Filomat 33:14 (2019), 4451–4459 https://doi.org/10.2298/FIL1914451K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Left, the Right and the Sequential Topology on Boolean Algebras

Miloš S. Kurilić^a, Aleksandar Pavlović^a

^aDepartment of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

Abstract. For the algebraic convergence λ_s , which generates the well known sequential topology τ_s on a complete Boolean algebra \mathbb{B} , we have $\lambda_s = \lambda_{ls} \cap \lambda_{li}$, where the convergences λ_{ls} and λ_{li} are defined by $\lambda_{ls}(x) = \{\lim \sup x\} \uparrow \text{ and } \lambda_{li}(x) = \{\lim \inf x\} \downarrow \text{ (generalizing the convergence of sequences on the Alexandrov cube and its dual). We consider the minimal topology <math>O_{lsi}$ extending the (unique) sequential topologies $O_{\lambda_{ls}}$ (left) and $O_{\lambda_{li}}$ (right) generated by the convergences λ_{ls} and λ_{li} and establish a general hierarchy between all these topologies and the corresponding a priori and a posteriori convergences. In addition, we observe some special classes of algebras and, in particular, show that in (ω , 2)-distributive algebras we have $\lim_{O_{lsi}} = \lim_{\tau_s} = \lambda_s$, while the equality $O_{lsi} = \tau_s$ holds in all Maharam algebras. On the other hand, in some collapsing algebras we have a maximal (possible) diversity.

1. Introduction

It is known that a sequence $\langle x_n : n \in \omega \rangle$ of reals from the unit interval I = [0, 1] converges to a point $a \in I$ with respect to the left (resp. right, standard) topology on I if and only if $a \ge \limsup x_n$ (resp. $a \le \limsup x_n$) and, more generally, these three properties define three convergence structures on any complete lattice or σ -complete Boolean algebra. In this paper, continuing the investigation from [8]–[12], we consider the corresponding convergences λ_{ls} , λ_{li} and λ_s on a complete Boolean algebra \mathbb{B} , as well as the sequential topologies $O_{\lambda_{ls}}$, $O_{\lambda_{li}}$ and O_{λ_s} on \mathbb{B} generated by them. Having in mind that the union of the left and the right topology on I generates the standard topology on that interval, we regard the minimal topology O_{lsi} on \mathbb{B} extending $O_{\lambda_{ls}} \cup O_{\lambda_{li}}$, as well as the corresponding topological convergence lim_{$O_{lsi}</sub> on <math>\mathbb{B}$, and explore the relationship between all the topologies and convergences mentioned above. It turns out that $\lambda_s \le \lim_{O_{\lambda_s}} \le \lim_{O_{\lambda_{ls}}} o O_{\lambda_{ls}} = O_{\lambda_s}$, and that there are several possibilities consistent with these constraints. For example, if \mathbb{B} is the power set algebra $P(\omega)$, then we have an analogy to the unit interval: $\lambda_s = \lim_{O_{\lambda_s}} and O_{\lambda_{ls}} = O_{\lambda_s}$; finally, for some collapsing algebras we obtain a maximal diversity: $\lambda_s < \lim_{O_{\lambda_s}} < \lim_{O_{\lambda_s}} and O_{\lambda_s} \subseteq O_{\lambda_s}$.</sub>

2010 Mathematics Subject Classification. Primary: 54A20; Secondary: 03E40, 03E75, 06E10, 54A10, 54D55

Keywords. Convergence structure, Boolean algebra, sequential topology, algebraic convergence, Cantor's cube, Alexandrov's cube, Maharam algebra, forcing

Received: 05 March 2019; Revised: 09 October 2019; Accepted: 11 October 2019

Communicated by Ljubiša D.R. Kočinac

This research was supported by the Ministry of Education and Science of the Republic of Serbia (Project 174006). *Email addresses:* milos@dmi.uns.ac.rs (Miloš S. Kurilić), apavlovic@dmi.uns.ac.rs (Aleksandar Pavlović)

