The Left, the Right and the Sequential Topology on Boolean Algebras

Miloš S. Kurilića ${ }^{\text {, Aleksandar Pavlovića }}$
${ }^{a}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

Abstract

For the algebraic convergence λ_{s}, which generates the well known sequential topology τ_{s} on a complete Boolean algebra \mathbb{B}, we have $\lambda_{\mathrm{s}}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}$, where the convergences λ_{ls} and λ_{li} are defined by $\lambda_{\mathrm{ls}}(x)=\{\lim \sup x\} \uparrow$ and $\lambda_{\mathrm{li}}(x)=\{\lim \inf x\} \downarrow$ (generalizing the convergence of sequences on the Alexandrov cube and its dual). We consider the minimal topology $O_{\text {Isi }}$ extending the (unique) sequential topologies $O_{\lambda_{\mathrm{ls}}}$ (left) and $O_{\lambda_{\mathrm{li}}}$ (right) generated by the convergences λ_{ls} and λ_{li} and establish a general hierarchy between all these topologies and the corresponding a priori and a posteriori convergences. In addition, we observe some special classes of algebras and, in particular, show that in ($\omega, 2$)-distributive algebras we have $\lim _{O_{\mathrm{li}}}=\lim _{\tau_{\mathrm{s}}}=\lambda_{\mathrm{s}}$, while the equality $O_{\mathrm{lsi}}=\tau_{s}$ holds in all Maharam algebras. On the other hand, in some collapsing algebras we have a maximal (possible) diversity.

1. Introduction

It is known that a sequence $\left\langle x_{n}: n \in \omega\right\rangle$ of reals from the unit interval $I=[0,1]$ converges to a point $a \in I$ with respect to the left (resp. right, standard) topology on I if and only if $a \geq \lim \sup x_{n}$ (resp. $a \leq \lim \inf x_{n}$, $a=\liminf x_{n}=\lim \sup x_{n}$) and, more generally, these three properties define three convergence structures on any complete lattice or σ-complete Boolean algebra. In this paper, continuing the investigation from [8]-[12], we consider the corresponding convergences $\lambda_{\mathrm{ls}}, \lambda_{\mathrm{li}}$ and λ_{s} on a complete Boolean algebra \mathbb{B}, as well as the sequential topologies $O_{\lambda_{1 \mathrm{~s}}}, O_{\lambda_{\mathrm{li}}}$ and $O_{\lambda_{\mathrm{s}}}$ on \mathbb{B} generated by them. Having in mind that the union of the left and the right topology on I generates the standard topology on that interval, we regard the minimal topology $O_{\text {lsi }}$ on \mathbb{B} extending $O_{\lambda_{1 \mathrm{~s}}} \cup O_{\lambda_{\mathrm{l}}}$, as well as the corresponding topological convergence $\lim _{O_{\mathrm{Isi}}}$ on \mathbb{B}, and explore the relationship between all the topologies and convergences mentioned above. It turns out that $\lambda_{\mathrm{s}} \leq \lim _{O_{\lambda_{\mathrm{s}}}} \leq \lim _{O_{\mathrm{ls}}}$ and $O_{\mathrm{lsi}} \subset O_{\lambda_{\mathrm{s}}}$ and that there are several possibilities consistent with these constraints. For example, if \mathbb{B} is the power set algebra $P(\omega)$, then we have an analogy to the unit interval: $\lambda_{\mathrm{s}}=\lim _{O_{\mathrm{Isi}}}$ and $O_{\mathrm{lsi}}=O_{\lambda_{\mathrm{s}}}$; if \mathbb{B} is a Maharam algebra (i.e. admits a strictly positive Maharam submeasure), then $\lambda_{\mathrm{s}}<\lim _{O_{\mathrm{Is}}}$ and $O_{\mathrm{lsi}}=O_{\lambda_{\mathrm{s}}}$; finally, for some collapsing algebras we obtain a maximal diversity: $\lambda_{\mathrm{s}}<\lim _{O_{\lambda_{\mathrm{s}}}}<\lim _{O_{\mathrm{li}}}$ and $O_{\mathrm{lsi}} \varsubsetneqq O_{\lambda_{\mathrm{s}}}$.

[^0]We note that the topology $O_{\lambda_{\mathrm{s}}}$ on a complete Boolean algebra (c.B.a) \mathbb{B} (traditionally called the sequential topology and denoted by τ_{s}), generated by the convergence λ_{s} (traditionally called the algebraic convergence) was widely considered in the context of the von Neumann problem [14]: Is each ccc weakly distributive c.B.a. a measure algebra? A consistent counter-example (a Suslin algebra) was given by Maharam [13]. In addition, Maharam has shown that the topology $O_{\lambda_{\mathrm{s}}}$ is metrizable iff \mathbb{B} is a Maharam algebra and asked whether this implies that \mathbb{B} admits a measure (the Control Measure Problem, negatively solved by M. Talagrand [15, 16]). Moreover, Balcar, Jech and Pazák [3] and, independently, Veličković [18], proved that it is consistent that the topology $O_{\lambda_{s}}$ is metrizable on each complete ccc weakly distributive algebra. (See also [1, 2, 6, 17] for that topic).

Regarding the power set algebras, $P(\kappa)$, the convergence λ_{s} is exactly the convergence on the Cantor cube, while $\lambda_{\text {ls }}$ generalizes the convergence on the Alexandrov cube in the same way (see [11]). Further, on any c.B.a., the topologies $O_{\lambda_{\mathrm{ls}}}$ and $O_{\lambda_{\mathrm{li}}}$ are homeomorphic (take $f(a)=a^{\prime}$) and generated by some other convergences relevant for set-theoretic forcing (see [9, 10]). For obvious reasons, the topology $O_{\lambda_{\mathrm{ls}}}$ (resp. $O_{\lambda_{\mathrm{li}}}$) will be called the left (resp. the right) topology on \mathbb{B} (see also Fact 2.3(i)).

2. Preliminaries

Convergence. Here we list the standard facts concerning convergence structures which will be used in the paper. (For details and proofs see, for example, [9].)

Let X be a non-empty set. Each mapping $x: \omega \rightarrow X$ is called a sequence in X. Usually, instead of $x(n)$ we write x_{n} and $x=\left\langle x_{n}: n \in \omega\right\rangle$. A constant sequence $\langle a, a, \ldots\rangle$ is denoted shortly by $\langle a\rangle$. A sequence $y \in X^{\omega}$ is said to be a subsequence of x iff there is an increasing function $f: \omega \rightarrow \omega$ (notation: $f \in \omega^{\uparrow \omega}$) such that $y=x \circ f$; then we write $y<x$.

Each mapping $\lambda: X^{\omega} \rightarrow P(X)$ is called a convergence. The set $\operatorname{Conv}(X)=P(X)^{\left(X^{\omega}\right)}$ of all convergences on the set X ordered by the relation $\lambda_{1} \leq \lambda_{2}$ ifand only if $\lambda_{1}(x) \subseteq \lambda_{2}(x)$, for each $x \in X^{\omega}$, is, clearly, a Boolean lattice and $\lambda_{1} \cap \lambda_{2}$ will denote the infimum $\lambda_{1} \wedge \lambda_{2}$; that is, $\left(\lambda_{1} \cap \lambda_{2}\right)(x)=\lambda_{1}(x) \cap \lambda_{2}(x)$, for all $x \in X^{\omega}$. If $|\lambda(x)| \leq 1$ for each sequence x, then λ is called a Hausdorff convergence.

