in \overline{{ }^{c} Q^{*}}$, therefore $\overline{{ }^{c} Q^{*}}=[0,1]$.
Proposition 4.3. For any $s \in] 0,1]$ let $b 屯^{6}$

$$
\mathcal{D}_{s}:=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>s\right\}, \quad \widetilde{\mathcal{D}_{s}}:=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right) \geq s\right\}
$$

and, correspondingly,

$$
\begin{aligned}
& \mathcal{D}_{s}^{*}:=\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in \mathcal{D}_{s}: \alpha_{r} \text { defined by (3) }\right\}, \\
& {\widetilde{\mathcal{D}_{s}}}^{*}:=\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in \widetilde{\mathcal{D}_{s}}: \alpha_{r} \text { defined by (3) }\right\} .
\end{aligned}
$$

Then $\mathcal{D}_{s}^{*}, \widetilde{\mathcal{D}}^{*},{ }^{c} \mathcal{D}_{s}^{*}$ and ${ }^{c} \widetilde{\mathcal{D}}_{s}^{*}$ are (everywhere) dense in 10,1$]$.

[^3]Proof. Obviously,

$$
{ }^{c} \mathcal{D}_{s}=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right) \leq s\right\}
$$

Let $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in{ }^{c} \mathcal{D}_{s}^{*}$ be given and $v(\alpha)=\sum_{r} 2^{-r} \alpha_{r}$ denote the real value of α. For any $t \in \mathbb{N}$ we consider $\beta^{(t)}=. \beta_{1}^{(t)} \beta_{2}^{(t)} \beta_{3}^{(t)} \ldots \in \mathcal{D}_{s}^{*}$ defined by

$$
\beta_{i}^{(t)}:=\left\{\begin{array}{ll}
\alpha_{i} & \text { if } i \leq t, \\
1 & \text { otherwise }
\end{array} \quad(i \in \mathbb{N})\right.
$$

Then we have

$$
\left|v(\alpha)-v\left(\beta^{(t)}\right)\right| \leq 2 \cdot \sum_{i=t+1}^{\infty} 2^{-i}=2^{-t+1} \xrightarrow{t \rightarrow \infty} 0,
$$

thus $\alpha \in \overline{\mathcal{D}_{s}^{*}}$, therefore $\overline{\mathcal{D}_{s}^{*}}=[0,1]$.
The proofs of the density of $\widetilde{\mathcal{D}}_{s}{ }^{*},{ }^{c} \mathcal{D}_{s}^{*}$ and ${ }^{c}{\widetilde{\mathcal{D}_{s}}}^{*}$ are quite similar.
Remark 4.4. Note

$$
Q=\bigcup_{s \in] 0,1[} \mathcal{D}_{s}=\bigcup_{k=2}^{\infty} \mathcal{D}_{1 / k}=\bigcup_{k=2}^{\infty} \widetilde{\mathcal{D}_{1 / k}}, \quad \text { thus } \quad{ }^{c} \boldsymbol{Q}=\bigcap_{s \in] 0,1[}{ }^{c} \mathcal{D}_{s}=\bigcap_{k=2}^{\infty}{ }^{c} \mathcal{D}_{1 / k}=\bigcap_{k=2}^{\infty}{ }^{c} \widetilde{\mathcal{D}_{1 / k}} .
$$

5. Proof of the main result

Using similar constructions as in the not yet published draft [21] (cf. also [20] and [19]), we'll prove the main result of this note.

Theorem 5.1. The set ${ }^{c} Q^{*}$ is of the first category in $] 0,1\left[\right.$. In particular, ${ }^{c} Q$ is of the first category in the sense of Definition 3.1

Corollary 5.2 (cf. Theorem 2.5). Let $A=\left(a_{n k}\right)$ be a regular matrix. Then A cannot sum almost every subsequence of any divergent sequence $x=\left(x_{k}\right)$.

Proof. Apply Theorem 3.2 to the set $\widehat{Q}:=\widehat{Q}$ (cf. also Definition 3.1.
Proof of Theorem 5.1. First of all, we remark

$$
\begin{align*}
{ }^{c} Q^{*} & =\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in{ }^{c} Q: \alpha_{r} \text { defined by (3) }\right\} \\
& =\left\{\left(n_{j}\right) \in \mathcal{I} \left\lvert\, \limsup _{n} \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}=0\right.\right\} \\
& =\left\{\left(n_{j}\right) \in \mathcal{I} \left\lvert\, \lim _{n} \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}=0\right.\right\} \quad \text { (cf. (22)) } \tag{2}\\
& =\left\{\left(n_{j}\right) \in I \mid \forall k \geq 2 \exists \Theta_{k} \geq 1 \forall n \geq \Theta_{k}: \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}<\frac{1}{k}\right\} \\
& =\bigcap_{k=2}^{\infty} \bigcup_{\Theta=1}^{\infty} \bigcap_{n=\Theta}^{\infty}\left\{\left(n_{j}\right) \in I \left\lvert\, \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}<\frac{1}{k}\right.\right\} .
\end{align*}
$$