We note that the topology O_{λ_s} on a complete Boolean algebra (c.B.a) B (traditionally called the *sequential topology* and denoted by τ_s), generated by the convergence λ_s (traditionally called the *algebraic convergence*) was widely considered in the context of the von Neumann problem [14]: Is each ccc weakly distributive c.B.a. a measure algebra? A consistent counter-example (a Suslin algebra) was given by Maharam [13]. In addition, Maharam has shown that the topology O_{λ_s} is metrizable iff B is a Maharam algebra and asked whether this implies that B admits a measure (the Control Measure Problem, negatively solved by M. Talagrand [15, 16]). Moreover, Balcar, Jech and Pazák [3] and, independently, Veličković [18], proved that it is consistent that the topology O_{λ_s} is metrizable on each complete ccc weakly distributive algebra. (See also [1, 2, 6, 17] for that topic).

Regarding the power set algebras, $P(\kappa)$, the convergence λ_s is exactly the convergence on the Cantor cube, while λ_{ls} generalizes the convergence on the Alexandrov cube in the same way (see [11]). Further, on any c.B.a., the topologies $O_{\lambda_{ls}}$ and $O_{\lambda_{li}}$ are homeomorphic (take f(a) = a') and generated by some other convergences relevant for set-theoretic forcing (see [9, 10]). For obvious reasons, the topology $O_{\lambda_{ls}}$ (resp. $O_{\lambda_{li}}$) will be called the *left* (resp. the *right*) *topology on* \mathbb{B} (see also Fact 2.3(i)).

2. Preliminaries

Convergence. Here we list the standard facts concerning convergence structures which will be used in the paper. (For details and proofs see, for example, [9].)

Let *X* be a non-empty set. Each mapping $x: \omega \to X$ is called a *sequence* in *X*. Usually, instead of x(n) we write x_n and $x = \langle x_n : n \in \omega \rangle$. A *constant sequence* $\langle a, a, ... \rangle$ is denoted shortly by $\langle a \rangle$. A sequence $y \in X^{\omega}$ is said to be a *subsequence* of *x* iff there is an increasing function $f: \omega \to \omega$ (notation: $f \in \omega^{\uparrow \omega}$) such that $y = x \circ f$; then we write y < x.

Each mapping $\lambda: X^{\omega} \to P(X)$ is called a *convergence*. The set $Conv(X) = P(X)^{(X^{\omega})}$ of all convergences on the set *X* ordered by the relation $\lambda_1 \leq \lambda_2$ if and only if $\lambda_1(x) \subseteq \lambda_2(x)$, for each $x \in X^{\omega}$, is, clearly, a Boolean lattice and $\lambda_1 \cap \lambda_2$ will denote the infimum $\lambda_1 \wedge \lambda_2$; that is, $(\lambda_1 \cap \lambda_2)(x) = \lambda_1(x) \cap \lambda_2(x)$, for all $x \in X^{\omega}$. If $|\lambda(x)| \leq 1$ for each sequence *x*, then λ is called a *Hausdorff convergence*.

Let (X, O) be a topological space. A point $a \in X$ is a *limit point* of a sequence $x \in X^{\omega}$ if and only if each neighborhood of *a* contains all but finitely many members of *x*. The set of all limit points of a sequence $x \in X^{\omega}$ is denoted by $\lim_{x \to \infty} (x)$ and so we obtain a convergence $\lim_{x \to \infty} X^{\omega} \to P(X)$, that is, $\lim_{x \to \infty} C = Conv(X)$.

Let Top(*X*) denote the lattice of all topologies on the set *X*. A convergence $\lambda \in \text{Conv}(X)$ is called *topological*, we will write $\lambda \in \text{TopConv}(X)$, if and only if there is a topology $O \in \text{Top}(X)$ such that $\lambda = \lim_{O} O$. So we establish the mapping

$$G: \operatorname{Top}(X) \to \operatorname{TopConv}(X)$$
, where $G(O) = \lim_{O} O$.