Let $\langle X, O\rangle$ be a topological space. A point $a \in X$ is a limit point of a sequence $x \in X^{\omega}$ if and only if each neighborhood of a contains all but finitely many members of x. The set of all limit points of a sequence $x \in X^{\omega}$ is denoted by $\lim _{O}(x)$ and so we obtain a convergence $\lim _{O}: X^{\omega} \rightarrow P(X)$, that is, $\lim _{O} \in \operatorname{Conv}(X)$.

Let $\operatorname{Top}(X)$ denote the lattice of all topologies on the set X. A convergence $\lambda \in \operatorname{Conv}(X)$ is called topological, we will write $\lambda \in \operatorname{TopConv}(X)$, if and only if there is a topology $O \in \operatorname{Top}(X)$ such that $\lambda=\lim _{O}$. So we establish the mapping

$$
G: \operatorname{Top}(X) \rightarrow \operatorname{TopConv}(X), \text { where } G(O)=\lim _{O}
$$

A topology $O \in \operatorname{Top}(X)$ is called sequential, we will write $O \in \operatorname{SeqTop}(X)$ if and only if in the space $\langle X, O\rangle$ we have: a set $A \subset X$ is closed if and only if it is sequentially closed (that is, $\lim _{O}(x) \subset A$, for each sequence $x \in A^{\omega}$). If $O_{1}, O_{2} \in \operatorname{SeqTop}(X)$ and $\lim _{O_{1}}=\lim _{O_{2}}$, then $O_{1}=O_{2}$. (We note that this is false in general: take the discrete and the co-countable topology on the real line; in both spaces exactly the almost-constant sequences converge.) So, G is one-to-one on SeqTop (X).

For each convergence $\lambda \in \operatorname{Conv}(X)$ there is a (unique) maximal topology O_{λ} such that $\lambda \leq \lim _{O_{\lambda}}$. The topology O_{λ} is sequential; so, we obtain the mapping

$$
F: \operatorname{Conv}(X) \rightarrow \operatorname{SeqTop}(X), \text { defined by } F(\lambda)=O_{\lambda}
$$

F and G are antitone mappings, that is, $\lambda_{1} \leq \lambda_{2}$ implies that $O_{\lambda_{2}} \subset O_{\lambda_{1}}$ and $O_{1} \subset O_{2}$ implies $\lim _{O_{2}} \leq \lim _{O_{1}}$. Moreover, a convergence λ is topological if and only if $\lambda=\lim _{O_{\lambda}}(=G(F(\lambda)))$ and, by Theorem 2.6 of [9], a topology O is sequential if and only if $O=O_{\lim _{O}}(=F(G(O))$. We remark that, in fact, the pair F, G is an antitone Galois connection between the complete lattices $\operatorname{Conv}(X)$ and $\operatorname{Top}(X)$, because $O \subset F(\lambda) \Leftrightarrow \lambda \leq G(O)$, for each $\lambda \in \operatorname{Conv}(X)$ and $O \in \operatorname{Top}(X)$. (If $O \subset O_{\lambda}$, then $\lambda \leq \lim _{O_{\lambda}} \leq \lim _{O}$. Conversely, if $\lambda \leq \lim { }_{O}$, then $O \subset O_{\lambda}$, by the maximality of O_{λ}). Moreover, the restriction $F \upharpoonright \operatorname{TopConv}(X)$ is a bijection from $\operatorname{TopConv}(X)$ onto $\operatorname{SeqTop}(X)$ and $G \upharpoonright \operatorname{SeqTop}(X)$ is its inverse.

Each topological convergence λ satisfies the following conditions:
(L1) $\forall a \in X \quad a \in \lambda(\langle a\rangle)$,
(L2) $\forall x \in X^{\omega} \forall y<x \lambda(x) \subset \lambda(y)$,
(L3) $\forall x \in X^{\omega} \forall a \in X((\forall y<x \exists z<y a \in \lambda(z)) \Rightarrow a \in \lambda(x))$.
If $\lambda \in \operatorname{Conv}(X)$ satisfies (L1) and (L2), then $O_{\lambda}=\left\{X \backslash F: F \subset X \wedge u_{\lambda}(F)=F\right\}$, where $u_{\lambda}: P(X) \rightarrow P(X)$ is the operator of sequential closure determined by λ, defined by $u_{\lambda}(A)=\bigcup_{x \in A^{\omega}} \lambda(x)$. In addition, the minimal closure of λ under (L1)-(L3) is given by $\lambda^{*}(x)=\bigcap_{f \in \omega^{\dagger \omega}} \bigcup_{g \in \omega^{\dagger \omega}} \lambda(x \circ f \circ g)$ and λ is called a weakly-topological convergence iff the convergence λ^{*} is topological.

Fact 2.1. ([9]) If $\lambda \in \operatorname{Conv}(X)$ is a convergence satisfying (L1) and (L2), then
(a) λ is weakly-topological if and only if $\lim _{O_{\lambda}}=\lambda^{*}$, that is, for each $x \in X^{\omega}$ and $a \in X$

$$
a \in \lim _{O_{\lambda}}(x) \Leftrightarrow \forall y<x \exists z<y \quad a \in \lambda(z)
$$

(see [9, Theorem 4.1]);
(b) If λ is a Hausdorff convergence, then λ^{*} is Hausdorff and weakly-topological ([9, Theorem 4.2]).

Convergences on Boolean algebras. Let \mathbb{B} be a complete Boolean algebra or, more generally, a complete lattice. If $\left\langle x_{n}: n \in \omega\right\rangle$ is a sequence of its elements, $\lim \inf x_{n}:=\bigvee_{k \in \omega} \bigwedge_{n \geq k} x_{n}$ and $\lim \sup x_{n}:=\bigwedge_{k \in \omega} \bigvee_{n \geq k} x_{n}$, then, clearly, $\lim \inf x_{n} \leq \lim \sup x_{n}$. We consider the convergences $\lambda_{\mathrm{ls}}, \lambda_{\mathrm{li}}, \lambda_{\mathrm{s}}: \mathbb{B}^{\omega} \rightarrow P(\mathbb{B})$ defined by

$$
\begin{align*}
\lambda_{\mathrm{ls}}\left(\left\langle x_{n}\right\rangle\right) & =\left\{\lim \sup x_{n}\right\} \uparrow, \tag{1}\\
\lambda_{\mathrm{li}}\left(\left\langle x_{n}\right\rangle\right) & =\left\{\lim \inf x_{n}\right\} \downarrow, \tag{2}\\
\lambda_{\mathrm{s}}\left(\left\langle x_{n}\right\rangle\right) & =\left\{\begin{array}{cc}
\{x\} & \text { if } \liminf x_{n}=\lim \sup x_{n}=x, \\
0 & \text { if } \lim \inf x_{n}<\lim \sup x_{n},
\end{array}\right. \tag{3}
\end{align*}
$$

where $A \uparrow:=\{b \in \mathbb{B}: \exists a \in A b \geq a\}$ and $A \downarrow:=\{b \in \mathbb{B}: \exists a \in A b \leq a\}$, for $A \subset \mathbb{B}$. The following property of c.B.a.'s will play a role in this paper

$$
\forall x \in \mathbb{B}^{\omega} \exists y<x \forall z<y \lim \sup z=\lim \sup y .
$$