Motivated by that, we define for $\Theta, k \in \mathbb{N}, k \geq 2$ the sets

$$
\mathcal{P}_{\Theta, k}:=\bigcap_{n=\Theta}^{\infty}\left\{\left(n_{j}\right) \in \mathcal{I} \left\lvert\, \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}<\frac{1}{k}\right.\right\}=\left\{\left(n_{j}\right) \in \mathcal{I} \mid \forall n \geq \Theta: \frac{\left|S_{\left(n_{j}\right), n}\right|}{n}<\frac{1}{k}\right\}
$$

thus

$$
{ }^{c} \mathcal{P}_{\Theta, k}=\left\{\left(n_{j}\right) \in \mathcal{I} \quad \mid \exists n \geq \Theta: \frac{\left|S_{\left(n_{j}\right), n}\right|}{n} \geq \frac{1}{k}\right\},
$$

and

$$
\mathcal{P}_{\Theta, k}^{*}:=\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{j}\right) \in \mathcal{P}_{\Theta, k}: \alpha_{r} \text { defined by (3) }\right\} .
$$

Now, we are going to prove that $\mathcal{P}_{\Theta, k}^{*}$ is nowhere dense for all $\Theta, k \in \mathbb{N}, k \geq 2$. (Consequently, as a countable union of nowhere dense subsets,

$$
\bigcup_{\Theta=1}^{\infty} \mathcal{P}_{\Theta, k}^{*} \quad(k \geq 2)
$$

is of the first category in [0,1] (cf. [3, Remark 6.2.27]) and therefore, as a countable intersection of these sets of the first category, ${ }^{c} Q^{*}=\bigcap_{k=2}^{\infty} \bigcup_{\Theta=1}^{\infty} \mathcal{P}_{\Theta, k}^{*}$ is also of the first category in $] 0,1[$.) For that, it is sufficient to prove that for all $\Theta, k \in \mathbb{N}, k \geq 2$, and each Interval $I=] a, b[\subset[0,1]$ there exists an Interval $J \subseteq I$ such that $J \cap P_{\Theta, k}^{*}=\emptyset$.

Now, let any $k \in \mathbb{N}, k \geq 2$, and $\Theta \in \mathbb{N}$ be given, and let $I=] a, b[\subset[0,1]$ be an interval with midpoint $\alpha^{0}:=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots$. Then we choose a $p \in \mathbb{N}$ such that all extensions of $\widetilde{\alpha^{0}}:=. \alpha_{1} \ldots \alpha_{p} 0 \ldots$ are members of I (note $\widetilde{\alpha^{0}} \leq \alpha^{0}$). Now we extend $\widetilde{\alpha^{0}}$ to $\widetilde{\beta^{0}}:=. \beta_{1} \ldots \beta_{p} \beta_{p+1} \ldots \beta_{p+q} 0 \ldots$ where

$$
\beta_{r}:= \begin{cases}\alpha_{r} & \text { if } 1 \leq r \leq p \\ 0 & \text { if } r=p+1 \text { or } r>p+q, \quad(r \in \mathbb{N}) \\ 1 & \text { if } p+1<r \leq p+q\end{cases}
$$

such that

$$
n:=p+q>\Theta \quad \text { and } \quad \frac{\left|\left\{r \in \mathbb{N}_{n} \mid \beta_{r}=1\right\}\right|}{n}>\frac{3}{4}
$$

After this, we consider the set

$$
J:=\left\{\widetilde{\gamma}=\gamma_{1} \gamma_{2} \ldots \gamma_{v} \ldots \mid \gamma_{v}:=\beta_{v}\left(v \in \mathbb{N}_{n}\right) \text { and } \gamma_{v} \in\{0,1\}(v>n)\right\}
$$

of all extensions of $\widetilde{\beta^{0}}$. Obviously, J is a subinterval of I (containing more than one element) and each $\widetilde{\gamma} \in J$ fulfills obviously

$$
\frac{\left|\left\{v \in \mathbb{N}_{n} \mid \gamma_{v}=1\right\}\right|}{n}>\frac{3}{4} \quad(n \in \mathbb{N})
$$

Therefore, $J \subseteq{ }^{c} P_{\Theta, k}^{*}$, thus $J \cap P_{\Theta, k}^{*}=\emptyset$. Alltogether, $P_{\Theta, k}^{*}$ is nowhere dense in $] 0,1[$.