A topology $O \in \text{Top}(X)$ is called *sequential*, we will write $O \in \text{SeqTop}(X)$ if and only if in the space $\langle X, O \rangle$ we have: a set $A \subset X$ is closed if and only if it is *sequentially closed* (that is, $\lim_{O}(x) \subset A$, for each sequence $x \in A^{\omega}$). If $O_1, O_2 \in \text{SeqTop}(X)$ and $\lim_{O_1} = \lim_{O_2}$, then $O_1 = O_2$. (We note that this is false in general: take the discrete and the co-countable topology on the real line; in both spaces exactly the almost-constant sequences converge.) So, *G* is one-to-one on SeqTop(*X*).

For each convergence $\lambda \in \text{Conv}(X)$ there is a (unique) maximal topology O_{λ} such that $\lambda \leq \lim_{O_{\lambda}} O_{\lambda}$. The topology O_{λ} is sequential; so, we obtain the mapping

F: Conv(*X*)
$$\rightarrow$$
 SeqTop(*X*), defined by *F*(λ) = O_{λ} .

F and *G* are antitone mappings, that is, $\lambda_1 \leq \lambda_2$ implies that $O_{\lambda_2} \subset O_{\lambda_1}$ and $O_1 \subset O_2$ implies $\lim_{O_2} \leq \lim_{O_1}$. Moreover, a convergence λ is topological if and only if $\lambda = \lim_{O_\lambda} (= G(F(\lambda)))$ and, by Theorem 2.6 of [9], a topology *O* is sequential if and only if $O = O_{\lim_O} (= F(G(O)))$. We remark that, in fact, the pair *F*, *G* is an antitone Galois connection between the complete lattices Conv(*X*) and Top(*X*), because $O \subset F(\lambda) \Leftrightarrow \lambda \leq G(O)$, for each $\lambda \in \text{Conv}(X)$ and $O \in \text{Top}(X)$. (If $O \subset O_\lambda$, then $\lambda \leq \lim_{O_\lambda} \leq \lim_{O_\lambda} Conversely$, if $\lambda \leq \lim_{O_\lambda} \text{then } O \subset O_\lambda$, by the maximality of O_λ). Moreover, the restriction $F \upharpoonright \text{TopConv}(X)$ is a bijection from TopConv(*X*) onto SeqTop(*X*) and $G \upharpoonright \text{SeqTop}(X)$ is its inverse. Each topological convergence λ satisfies the following conditions:

(L1) $\forall a \in X \ a \in \lambda(\langle a \rangle),$

(L2) $\forall x \in X^{\omega} \ \forall y \prec x \ \lambda(x) \subset \lambda(y),$

(L3) $\forall x \in X^{\omega} \ \forall a \in X ((\forall y \prec x \exists z \prec y \ a \in \lambda(z)) \Rightarrow a \in \lambda(x)).$

If $\lambda \in \text{Conv}(X)$ satisfies (L1) and (L2), then $O_{\lambda} = \{X \setminus F : F \subset X \land u_{\lambda}(F) = F\}$, where $u_{\lambda} : P(X) \to P(X)$ is the operator of sequential closure determined by λ , defined by $u_{\lambda}(A) = \bigcup_{x \in A^{\omega}} \lambda(x)$. In addition, the minimal closure of λ under (L1)–(L3) is given by $\lambda^*(x) = \bigcap_{f \in \omega^{\uparrow \omega}} \bigcup_{g \in \omega^{\uparrow \omega}} \lambda(x \circ f \circ g)$ and λ is called a *weakly-topological convergence* iff the convergence λ^* is topological.