We note that property (\hbar) is closely related to the cellularity of Boolean algebras. Namely, by $[8], \mathrm{t}-\mathrm{cc} \Rightarrow(\hbar) \Rightarrow$ \mathfrak{s}-cc and, in particular, ccc complete Boolean algebras satisfy (\hbar). By [12], the set $\{\kappa \in$ Card: κ-cc $\Rightarrow(\hbar)\}$ is equal either to $[0, \mathfrak{h})$, or to $[0, \mathfrak{h}]$ and $\{\kappa \in \operatorname{Card}:(\hbar) \Rightarrow \kappa-c c\}=[\mathfrak{s}, \infty)$. Basic facts concerning the invariants of the continuum t, \mathfrak{s}, and \mathfrak{h} can be found in [5].

Fact 2.2. ([8]) If \mathbb{B} is a complete Boolean algebra, then we have
(a) λ_{s} is a weakly-topological Hausdorff convergence satisfying (L1) and (L2) ([8, Lemma 3]);
(b) λ_{s} is a topological convergence if and only if the algebra \mathbb{B} is $(\omega, 2)$-distributive (see [8, Theorem 2]).

Fact 2.3. ([11]) If \mathbb{B} is a complete non-trivial Boolean algebra, then
(a) $\lambda_{1 \mathrm{~s}}$ and λ_{li} are non-Hausdorff convergences satisfying (L1) and (L2) ([11, Theorem 4.3]);
(b) If \mathbb{B} satisfies (\hbar), then λ_{ls} and λ_{li} are weakly-topological convergences ([11, Theorem 6.1]);
(c) $\lambda_{1 \mathrm{~s}}$ is topological if and only if λ_{li} is topological if and only if the algebra \mathbb{B} is $(\omega, 2)$-distributive ($[11$, Theorem 3.5]);
(d) $\lambda_{\mathrm{s}}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}$ ([11, Theorem 4.3]);
(e) $O_{\lambda_{15}}, O_{\lambda_{\mathrm{li}}} \subset O_{\lambda_{\mathrm{s}}}$ ([11, Theorem 4.3]);

(g) $\lambda_{\mathrm{s}}^{*}=\lambda_{1 \mathrm{~s}}^{*} \cap \lambda_{\mathrm{li}}^{*}$ ([11, Theorem 4.3]);
(h) $O_{\lambda_{1 \mathrm{~s}}}$ and $O_{\lambda_{1 \mathrm{i}}}$ are homeomorphic, T_{0}, connected and compact topologies ([11, Theorem 4.4]);
(i) A set $F \subset \mathbb{B}$ is $O_{\lambda_{1 s}}$-closed if and only if it is upward-closed and $\bigwedge_{n \in \omega} x_{n} \in F$, for each decreasing sequence $\left\langle x_{n}\right\rangle \in F^{\omega}$; (and dually, for $O_{\lambda_{1 \mathrm{i}}}$-closed sets) ([11, Theorem 4.4]).

3. The Topology $\boldsymbol{O}_{\text {lsi }}$ on Boolean Algebras

On a complete Boolean algebra \mathbb{B} we consider the minimal topology containing the topologies $O_{\lambda_{15}}$ and $O_{\lambda_{\mathrm{l}}}$. This topology, denoted by $O_{\text {lsi }}$, is generated by the base $\mathcal{B}_{\mathrm{lsi}}=\left\{O_{1} \cap O_{2}: O_{1} \in O_{\lambda_{\mathrm{ls}}} \wedge O_{2} \in O_{\lambda_{\mathrm{li}}}\right\}$. By Fact 2.3(i), the sets from $O_{\lambda_{\mathrm{ls}}}$ (resp. $O_{\lambda_{\mathrm{li}}}$) are downward (resp. upward)-closed; so, the elements of $\mathcal{B}_{\text {lsi }}$ are convex subsets of \mathbb{B}.

Theorem 3.1. The following diagrams show the relations between the considered convergences and topologies on a non-trivial c.B.a. \mathbb{B}. In addition, we have

(b) $\lambda_{\mathrm{s}}<\lambda_{\mathrm{ls}}, \lambda_{\mathrm{li}}, \lambda_{\mathrm{s}}^{*}<\lambda_{\mathrm{ls}^{\prime}}^{*}, \lambda_{\mathrm{li}}{ }^{*} \lim _{O_{\mathrm{ls}}}<\lim _{O_{\lambda_{\mathrm{l}}}} \lim _{O_{\lambda_{\mathrm{li}}}}$ and $O_{\mathrm{lsi}} \supsetneq O_{\lambda_{1 \mathrm{~s}}}, O_{\lambda_{\mathrm{li}}}$.

Figure 1: Convergences and topologies on \mathbb{B}
Proof. By Fact 2.3(e) we have $O_{\lambda_{1 \mathrm{~s}}}, O_{\lambda_{\mathrm{li}}} \subset O_{\lambda_{\mathrm{s}}}$ and the inclusion $O_{\mathrm{lsi}} \subset O_{\lambda_{\mathrm{s}}}$ follows from the minimality of $O_{\text {lsi }}$. So the diagram for topologies is correct.

By Fact 2.3(d) and (g) we have $\lambda_{\mathrm{s}}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}$ and $\lambda_{\mathrm{s}}^{*}=\lambda_{\mathrm{ls}}^{*} \cap \lambda_{\mathrm{li}}^{*}$, which implies $\lambda_{\mathrm{s}} \leq \lambda_{\mathrm{ls}}, \lambda_{\mathrm{li}}$ and $\lambda_{\mathrm{s}}^{*} \leq \lambda_{\mathrm{ls}}^{*}, \lambda_{\mathrm{li}}^{*}$. By Facts 2.2(a) and 2.3(a), λ_{s} is a Hausdorff convergence, while λ_{ls} and λ_{li} are not; thus, $\lambda_{\mathrm{s}}<\lambda_{\mathrm{ls}}, \lambda_{\mathrm{li}}$. By Fact 2.1(b) λ_{s}^{*} is a Hausdorff convergence and, clearly, $\lambda_{\mathrm{ls}}^{*}$ and $\lambda_{\mathrm{li}}^{*}$ are not Hausdorff; so, $\lambda_{\mathrm{s}}^{*}<\lambda_{\mathrm{ls}}{ }^{*} \lambda_{\mathrm{l}}^{*}$.