We close this section with some remarks and a question.

Remarks 5.3. Given a set $S \subseteq \mathbb{N}$ and let $S_{n}:=S \cap \mathbb{N}_{n}$, then we may set $d_{u}(S):=d(S)$ (upper density), $d_{l}(S):=\lim \inf _{n} \frac{\left|S_{n}\right|}{n}$ (lower density), and

$$
d_{c}(S):=\lim _{n} \frac{\left|S_{n}\right|}{n} \quad \text { provided that the limit exists (convergent density). }
$$

Moreover, we may consider $Q_{u}:=Q$,

$$
Q_{l}:=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d_{l}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>0\right\}
$$

and

$$
Q_{c}:=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d_{c}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right) \text { exists and } d_{c}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>0\right\} .
$$

Obviously, $Q_{c} \subsetneq Q_{l} \subsetneq Q_{u}$.
(a) The set ${ }^{c} Q_{u}^{*}$ is dense in $[0,1]$ by 4.2, and therefore ${ }^{c} Q_{r}^{*}(r=c$ or $r=l)$ are also dense in $[0,1]$.
(b) The set Q_{c}^{*}, thus ${ }^{c} Q_{r}^{*}(r=l$ and $r=u)$, are dense in $[0,1]$.

Proof. (b) Let us prove that the closure of Q_{c}^{*} equals $[0,1]$. Obviously,

$$
{ }^{c} Q_{c}={ }^{c} Q_{u} \cup \mathcal{P} \quad \text { with } \quad \mathcal{P}:=\left\{\left(n_{i}\right) \in Q_{u} \mid d_{u}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>d_{l}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)\right\},
$$

therefore

$$
\begin{aligned}
{ }^{c} Q_{c}^{*}={ }^{c} Q_{u}^{*} \cup \mathcal{P}^{*}=\{\alpha= & \left.. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in{ }^{c} Q_{u}: \alpha_{r} \text { defined by (3) }\right\} \\
& \cup\left\{\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \mid \exists\left(n_{k}\right) \in \mathcal{P}: \alpha_{r} \text { defined by (3) }\right\} .
\end{aligned}
$$

In the first step of the proof we consider $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in{ }^{c} Q_{u}^{*}$ with corresponding $\left(n_{i}\right) \in{ }^{c} Q_{u}$ and α_{r} defined by (3).
Let $\alpha=.000 \ldots$. Then $v(\alpha)=0, \alpha \in{ }^{c} Q_{u}^{*}$, and $\beta^{(r)}=. \beta_{1}^{(r)} \beta_{2}^{(r)} \beta_{3}^{(r)} \ldots$ with

$$
\beta_{k}^{(r)}:=\left\{\begin{array}{ll}
0 & \text { if } 1 \leq k \leq r, \\
1 & \text { if } r<k<\infty
\end{array} \quad(r, k \in \mathbb{N})\right.
$$

satisfies $\beta^{(r)} \in Q_{u}^{*}$ and

$$
\left|v(\alpha)-v\left(\beta^{(r)}\right)\right|=\sum_{k=r+1}^{\infty} 2^{-k}=2^{-r} \xrightarrow{r \rightarrow \infty} 0 .
$$

Consequently, $\alpha=.000 \ldots$ is a member of the closure of Q_{c}^{*} in $[0,1]$.
Now, let $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in{ }^{c} Q_{u}^{*}$ with $\left.v(\alpha) \in\right] 0,1\left[\right.$ be given. Moreover, we choose $r \in \mathbb{N}$ with $2^{-r}<$ $\min \{1-v(\alpha), v(\alpha)\}$ and define $\beta^{(r)}=. \beta_{1}^{(r)} \beta_{2}^{(r)} \beta_{3}^{(r)} \ldots$ with

$$
\beta_{k}^{(r)}:=\left\{\begin{array}{ll}
\alpha_{k} & \text { if } 1 \leq k \leq r, \tag{4}\\
1 & \text { if } r<k<\infty
\end{array} \quad(k \in \mathbb{N})\right.
$$

satisfies $\beta^{(r)} \in Q_{u}^{*}$ and

$$
\begin{equation*}
\left|v(\alpha)-v\left(\beta^{(r)}\right)\right| \leq 2 \cdot \sum_{k=r+1}^{\infty} 2^{-k}=2^{-r+1} \xrightarrow{r \rightarrow \infty} 0 . \tag{5}
\end{equation*}
$$