Fact 2.1. ([9]) If $\lambda \in \text{Conv}(X)$ is a convergence satisfying (L1) and (L2), then (a) λ is weakly-topological if and only if $\lim_{O_{\lambda}} = \lambda^*$, that is, for each $x \in X^{\omega}$ and $a \in X$

$$a \in \lim_{O_{\lambda}}(x) \Leftrightarrow \forall y \prec x \; \exists z \prec y \; a \in \lambda(z)$$

(see [9, Theorem 4.1]);

(b) If λ is a Hausdorff convergence, then λ^* is Hausdorff and weakly-topological ([9, Theorem 4.2]).

Convergences on Boolean algebras. Let \mathbb{B} be a complete Boolean algebra or, more generally, a complete lattice. If $\langle x_n : n \in \omega \rangle$ is a sequence of its elements, $\liminf x_n := \bigvee_{k \in \omega} \bigwedge_{n \ge k} x_n$ and $\limsup x_n := \bigwedge_{k \in \omega} \bigvee_{n \ge k} x_n$, then, clearly, $\liminf x_n \le \limsup x_n$. We consider the convergences λ_{ls} , λ_{li} , $\lambda_s : \mathbb{B}^{\omega} \to P(\mathbb{B})$ defined by

$$\lambda_{\rm ls}(\langle x_n \rangle) = \{\limsup x_n\}\uparrow, \tag{1}$$

$$\lambda_{\rm li}(\langle x_n \rangle) = \{\liminf x_n\}\downarrow, \tag{2}$$

$$\lambda_{s}(\langle x_{n} \rangle) = \begin{cases} \{x\} & \text{if } \liminf x_{n} = \min \sup x_{n} = x, \\ 0 & \text{if } \liminf x_{n} < \limsup x_{n}, \end{cases}$$
(3)

where $A \uparrow := \{b \in \mathbb{B} : \exists a \in A \ b \ge a\}$ and $A \downarrow := \{b \in \mathbb{B} : \exists a \in A \ b \le a\}$, for $A \subset \mathbb{B}$. The following property of c.B.a.'s will play a role in this paper

$$\forall x \in \mathbb{B}^{\omega} \exists y < x \; \forall z < y \; \limsup z = \limsup y. \tag{\hbar}$$

We note that property (\hbar) is closely related to the cellularity of Boolean algebras. Namely, by [8], t-cc \Rightarrow (\hbar) \Rightarrow s-cc and, in particular, ccc complete Boolean algebras satisfy (\hbar). By [12], the set { $\kappa \in \text{Card} : \kappa - \text{cc} \Rightarrow$ (\hbar)} is equal either to [0, \mathfrak{h}), or to [0, \mathfrak{h}] and { $\kappa \in \text{Card} : (\hbar) \Rightarrow \kappa - \text{cc}$ } = [\mathfrak{s}, ∞). Basic facts concerning the invariants of the continuum t, \mathfrak{s} , and \mathfrak{h} can be found in [5].

Fact 2.2. ([8]) If \mathbb{B} is a complete Boolean algebra, then we have

- (a) λ_s is a weakly-topological Hausdorff convergence satisfying (L1) and (L2) ([8, Lemma 3]);
- (b) λ_s is a topological convergence if and only if the algebra \mathbb{B} is $(\omega, 2)$ -distributive (see [8, Theorem 2]).

Fact 2.3. ([11]) If \mathbb{B} is a complete non-trivial Boolean algebra, then

(a) $\lambda_{\rm ls}$ and $\lambda_{\rm li}$ are non-Hausdorff convergences satisfying (L1) and (L2) ([11, Theorem 4.3]);

(b) If \mathbb{B} satisfies (\hbar), then λ_{ls} and λ_{li} are weakly-topological convergences ([11, Theorem 6.1]);

(c) λ_{ls} is topological if and only if λ_{li} is topological if and only if the algebra \mathbb{B} is $(\omega, 2)$ -distributive ([11, Theorem 3.5]);

(*d*) $\lambda_{\rm s} = \lambda_{\rm ls} \cap \lambda_{\rm li}$ ([11, Theorem 4.3]);