By the construction of the closure λ^{*} it follows that we always have $\lambda \leq \lambda^{*}$; thus $\lambda_{\mathrm{ls}_{\mathrm{s}} \leq} \leq \lambda_{\mathrm{ls}}^{*}, \lambda_{\mathrm{li}} \leq \lambda_{\mathrm{li}}^{*}$ and $\lambda_{\mathrm{s}} \leq \lambda_{\mathrm{s}}^{*}$. By Fact 2.3(f) we have $\lambda_{\mathrm{ls}}^{*} \leq \lim _{O_{\lambda_{\mathrm{ls}}}}$ and $\lambda_{\mathrm{li}}^{*} \leq \lim _{O_{\lambda_{\mathrm{l}}}}$. The equality $\lambda_{\mathrm{s}}^{*}=\lim _{O_{\lambda_{\mathrm{s}}}}$ follows from Facts 2.2(a) and 2.1(a). Since $O_{\text {lsi }} \subset O_{\lambda_{\mathrm{s}}}$ we have $\lim _{{\lambda^{\mathrm{s}}}} \leq \lim _{O_{\mathrm{ls}}}$.

Further we prove that $\lim _{O_{1 \mathrm{si}}}=\lim _{O_{\lambda_{\mathrm{ls}}}} \cap \lim _{O_{\lambda_{\mathrm{li}}}}$. Since $O_{\lambda_{1 \mathrm{~s}}}, O_{\lambda_{\mathrm{li}}} \subset O_{\mathrm{lsi}}$, we have $\lim _{O_{\mathrm{lsi}}} \leq \lim _{O_{\lambda_{1 \mathrm{~s}}}}, \lim _{O_{\lambda_{\mathrm{li}}}}$. Conversely, if $a \in \lim _{O_{\lambda_{15}}}(x) \cap \lim _{O_{\lambda_{1 \mathrm{i}}}}(x)$ and U is a $O_{\text {lsi }}$-neighborhood of a, then there is $O_{1} \cap O_{2} \in \mathcal{B}_{\text {lsi }}$ such that $a \in O_{1} \cap O_{2} \subset U$ and, hence, there are $n_{i} \in \omega, i \in\{1,2\}$, such that $x_{n} \in O_{i}$, for each $n \geq n_{i}$. Thus for each $n \geq \max \left\{n_{1}, n_{2}\right\}$ we have $x_{n} \in U$, so $a \in \lim _{O_{\mathrm{li}}}(x)$.
 have $\lambda_{1 \mathrm{~s}} \leq \lim _{O_{\lambda_{1 \mathrm{~s}}}} \leq \lim _{O_{\lambda_{\mathrm{li}}}}$ and, therefore $1 \in \lim _{O_{\lambda_{\mathrm{li}}}}(\langle 0\rangle)$. Now, since the sets from $O_{\lambda_{\mathrm{li}}}$ are upward-closed, for a non-empty set $O \in O_{\lambda_{\mathrm{li}}}$ we would have $1 \in O$ and, since $1 \in \lim _{O_{\lambda_{\mathrm{li}}}}(\langle 0\rangle), 0 \in O$ as well, which would give $O=\mathbb{B}$. So $O_{\lambda_{\mathrm{li}}}$ would be the antidiscrete topology which is false, because it is T_{0}. Thus $\lim _{O_{\mathrm{lsi}}}<\lim _{O_{\lambda_{1 \mathrm{~s}}}}$ and, similarly, $\lim _{O_{\mathrm{lsi}}}<\lim _{O_{\lambda_{\mathrm{li}}}}$, which implies that $O_{\mathrm{lsi}} \supsetneq O_{\lambda_{\mathrm{ls}}}, O_{\lambda_{\mathrm{li}}}$.

In the sequel we consider the topology $O_{1 \mathrm{si}}$ and its convergence and investigate the form of the diagrams in Figure 1 for particular (classes of) Boolean algebras. In particular, it is natural to ask for which complete Boolean algebras we have

$$
\begin{equation*}
O_{\mathrm{lsi}}=O_{\lambda_{\mathrm{s}}} \text { or, at least, } \lim _{O_{\mathrm{lsi}}}=\lim _{{O_{\mathrm{A}}} ?} \tag{4}
\end{equation*}
$$

First we give some sufficient conditions for these equalities.

Theorem 3.2. Let \mathbb{B} be a complete Boolean algebra. Then
(a) If the algebra \mathbb{B} satisfies condition (\hbar), then $\lim _{O_{1 \mathrm{si}}}=\lim _{{\Lambda_{15}}}$;
(b) If the algebra \mathbb{B} is (ω, 2)-distributive, then $\lim _{O_{\lambda_{1 \mathrm{~s}}}}=\lambda_{\mathrm{ls}}, \lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{li}}$ and $\lim _{O_{\mathrm{lsi}}}=\lim _{O_{\lambda_{\mathrm{s}}}}=\lambda_{\mathrm{s}}$; so the diagram for convergences collapses to 3 nodes;

Proof. (a) By Theorem 3.1 we have $O_{1 \mathrm{lsi}} \subset O_{\lambda_{\mathrm{s}}}$ so, $\lim _{O_{\lambda_{\mathrm{s}}}} \leq \lim _{\mathcal{O}_{\mathrm{lsi}}}$.
Conversely, assuming that $x \in \mathbb{B}^{\omega}$ and $a \in \lim _{O_{\mathrm{lsi}}}(x)$, by Theorem 3.1 we have

$$
\begin{equation*}
a \in \lim _{O_{\lambda_{1 \mathrm{~s}}}}(x) \cap \lim _{O_{\lambda_{\mathrm{li}}}}(x) \tag{5}
\end{equation*}
$$

and we should prove that $a \in \lim _{O_{\lambda_{\mathrm{s}}}}(x)$. Thus, by Facts 2.2(a) and 2.1(a), we have to show that for each $y<x$ there is $z<y$ such that $\lim \sup z=\liminf z=a$.

Let y be a subsequence of x. By Fact 2.3(b) the convergence $\lambda_{1 \mathrm{~s}}$ is weakly topological so, by (5) and Fact 2.1(a), there is $z^{\prime}<y$ such that lim sup $z^{\prime} \leq a$. Since $z^{\prime}<x$ and the convergence $\lambda_{\text {li }}$ is weakly topological, by (5) and Fact 2.1(a) again, there is $z<z^{\prime}$ such that $\lim \inf z \geq a$. Now, we have $\lim \sup z \leq \lim \sup z^{\prime} \leq a \leq$ $\lim \inf z$, which implies that $\lim \inf z=\lim \sup z=a$.
(b) If the algebra \mathbb{B} is ($\omega, 2$)-distributive, then by Facts $2.2(\mathrm{~b})$ and 2.3(c) we have $\lim _{O_{\lambda_{\mathrm{s}}}}=\lambda_{\mathrm{s}}, \lim _{O_{\lambda_{\mathrm{ls}}}}=\lambda_{\mathrm{ls}}$ and $\lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{li}}$. Thus, by Theorem 3.1 we have $\lim _{O_{\mathrm{lsi}}}=\lim _{O_{\lambda_{1 \mathrm{~s}}}} \cap \lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}=\lambda_{\mathrm{s}}=\lim _{O_{\lambda_{\mathrm{s}}}}$.
(c) The implication " \Rightarrow " is true because the topology $O_{\lambda_{\mathrm{s}}}$ is sequential. If $\lim _{O_{\mathrm{Is}}}=\lim _{O_{\lambda_{\mathrm{s}}}}$, and $O_{1 \mathrm{si}}$ is a sequential topology, then (since a topology O is sequential if and only if $O=O_{\lim _{O}}$) we have $O_{\text {lsi }}=O_{\lim 0_{\text {lis }}}=$ $O_{\lim _{O_{\lambda_{\mathrm{s}}}}}=O_{\lambda_{\mathrm{s}}}$.