Therefore, the chosen $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots$ is a member of the closure of Q_{c}^{*} in $[0,1]$.
In the second step of the proof we consider $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots \in \mathcal{P}^{*}$ with corresponding $\left(n_{i}\right) \in Q_{u}$ satisfying $d_{u}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)>d_{l}\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)$, and α_{r} defined by (3). Note, $\left.v(\alpha) \in\right] 0,1[$. Choosing as above $r \in \mathbb{N}$ with $2^{-r}<\min \{1-v(\alpha), v(\alpha)\}$ and define $\beta^{(r)}=. \beta_{1}^{(r)} \beta_{2}^{(r)} \beta_{3}^{(r)} \ldots \in Q_{u}^{*}$ as in (4), then by (5) we get again that $\alpha=. \alpha_{1} \alpha_{2} \alpha_{3} \ldots$ is a member of the closure of Q_{c}^{*} in $[0,1]$.
Problem 5.4. Does Theorem 5.1 also hold in the cases ${ }^{c} Q_{r}^{*}(r=c$ or $r=l)$?

6. Further Problems

Buck and Pollard proved:
Theorem 6.1 (cf. [6, Theorem 4]). A bounded sequence x is $(C, 1)$ summably ${ }^{77}$ if and only if almost all of its subsequences are $(C, 1)$ summable, that is, the set of all subsequences of x being not $(C, 1)$ summable is a Lebesgue nullset. (Thereby 'almost all of its subsequences' is used in the sense of the Lebesgue measure, cf. [6] page 1].)

Problems 6.2. (a) Does the statement in Theorem 6.1 hold if we consider unbounded sequences instead of bounded sequences?
(b) Is the statement in Theorem 6.1 true if we consider almost every subsequence (in the sense of positive density)?
(c) Does the statement in Theorem 6.1 hold in the case of bounded or even unbounded sequences x if we consider any regular matrix method instead of ($C, 1$)? Note that Keogh and Petersen proved (cf. [16, Theorem 7]) that Theorem 6.1 holds too for a special matrix G introduced by Garreau in [9].
(d) The corresponding question as in (c), but by considering almost every subsequence (in the sense of positive density) instead almost all of its subsequences used in the sense of the Lebesgue measure.
(e) Does ${ }^{c} Q^{*}$ (or Q^{*}) have Lebesque measure 0 ?
(f) Let Q be a set of subsequences of a sequence x. Is it of the second category in the sense of Theorem 3.2 if and only if the complement of it has Lebesque measure 0 ? (Cf. [23, Chapter 1].)

Concerning Problem6.2(f) we should take into account the following results.
Theorem 6.3 (cf. [23, Theorem 1.6]). The (real) line can be decomposed into two complementary sets V and W such that V is of the first category and W is of measure zero.

Theorem 6.4 (cf. [23, Corollary 1.7]). Every subset of the line, in particular the interval [0,1], can be represented as the union of a Lebesgue nullset V and a set W of the first category. In particular, V is of the second category.

In the following remark we show that the answer to the question in Problem6.2(f) is negative.
Remark 6.5. Let V and W be a decomposition of $[0,1]$ such that V is a Lebesgue nullset and W is of the first category (and thus V is of the second category). We identify V with the set \mathcal{V}^{*} of the members of V in binary code. Then the corresponding set \mathcal{V} of index sequences and thus for any divergent sequence x the corresponding set $\mathcal{V}(x)$ of subsequences of x are of the second category. Consequently, any regular matrix sums all elements of $\mathcal{V}(x)$ if and only if $x \in c$ (cf. Theorem 3.2).

Literatur

[1] R. P. Agnew. Summability of subsequences. Bull. Amer. Math. Soc., 50:596-598, 1944.
[2] R. P. Agnew. Densities of sets of integers and transforms of sequences of zeros and ones. Trans. Amer. Math. Soc., 85:369-389, 1957.
[3] J. Boos. Classical and modern methods in summability. Oxford University Press, Oxford, 2000.
[4] J. Boos and M. Zeltser. Summability of subsequences of a divergent sequence by regular matrices. Rocky Mountain J. Math., 48(2):413-423, 2018.
[5] R. C. Buck. A note on subsequences. Bull. Amer. Math. Soc., 49:898-899, 1943.
[6] R. C. Buck and H. Pollard. Convergence and summability properties of subsequences. Bull. Amer. Math. Soc., 49:924-931, 1943.
[7] J. Connor. A short proof of Steinhaus' theorem on summability. Amer. Math. Monthly, 92(6):420-421, 1985.
[8] A. F. Dowidar and G. M. Petersen. Summability of subsequences. Quart. J. Math. (Oxford), 13:81-89, 1962.
[9] G. A. Garreau. A note on the summation of sequences of 0's and 1's. Ann. of Math. (2), 54:183-185, 1951.
[10] H. Hahn. Über Folgen linearer Operationen. Monatshefte f. Math., 32:3-88, 1922.
[11] T. A. Keagy. Summability of certain category two classes. Houston J. Math., 3(1):61-65, 1977.