(e) $O_{\lambda_{ls}}, O_{\lambda_{li}} \subset O_{\lambda_s}$ ([11, Theorem 4.3]);

(f) $\lambda_{ls}^* \leq \lim_{O_{\lambda_{ls}}} and \lambda_{li}^* \leq \lim_{O_{\lambda_{li}}} ([11, Theorem 4.3]);$

(g) $\lambda_{s}^{*} = \lambda_{ls}^{*} \cap \lambda_{li}^{*}$ ([11, Theorem 4.3]);

(h) $O_{\lambda_{ls}}$ and $O_{\lambda_{li}}$ are homeomorphic, T_0 , connected and compact topologies ([11, Theorem 4.4]);

(*i*) A set $F \subset \mathbb{B}$ is $O_{\lambda_{ls}}$ -closed if and only if it is upward-closed and $\bigwedge_{n \in \omega} x_n \in F$, for each decreasing sequence $\langle x_n \rangle \in F^{\omega}$; (and dually, for $O_{\lambda_{ls}}$ -closed sets) ([11, Theorem 4.4]).

3. The Topology O_{lsi} on Boolean Algebras

On a complete Boolean algebra \mathbb{B} we consider the minimal topology containing the topologies $O_{\lambda_{ls}}$ and $O_{\lambda_{li}}$. This topology, denoted by O_{lsi} , is generated by the base $\mathcal{B}_{lsi} = \{O_1 \cap O_2 : O_1 \in O_{\lambda_{ls}} \land O_2 \in O_{\lambda_{li}}\}$. By Fact 2.3(i), the sets from $O_{\lambda_{ls}}$ (resp. $O_{\lambda_{li}}$) are downward (resp. upward)-closed; so, the elements of \mathcal{B}_{lsi} are convex subsets of \mathbb{B} .

Theorem 3.1. *The following diagrams show the relations between the considered convergences and topologies on a non-trivial c.B.a.* **B**. *In addition, we have*

- (a) $\lambda_{ls} \cap \lambda_{li} = \lambda_s$, $\lambda_{ls}^* \cap \lambda_{li}^* = \lambda_s^*$ and $\lim_{O_{\lambda_{ls}}} \cap \lim_{O_{\lambda_{li}}} = \lim_{O_{lsi}}$;
- (b) $\lambda_{\rm s} < \lambda_{\rm ls}, \lambda_{\rm li}, \lambda_{\rm s}^* < \lambda_{\rm ls}^*, \lambda_{\rm li}^*, \lim_{O_{\rm lsi}} < \lim_{O_{\lambda_{\rm ls}}}, \lim_{O_{\lambda_{\rm ls}}} and O_{\rm lsi} \supseteq O_{\lambda_{\rm ls}}, O_{\lambda_{\rm li}}.$

Figure 1: Convergences and topologies on B

Proof. By Fact 2.3(e) we have $O_{\lambda_{ls}}, O_{\lambda_{li}} \subset O_{\lambda_s}$ and the inclusion $O_{lsi} \subset O_{\lambda_s}$ follows from the minimality of O_{lsi} . So the diagram for topologies is correct.

By Fact 2.3(d) and (g) we have $\lambda_s = \lambda_{ls} \cap \lambda_{li}$ and $\lambda_s^* = \lambda_{ls}^* \cap \lambda_{li}^*$, which implies $\lambda_s \leq \lambda_{ls}$, λ_{li} and $\lambda_s^* \leq \lambda_{ls}^*$, λ_{li}^* . By Facts 2.2(a) and 2.3(a), λ_s is a Hausdorff convergence, while λ_{ls} and λ_{li} are not; thus, $\lambda_s < \lambda_{ls}$, λ_{li} . By Fact 2.1(b) λ_s^* is a Hausdorff convergence and, clearly, λ_{ls}^* and λ_{li}^* are not Hausdorff; so, $\lambda_s^* < \lambda_{ls}^*$, λ_{li}^* .