The unit interval. Although the unit interval $I=[0,1]$ is not a Boolean algebra, it provides obvious examples of the convergences considered in this paper. Let $O_{\leftarrow}=\{[0, a): 0<a \leq 1\} \cup\{\emptyset, I\}$ and $O_{\rightarrow}=\{(a, 1]: 0 \leq a<$ $1\} \cup\{\emptyset, I\}$ be the left and the right topology on I and let $O_{\text {st }}$ denote the standard topology on I. It is easy to check that defining $\lambda_{\mathrm{ls}}\left(\left\langle x_{n}\right\rangle\right)=\left\{x \in I: x \geq \limsup x_{n}\right\}$ and $\lambda_{\mathrm{li}}\left(\left\langle x_{n}\right\rangle\right)=\left\{x \in I: x \leq \lim \inf x_{n}\right\}$ we have

$$
\begin{equation*}
\lim _{O_{\leftarrow}}=\lambda_{\mathrm{ls}} \text { and } \lim _{O_{\rightarrow}}=\lambda_{\mathrm{li}} \text { and } \lim _{O_{\mathrm{st}}}=\lambda_{\mathrm{s}} . \tag{6}
\end{equation*}
$$

We recall that a topology O is sequential if and only if $O=O_{\lim _{O}}$. So since the topology O_{\leftarrow} is first countable and, hence, sequential, by (6) we have $O_{\lambda_{\mathrm{ls}}}=O_{\mathrm{lim}_{O_{\leftarrow}}}=O_{\leftarrow}$; and similarly for the other two topologies. So

$$
\begin{equation*}
O_{\lambda_{\mathrm{ls}}}=O_{\leftarrow} \quad \text { and } O_{\lambda_{\mathrm{li}}}=O_{\rightarrow} \text { and } O_{\lambda_{\mathrm{s}}}=O_{\mathrm{st}} \tag{7}
\end{equation*}
$$

Since $O_{\leftarrow} \cup O_{\rightarrow}$ is a subbase of $O_{\text {st }}$ we have $O_{\text {st }}=O\left(O_{\leftarrow} \cup O_{\rightarrow}\right)$ and by (7) we have $O_{\lambda_{\mathrm{s}}}=O_{\text {st }}=O\left(O_{\leftarrow} \cup O_{\rightarrow}\right)=$ $O\left(O_{\lambda_{\mathrm{ls}}} \cup O_{\lambda_{\mathrm{li}}}\right)=O_{\mathrm{lsi}}$ and (4) is true.

Power set algebras. Let $\kappa \geq \omega$ be a cardinal. We recall that the Alexandrov cube of weight κ is the product of κ many copies of the two point space $2=\{0,1\}$ with the topology $\{\emptyset,\{0\},\{0,1\}\}$. Identifying the sets $P(\kappa)$ and 2^{κ} via characteristic functions we obtain a homeomorphic copy $\mathbb{A}_{\kappa}=\left\langle P(\kappa), \tau_{\mathbb{A}_{\kappa}}\right\rangle$ of that space. We recall that for a sequence $\left\langle X_{n}: n \in \omega\right\rangle$ in $P(\kappa)$ we have
$\liminf _{n \in \omega} X_{n}=\bigcup_{k \in \omega} \bigcap_{n \geq k} X_{n}=\left\{x: x \in X_{n}\right.$ for all but finitely many $\left.n\right\}$,
$\lim \sup _{n \in \omega} X_{n}=\bigcap_{k \in \omega} \bigcup_{n \geq k} X_{n}=\left\{x: x \in X_{n}\right.$ for infinitely many $\left.n\right\}$. Further, the Cantor cube of weight κ is the product of κ many copies of the two point discrete space $2=\{0,1\}$ and, identifying the sets $P(\kappa)$ and 2^{κ} again, we obtain its homeomorphic copy $\mathbb{C}_{\kappa}=\left\langle P(\kappa), \tau_{\mathbb{C}_{\kappa}}\right\rangle$. By [11, Theorem 4.2] we have
Fact 3.3. For the power algebra $P(\kappa)$ with the Aleksandrov topology we have
(a) $\lambda_{\mathrm{ls}}=\lim _{O_{\lambda_{\mathrm{ls}}}}=\lim _{\tau_{\mathrm{A}_{\kappa}}}$; thus λ_{ls} is a topological convergence;
(b) $\left\langle P(\kappa), \tau_{\mathrm{A}_{\kappa}}\right\rangle$ is a sequential space if and only if $O_{\lambda_{1 \mathrm{~s}}}=\tau_{\mathrm{A}_{\kappa}}$ if and only if $\kappa=\omega$;
(c) If $\kappa>\omega$, then $\tau_{\mathbb{A}_{\kappa}} \subsetneq O_{\lambda_{\mathrm{ls}}} \not \subset \tau_{\mathbb{C}_{\kappa}}$.

For the power algebra $P(\kappa)$ with the Cantor topology we have

(e) $\left\langle P(\kappa), \tau_{\mathbb{C}_{\kappa}}\right\rangle$ is a sequential space if and only if $O_{\lambda_{\mathrm{s}}}=\tau_{\mathbb{C}_{\kappa}}$ if and only if $\kappa=\omega$;
(f) If $\kappa>\omega$, then $\tau_{\mathbb{C}_{\kappa}} \subsetneq O_{\lambda_{s}}$.

Let $\tau_{A_{\kappa}^{c}}$ be the topology on the power algebra $P(\kappa)$ obtained by the standard identification of $P(\kappa)$ and 2^{κ} with the Tychonov topology of κ many copies of the space 2 with the topology $\{\emptyset,\{1\},\{0,1\}\}$. Then, clearly, $X \mapsto \kappa \backslash X$ is a homeomorphism from $\mathbb{A}_{\kappa}=\left\langle P(\kappa), \tau_{\mathbb{A}_{\kappa}}\right\rangle$ onto the reversed Alexandrov cube $\mathbb{A}_{\kappa}^{c}=\left\langle P(\kappa), \tau_{A_{\kappa}^{c}}\right\rangle$. Replacing $\tau_{\mathrm{A}_{\kappa}}$ by $\tau_{\mathrm{A}_{\kappa}^{c}}$ and λ_{ls} by λ_{li} in (a), (b) and (c) of Fact 3.3 we obtain the corresponding dual statements. In addition, we have

Theorem 3.4. For the power algebra $P(\kappa)$ we have
(a) $\lim _{O_{\text {lsi }}}=\lambda_{\mathrm{s}}$;
(b) $\tau_{\mathbb{C}_{\kappa}}$ is the minimal topology containing $\tau_{\mathbf{A}_{\kappa}}$ and $\tau_{\mathbb{A}_{\kappa}^{c}}$;
(c) $\tau_{\mathbb{C}_{\kappa}} \subset O_{\text {lsi }}$ and so $O_{\text {lsi }}$ is a Hausdorff topology on $P(\kappa)$;
(d) For $\kappa=\omega$ we have $O_{\text {lsi }}=\tau_{\mathbb{C}_{\omega}}=O_{\lambda_{s}}$;
(e) $O_{\mathrm{lsi}}=\tau_{\mathrm{C}_{\kappa}}$ if and only if $\kappa=\omega$.