[^4][12] T. A. Keagy. Limit preserving summability of subsequences. Canad. Math. Bull., 21(2):173-176, 1978.
[13] T. A. Keagy. Summability of subsequences and rearrangements of sequences. Proc. Amer. Math. Soc., 72(3):492-496, 1978.
[14] T. A. Keagy. Summability of matrix transforms of subsequences. Canad. Math. Bull., 24(3):359-364, 1981.
[15] F. R. Keogh and G. M. Petersen. A universal Tauberian theorem. J. London Math. Soc., 33:121-123, 1958.
[16] F. R. Keogh and G. M. Petersen. Riesz summability of subsequences. Quart. J. Math. (Oxford), 12:33-44, 1961.
[17] K. Klee and P. Szüsz. On summability of subsequences. Math. Z., 111:205-213, 1969.
[18] P Leonetti, H. Miller, and L. Miller-Van Wieren. Duality between Measure and Category of Almost All Subsequences of a Given Sequence. Periodica Mathematica Hungarica, https://doi.org/10.1007/s10998-018-0255-y, 2018.
[19] H. I. Miller. A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc., 347(5):18111819, 1995.
[20] H. I. Miller. More measure and category questions for subsequences of a given sequence. To appear in Rocky Mountain J. Math. https://projecteuclid.org/euclid.rmjm/1542942057.
[21] H. I. Miller, L. Miller-Van Wieren, and P. Leonetti. Measure and Category - new analogues. Unpublished draft, 2018.
[22] H. I. Miller and F. J. Schnitzer. Measure and category-some non-analogues. Math. Pannon., 7(1):69-78, 1996.
[23] J. C. Oxtoby. Measure and category, volume 2 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, second edition, 1980. A survey of the analogies between topological and measure spaces.
[24] G. M. Petersen. Regular Matrix Transformations. McGraw-Hill Publishing Co., London - New York - Toronto - Sydney, 1966.
[25] I. Schur. Über lineare Transformationen in der Theorie der unendlichen Reihen. J. reine angew. Math., 151:79-111, 1920.
[26] H. Steinhaus. Some remarks on the generalization of limit. Prace Mat. Fiz., 22:121-134, 1911.
[27] C. Stuart. Summability of subsequences of a divergent sequence. Rocky Mountain J. Math., 44(1):289-295, 2014.
[28] A. Wilansky. Summability through Functional Analysis, volume 85 of Notas de Matemática. North Holland, Amsterdam - New York - Oxford, 1984.

[^0]: 2010 Mathematics Subject Classification. 40A05, 40C05, 40A45
 Keywords. Regular matrices, summability of subsequences
 Received: 08 March 2019; Accepted: 12 March 2019
 Communicated by Eberhard Malkowsky
 Email address: Johann.Boos@fernuni-hagen.de (Johann Boos)

[^1]: ${ }^{1)}$ By definition, an index sequence is a strictly increasing sequence of natural numbers. For the sake of simplicity we consider also finite strictly increasing sequences as members of I
 ${ }^{2)}$ Note that $d(S)$ is defined in [27] by $d(S):=\frac{1}{n} \lim \sup _{n}\left|S_{n}\right|$ which is with certainty an oversight.
 ${ }^{3)}$ Note that in some papers $d(S)$ is denoted as 'upper (asymptotic) density' (cf. [2]).

[^2]: ${ }^{4)}$ Probably, this notion of 'almost all subsequences' is not equivalent to that used in [6].

[^3]: ${ }^{5)}$ In [24] 'everywhere dense' is used instead of 'dense'
 ${ }^{6)}$ Obviously $\mathcal{D}_{1}=\emptyset$ and $\widetilde{\mathcal{D}_{1}}=\left\{\left(n_{i}\right) \in \mathcal{I} \mid d\left(\left\{n_{i} \mid i \in \mathbb{N}\right\}\right)=1\right\}$

[^4]: ${ }^{7}$) Note, $(C, 1)=C_{1}$, the Cesàro matrix of order 1 .