By the construction of the closure λ^* it follows that we always have $\lambda \leq \lambda^*$; thus $\lambda_{ls} \leq \lambda^*_{ls}$, $\lambda_{li} \leq \lambda^*_{li}$ and $\lambda_s \leq \lambda^*_s$. By Fact 2.3(f) we have $\lambda^*_{ls} \leq \lim_{O_{\lambda_{ls}}} \lambda^*_{li} \leq \lambda^*_{ls}$. The equality $\lambda^*_s = \lim_{O_{\lambda_s}} \lambda^*_{lows}$ follows from Facts 2.2(a) and 2.1(a). Since $O_{lsi} \subset O_{\lambda_s}$ we have $\lim_{O_{\lambda_s}} \leq \lim_{O_{lsi}} \lambda^*_{li}$.

Further we prove that $\lim_{O_{lsi}} = \lim_{O_{\lambda_{ls}}} \cap \lim_{O_{\lambda_{ls}}} O_{\lambda_{ls}}$. Since $O_{\lambda_{ls}}, O_{\lambda_{li}} \subset O_{lsi}$, we have $\lim_{O_{lsi}} \le \lim_{O_{\lambda_{ls}}} \lim_{i \in O_{\lambda_{ls}}} O_{\lambda_{li}}$. Conversely, if $a \in \lim_{O_{\lambda_{ls}}} (x) \cap \lim_{O_{\lambda_{ls}}} (x)$ and U is a O_{lsi} -neighborhood of a, then there is $O_1 \cap O_2 \in \mathcal{B}_{lsi}$ such that $a \in O_1 \cap O_2 \subset U$ and, hence, there are $n_i \in \omega$, $i \in \{1, 2\}$, such that $x_n \in O_i$, for each $n \ge n_i$. Thus for each $n \ge \max\{n_1, n_2\}$ we have $x_n \in U$, so $a \in \lim_{O_{lsi}} (x)$.

So we have $\lim_{O_{lsi}} \leq \lim_{O_{\lambda_{ls}}}, \lim_{O_{\lambda_{li}}}$. Since we have $1 \in \lambda_{ls}(\langle 0 \rangle)$, assuming that $\lim_{O_{lsi}} = \lim_{O_{\lambda_{ls}}}$, we would have $\lambda_{ls} \leq \lim_{O_{\lambda_{ls}}} \leq \lim_{O_{\lambda_{li}}}$ and, therefore $1 \in \lim_{O_{\lambda_{li}}} (\langle 0 \rangle)$. Now, since the sets from $O_{\lambda_{li}}$ are upward-closed, for a non-empty set $O \in O_{\lambda_{li}}$ we would have $1 \in O$ and, since $1 \in \lim_{O_{\lambda_{li}}} (\langle 0 \rangle), 0 \in O$ as well, which would give $O = \mathbb{B}$. So $O_{\lambda_{li}}$ would be the antidiscrete topology which is false, because it is T_0 . Thus $\lim_{O_{\lambda_{li}}} < \lim_{O_{\lambda_{li}}}$ and, similarly, $\lim_{O_{\lambda_{li}}} < \lim_{O_{\lambda_{li}}}$, which implies that $O_{lsi} \supseteq O_{\lambda_{ls}}, O_{\lambda_{li}}$.

In the sequel we consider the topology O_{lsi} and its convergence and investigate the form of the diagrams in Figure 1 for particular (classes of) Boolean algebras. In particular, it is natural to ask for which complete Boolean algebras we have

$$O_{\rm lsi} = O_{\lambda_{\rm s}} \text{ or, at least, } \lim_{O_{\rm lsi}} = \lim_{O_{\lambda_{\rm s}}} ? \tag{4}$$

First we give some sufficient conditions for these equalities.