Proof. (a) By Fact 3.3(a) and its dual we have $\lim _{O_{\lambda_{\mathrm{ls}}}}=\lambda_{\mathrm{ls}}$ and $\lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{li}}$. Now, by Theorem 3.1, $\lim _{O_{\text {lsi }}}=\lim _{O_{\lambda_{\mathrm{ls}}}} \cap \lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}=\lambda_{\mathrm{s}}$.
(b) Let O be the minimal topology containing $\tau_{\mathrm{A}_{\kappa}}$ and $\tau_{\mathrm{A}_{\kappa}^{c}}$. A subbase for the topology $\tau_{\mathrm{A}_{\kappa}}$ (resp. $\tau_{A_{\kappa}^{c}}$) consists of the sets $B_{i}:=\{X \subset \kappa: i \notin X\}$ (resp. $B_{i}^{c}:=\{X \subset \kappa: i \in X\}$), where $i \in \kappa$; while the family $\mathcal{S}_{\mathbb{C}_{\kappa}}:=\bigcup_{i \in \kappa}\left\{B_{i}, B_{i}^{c}\right\}$ is a subbase for the topology $\tau_{\mathbb{C}_{\kappa}}$. Thus $\tau_{\mathbb{A}_{\kappa}} \cup \tau_{\mathbb{A}_{\kappa}^{c}} \subset \tau_{\mathbb{C}_{\kappa}}$ and, hence, $O \subset \tau_{\mathbb{C}_{\kappa}}$. On the other hand, $\mathcal{S}_{\mathbb{C}_{\kappa}} \subset \tau_{\mathbb{A}_{\kappa}} \cup \tau_{\mathbb{A}_{\kappa}^{c}} \subset O$, which gives $\tau_{\mathbb{C}_{\kappa}} \subset O$.
(c) By Fact 3.3 and its dual we have $\tau_{\mathrm{A}_{\kappa}} \subset O_{\lambda_{\mathrm{ls}}}$ and $\tau_{\mathrm{A}_{\kappa}^{c}} \subset O_{\lambda_{\mathrm{li}}}$. Thus $\tau_{\mathrm{A}_{\kappa}} \cup \tau_{\mathrm{A}_{\kappa}^{c}} \subset O_{\mathrm{lsi}}$ and $\tau_{\mathbb{C}_{\kappa}} \subset O_{\mathrm{lsi}}$, by the minimality of $\tau_{\mathbb{C}_{k}}$ proved in (b).
(d) By (c) and Theorem 3.1, $\tau_{\mathbb{C}_{\omega}} \subset O_{\text {lsi }} \subset O_{\lambda_{\mathrm{s}}}$ and we apply Fact 3.3(e).
(e) By (d) the implication " \Leftarrow " is true. Assuming that $O_{\text {lsi }}=\tau_{\mathbb{C}_{\kappa}}$ and $\kappa>\omega$, by Fact 3.3(c) we would have $O_{\lambda_{\mathrm{ls}}} \not \subset \tau_{\mathrm{C}_{\kappa}}$, which gives a contradiction because $O_{\lambda_{\mathrm{ls}}} \subset O_{\mathrm{lsi}}$.

Figure 2: Convergences and topologies on the algebra $P(\kappa)$
For the power set algebras the diagrams from Figure 1 are presented in Figure 2. Namely, by Theorem 3.2(b), the diagram describing convergences collapses to three nodes. The diagram for topologies in Figure 2 contains the topologies from Figure 1 as well as the topologies of the Cantor, Alexandrov and reversed Alexandrov cube (see Fact 3.3(c) and Theorem 3.4(c)). By Fact 3.3(b) and (e), for $\kappa=\omega$ the diagram describing topologies contains exactly three different topologies. So, for the algebra $P(\omega)$ we have $O_{\text {lsi }}=O_{\lambda_{\mathrm{s}}}$ and (4) is true.

Maharam algebras. We recall that a submeasure on a complete Boolean algebra \mathbb{B} is a function $\mu: \mathbb{B} \rightarrow[0, \infty)$ satisfying:
(i) $\mu(0)=0$;
(ii) $a \leq b \Rightarrow \mu(a) \leq \mu(b)$ and
(iii) $\mu(a \vee b) \leq \mu(a)+\mu(b)$.

A submeasure μ is strictly positive if and only if
(iv) $a>0 \Rightarrow \mu(a)>0$.

A submeasure μ is called a Maharam (or a continuous) submeasure if and only if
(v) $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=0$ holds for each decreasing sequence $\left\langle a_{n}: n \in \omega\right\rangle$ in \mathbb{B} satisfying $\bigwedge_{n \in \omega} a_{n}=0$.

It is easy to prove that if μ is a Maharam submeasure, then $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=\mu\left(\bigwedge_{n \in \omega} a_{n}\right)$, for each decreasing sequence $\left\langle a_{n}\right\rangle$ in \mathbb{B}. A complete Boolean algebra \mathbb{B} admitting a strictly positive Maharam submeasure is called a Maharam algebra.

Theorem 3.5. On each Maharam algebra \mathbb{B} we have $O_{1 \mathrm{si}}=O_{\lambda_{s}}$.
Proof. Under the assumption, $d(x, y)=\mu(x \Delta y)$ is a metric on \mathbb{B} which generates the topology $O_{\lambda_{\mathrm{s}}}$ (see [13]). For a non-empty set $O \in O_{\lambda_{\mathrm{s}}}$ we show that $O \in O_{\text {lsi }}$. Let $a \in O$ and $r>0$, where $B(a, r)=\{x \in \mathbb{B}: \mu(x \Delta a)<$ $r\} \subset O$. Let

$$
O_{1}=\{x \in \mathbb{B}: \mu(x \backslash a)<r / 2\} \text { and } O_{2}=\{x \in \mathbb{B}: \mu(a \backslash x)<r / 2\} .
$$

Then by (i) we have $a \in O_{1} \cap O_{2}$. If $x \in O_{1} \cap O_{2}$, then, by (iii), $\mu(x \Delta a) \leq \mu(x \backslash a)+\mu(a \backslash x)<r$ and, hence, $x \in B(a, r)$, thus $a \in O_{1} \cap O_{2} \subset O$.

Let us prove that $O_{1} \in O_{\lambda_{15}}$. By Fact 2.3(a) the convergence $\lambda_{1 \mathrm{~s}}$ satisfies (L1) and (L2), so it is sufficient to prove that $\mathbb{B} \backslash O_{1}$ is a closed set, which means that $u_{\lambda_{1 \mathrm{~s}}}\left(\mathbb{B} \backslash O_{1}\right) \subset \mathbb{B} \backslash O_{1}$. By (iii), the set $\mathbb{B} \backslash O_{1}$ is upwardclosed and it is sufficient to show that for a sequence $\left\langle x_{n}\right\rangle$ in $\mathbb{B} \backslash O_{1}$ we have $\lim \sup x_{n} \in \mathbb{B} \backslash O_{1}$, that is $\mu\left(\lim \sup x_{n} \backslash a\right) \geq r / 2$. By the assumption we have $\mu\left(x_{n} \backslash a\right) \geq r / 2$, for each $n \in \omega$. Now $\lim \sup x_{n} \backslash a=\bigwedge_{k \in \omega} y_{k}$, where $y_{k}=\bigvee_{n \geq k} x_{n} \backslash a, k \in \omega$, is a decreasing sequence and $\mu\left(y_{k}\right) \geq r / 2$ so, by the continuity of μ, $\mu\left(\lim \sup x_{n} \backslash a\right)=\lim _{k \rightarrow \infty} \mu\left(y_{k}\right) \geq r / 2$. Similarly we prove that $O_{2} \in O_{\lambda_{\mathrm{li}}}$ so $O_{1} \cap O_{2} \in O_{\text {lsi }}$ and O is an $O_{1 \mathrm{si}}$-neighborhood of the point a.

Figure 3: Non-($\omega, 2$)-distributive Maharam algebras
Thus, if \mathbb{B} is a Maharam algebra which is not ($\omega, 2$)-distributive (for example, the algebra of the Lebesguemeasurable subsets of $[0,1]$ modulo the ideal of the sets of measure zero), then, the Figure 3 describes the corresponding diagrams. Namely, by Facts $2.2(\mathrm{a})$ and 2.1 (a) we have $\lim _{O_{\lambda_{\mathrm{s}}}}=\lambda_{\mathrm{s}}^{*}$ and, by Fact 2.2(b), $\lambda_{\mathrm{s}} \neq \lim _{O_{\lambda_{\mathrm{s}}}}$. Since the algebras with strictly positive measure satisfy the countable chain condition the algebra \mathbb{B} has (\hbar). Thus, by Facts $2.3(\mathrm{~b})$ and 2.1(a) we have $\lim _{O_{\lambda_{\mathrm{ls}}}}=\lambda_{\mathrm{ls}}^{*}$ and $\lim _{O_{\lambda_{\mathrm{li}}}}=\lambda_{\mathrm{li}}^{*}$. By Fact 2.3(c) we have $\lambda_{\mathrm{ls}} \neq \lim _{O_{\lambda_{1 \mathrm{~s}}}}$ and $\lambda_{\mathrm{li}} \neq \lim _{O_{\lambda_{\mathrm{li}}}}$. By Theorem 3.5 we have $O_{\mathrm{lsi}}=O_{\lambda_{\mathrm{s}}}$ and, hence, $\lim _{O_{\mathrm{lsi}}}=\lim _{O_{\lambda_{\mathrm{s}}}}$.

Collapsing algebras. We show that both equalities from (4) can fail. We recall that a family $T \subset[\omega]^{\omega}$ is a tower if and only if it is well-ordered by ${ }^{*} \supsetneq$ and has no pseudointersection; the tower number, t, is the minimal cardinality of a tower. The distributivity number, \mathfrak{b}, is the smallest number of dense open families in the preorder $\left\langle[\omega]^{\omega}, \subset^{*}\right\rangle$ with empty intersection. A family $\mathcal{T} \subset[\omega]^{\omega}$ is called a base matrix tree if and only if $\left\langle\mathcal{T},{ }^{*} \supset\right\rangle$ is a tree of height \mathfrak{h} and \mathcal{T} is a dense set in the preorder $\left\langle[\omega]^{\omega}, \subset^{*}\right\rangle$. By a theorem of Balcar, Pelant and Simon (see [4]), such a tree always exists, its levels are maximal almost disjoint families and maximal chains in \mathcal{T} are towers.

Theorem 3.6. If \mathbb{B} is a complete Boolean algebra satisfying $1 \Vdash_{\mathbb{B}}(\mathfrak{h})^{V}<\mathrm{t}$ and $\mathrm{cc}(\mathbb{B})>2^{\mathfrak{h}}$, then $\lim _{O_{\lambda_{\mathrm{s}}}}<\lim _{O_{O_{\mathrm{si}}}}$ and $O_{\text {lsi }} \subsetneq O_{\lambda_{s}}$.

Proof. Using the construction from the proof of Theorem 6.4 from [11], we will find a sequence x in \mathbb{B} such that $0 \in \lim _{O_{\text {lis }}}(x) \backslash \lim _{O_{\lambda_{\mathrm{s}}}}(x)$.

Let $\mathcal{T} \subset[\omega]^{\omega}$ be a base matrix tree and $\operatorname{Br}(\mathcal{T})$ the set of its maximal branches. Since the height of \mathcal{T} is \mathfrak{h}, the branches of \mathcal{T} are of size $\leq \mathfrak{h}$; so $\mathbb{K}:=|\operatorname{Br}(\mathcal{T})| \leq \mathfrak{c}^{\mathfrak{h}}=2^{\mathfrak{h}}$ and we take a one-to-one enumeration $\operatorname{Br}(\mathcal{T})=\left\{T_{\alpha}: \alpha<\kappa\right\}$.

Since $1 \Vdash\left(\mathfrak{h}^{V}\right)^{\check{ }}<\mathrm{t}$, for each $\alpha<\mathcal{K}$ we have $1 \Vdash\left|\check{T}_{\alpha}\right|<\mathrm{t}$ and, consequently, in each generic extension of the ground model by \mathbb{B} the family T_{α} obtains a pseudointersection. Thus $1 \Vdash \exists X \in[\check{\omega}]^{\mathscr{\omega}} \forall B \in \check{T}_{\alpha} X \subset^{*} B$ so, by the Maximum Principle (see [7, p. 226]), there is a name $\sigma_{\alpha} \in V^{\mathbb{B}}$ such that

$$
\begin{equation*}
1 \Vdash \sigma_{\alpha} \in[\check{\omega}]^{\check{\omega}} \wedge \forall B \in \check{T_{\alpha}} \quad \sigma_{\alpha} \subset^{*} B . \tag{8}
\end{equation*}
$$

Since $\operatorname{cc}(\mathbb{B})>2^{\mathfrak{b}} \geq \kappa$, there is a maximal antichain in \mathbb{B} of cardinality κ, say $\left\{b_{\alpha}: \alpha<\kappa\right\}$. By the Mixing lemma (see [7, p. 226]) there is a name $\tau \in V^{\mathbb{B}}$ such that

$$
\begin{equation*}
\forall \alpha<\mathcal{\kappa} \quad b_{\alpha} \Vdash \tau=\sigma_{\alpha} \tag{9}
\end{equation*}
$$

and, clearly, $1 \Vdash \tau \in[\check{\omega}]^{\omega}$. Let $x=\left\langle x_{n}\right\rangle \in \mathbb{B}^{\omega}$, where $x_{n}:=\|\check{n} \in \tau\|$, for $n \in \omega$. Then for the corresponding name $\tau_{x}=\left\{\left\langle\check{n}, x_{n}\right\rangle: n \in \omega\right\}$ we have

$$
\begin{equation*}
1 \Vdash \tau=\tau_{x} . \tag{10}
\end{equation*}
$$

Now, by Claims 1 and 2 from the proof of Theorem 6.4 from [11] we have

$$
0 \in \lim _{O_{1 \mathrm{~s}}}(x) \backslash \lambda_{\mathrm{ls}}^{*}(x)
$$

By Facts 2.2(a) and 2.3(g) we have $\lim _{O_{\lambda_{\mathrm{s}}}}(x)=\lambda_{\mathrm{s}}^{*}(x)=\lambda_{\mathrm{ls}}^{*}(x) \cap \lambda_{\mathrm{li}}^{*}(x)$ and, since $0 \notin \lambda_{\mathrm{ls}}^{*}(x)$, it follows that $0 \notin \lim _{O_{\lambda_{\mathrm{s}}}}(x)$.

By Theorem 3.1 we have $\lim _{O_{\text {lis }}}(x)=\lim _{O_{\lambda_{1 \mathrm{~s}}}}(x) \cap \lim _{O_{\lambda_{\mathrm{li}}}}(x)$ and, since $0 \in \lim _{O_{\lambda_{\mathrm{ls}}}}(x)$, it remains to be proved that $0 \in \lim _{O_{1 \mathrm{i}}}(x)$. But, if $0 \in O \in O_{\lambda_{1 \mathrm{i}}}$, then, since O is an upward-closed set, we have $O=\mathbb{B}$. Consequently, $x_{n} \in O$, for all $n \in \omega$, so $0 \in \lim _{O_{\lambda_{\mathrm{li}}}}(x)$.

Example 3.7. An algebra for which the diagrams describing convergences and topologies from Figure 1 contain exactly 9 and 4 different objects respectively.

If \mathbb{B} is a complete Boolean algebra which collapses $2^{\text {b }}$ to ω (e.g. the collapsing algebra $\operatorname{Coll}\left(\omega, 2^{\text {b }}\right)=$ r.o. $\left({ }^{<\omega}\left(2^{\text {b }}\right)\right)$), then \mathbb{B} satisfies the assumptions of Theorem 3.6 and, hence, $\lim _{O_{\lambda_{\mathrm{s}}}}<\lim _{O_{\text {lsi }}}$ and $O_{1 \mathrm{si}} \varsubsetneqq O_{\lambda_{\mathrm{s}}}$. By Theorem 6.4 from [11] the same conditions provide that the convergence $\lambda_{1 \mathrm{~s}}$ is not weakly topological, which, by Fact 2.1(a), gives $\lambda_{1 \mathrm{~s}}^{*}<\lim _{O_{\lambda_{\mathrm{ls}}}}$. By Theorem 4.4 from [11], the mapping $h:\left\langle\mathbb{B}, O_{\lambda_{1 \mathrm{~s}}}\right\rangle \rightarrow\left\langle\mathbb{B}, O_{\lambda_{\mathrm{li}}}\right\rangle$ given by $h(b)=b^{\prime}$, for each $b \in \mathbb{B}$, is a homeomorphism, so $\lambda_{\mathrm{li}}^{*}<\lim _{O_{\lambda_{\mathrm{li}}}}$ as well. Assuming that $\lambda_{\mathrm{ls}}=\lambda_{1 \mathrm{ls}^{\prime}}^{*}$ by duality we would have $\lambda_{\mathrm{li}}=\lambda_{\mathrm{li}}^{*}$ and, by Theorem 3.1, $\lim _{O_{\lambda_{\mathrm{s}}}}=\lambda_{\mathrm{s}}^{*}=\lambda_{\mathrm{ls}}^{*} \cap \lambda_{\mathrm{li}}^{*}=\lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}}=\lambda_{\mathrm{s}}$. But this is not true since the algebra \mathbb{B} is not $(\omega, 2)$-distributive. Thus $\lambda_{\mathrm{ls}}<\lambda_{\mathrm{ls}}^{*}$ and, similarly, $\lambda_{\mathrm{li}}<\lambda_{\mathrm{li}}^{*}$. By Fact 2.2(b) we have $\lambda_{\mathrm{s}}<\lim _{O_{\lambda_{\mathrm{s}}}}$. The rest follows from Theorem 3.1.

References

[1] B. Balcar, W. Glówczyński, T. Jech, The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998) 59-78.
[2] B. Balcar, T. Jech, Weak distributivity, a problem of von Neumann and the mistery of measurability, Bull. Symbolic Logic 12:2 (2006) 241-266.
[3] B. Balcar, T. Jech, T. Pazák, Complete ccc Boolean algebras, the order sequential topology and a problem of von Neumann, Bull. Lond. Math. Soc. 37:6 (2005) 885-898.
[4] B. Balcar, J. Pelant, P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980) 11-24.
[5] E.K. van Douwen, The integers and topology, in: K. Kunen and J.E. Vaughan eds., Handbook of Set-theoretic Topology, NorthHolland, Amsterdam, 1984, 111-167.
[6] I. Farah, Examples of ε-exhaustive pathological submeasures, Fund. Math. 181 (2004) 257-272.
[7] K. Kunen, Set Theory, An Introduction to Independence Proofs, (North-Holland, Amsterdam, 1980).
[8] M. S. Kurilić, A. Pavlović, A posteriori convergence in complete Boolean algebras with the sequential topology, Ann. Pure Appl. Logic 148,1-3 (2007) 49-62.
[9] M.S. Kurilić, A. Pavlović, Some forcing related convergence structures on complete Boolean algebras, Novi Sad J. Math. 40:2 (2010) 77-94.
[10] M.S. Kurilić, A. Pavlović, The convergence of the sequences coding the ground model reals, Publ. Math. Debrecen 82:2 (2013) 277-292.
[11] M.S. Kurilić, A. Pavlović, A convergence on Boolean algebras generalizing the convergence on the Alexandrov cube, Czechoslovak Math. J. 64(139):2 (2014) 519-537.
[12] M.S. Kurilić, S. Todorčević, Property (\hbar) and cellularity of complete Boolean algebras, Arch. Math. Logic 48:8 (2009) 705-718.
[13] D. Maharam, An algebraic characterization of measure algebras, Ann. of Math., 48 (1947) 154-167.
[14] R.D. Mauldin (ed.), The Scottish Book (Mathematics from the Scottish Café), Birkhäuser, Boston MA, 1981.
[15] M. Talagrand, Maharam's problem, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 501-503.
[16] M. Talagrand, Maharam's problem, Ann. of Math. 168:3 (2008) 981-1009.
[17] S. Todorčević, A problem of von Neumann and Maharam about algebras supporting continuous submeasures, Fund. Math. 183:2 (2004) 169-183.
[18] B. Veličković, ccc forcing and splitting reals, Israel J. Math. 147 (2005) 209-220.

[^0]: 2010 Mathematics Subject Classification. Primary: 54A20; Secondary: 03E40, 03E75, 06E10, 54A10, 54D55
 Keywords. Convergence structure, Boolean algebra, sequential topology, algebraic convergence, Cantor's cube, Alexandrov's cube, Maharam algebra, forcing

 Received: 05 March 2019; Revised: 09 October 2019; Accepted: 11 October 2019
 Communicated by Ljubiša D.R. Kočinac
 This research was supported by the Ministry of Education and Science of the Republic of Serbia (Project 174006).
 Email addresses: milos@dmi. uns.ac.rs (Miloš S. Kurilić), apavlovic@dmi .uns.ac.rs (Aleksandar Pavlović)