Theorem 3.2. Let \mathbb{B} be a complete Boolean algebra. Then

(a) If the algebra \mathbb{B} satisfies condition (\hbar), then $\lim_{O_{lsi}} = \lim_{O_{lsi}}$;

(b) If the algebra \mathbb{B} is $(\omega, 2)$ -distributive, then $\lim_{O_{\lambda_{ls}}} = \lambda_{ls}$, $\lim_{O_{\lambda_{li}}} = \lambda_{li}$ and $\lim_{O_{lsi}} = \lim_{O_{\lambda_s}} = \lambda_s$; so the diagram for convergences collapses to 3 nodes;

(c) If $\lim_{O_{lsi}} = \lim_{O_{\lambda_s}}$, then $O_{lsi} = O_{\lambda_s}$ if and only if $\langle \mathbb{B}, O_{lsi} \rangle$ is a sequential space.

Proof. (a) By Theorem 3.1 we have $O_{\text{lsi}} \subset O_{\lambda_s}$ so, $\lim_{O_{\lambda_s}} \leq \lim_{O_{\text{lsi}}} O_{\text{lsi}}$.

Conversely, assuming that $x \in \mathbb{B}^{\omega}$ and $a \in \lim_{\mathcal{O}_{lsi}}(x)$, by Theorem 3.1 we have

 $a \in \lim_{O_{\lambda_{1i}}} (x) \cap \lim_{O_{\lambda_{1i}}} (x)$

and we should prove that $a \in \lim_{O_{\lambda_s}} (x)$. Thus, by Facts 2.2(a) and 2.1(a), we have to show that for each $y \prec x$ there is $z \prec y$ such that $\limsup_{x \to a} z = \lim_{x \to a} \inf_{x \to a} z = a$.

Let *y* be a subsequence of *x*. By Fact 2.3(b) the convergence λ_{ls} is weakly topological so, by (5) and Fact 2.1(a), there is z' < y such that $\limsup z' \le a$. Since z' < x and the convergence λ_{li} is weakly topological, by (5) and Fact 2.1(a) again, there is z < z' such that $\limsup z \ge a$. Now, we have $\limsup z \le \limsup z' \le a \le \lim \sup z' \le a$. Im $\sup z = \lim \sup z = a$.

(b) If the algebra \mathbb{B} is $(\omega, 2)$ -distributive, then by Facts 2.2(b) and 2.3(c) we have $\lim_{O_{\lambda_{ls}}} = \lambda_{s}$, $\lim_{O_{\lambda_{ls}}} = \lambda_{ls}$ and $\lim_{O_{\lambda_{ls}}} = \lambda_{li}$. Thus, by Theorem 3.1 we have $\lim_{O_{\lambda_{ls}}} = \lim_{O_{\lambda_{ls}}} \cap \lim_{O_{\lambda_{ls}}} = \lambda_{ls} \cap \lambda_{li} = \lambda_{s} = \lim_{O_{\lambda_{ls}}} O_{\lambda_{ls}}$.

(c) The implication " \Rightarrow " is true because the topology O_{λ_s} is sequential. If $\lim_{O_{lsi}} = \lim_{O_{\lambda_s}}$, and O_{lsi} is a sequential topology, then (since a topology O is sequential if and only if $O = O_{\lim_O}$) we have $O_{lsi} = O_{\lim_{O_{lsi}}} = O_{\lim_{O_{lsi}}} = O_{\lim_{O_{lsi}}} = O_{\lim_{O_{lsi}}} = O_{\lambda_s}$. \Box

The unit interval. Although the unit interval I = [0, 1] is not a Boolean algebra, it provides obvious examples of the convergences considered in this paper. Let $O_{\leftarrow} = \{[0, a]: 0 < a \le 1\} \cup \{\emptyset, I\}$ and $O_{\rightarrow} = \{(a, 1]: 0 \le a < 1\} \cup \{\emptyset, I\}$ be the left and the right topology on I and let O_{st} denote the standard topology on I. It is easy to check that defining $\lambda_{ls}(\langle x_n \rangle) = \{x \in I: x \ge \limsup x_n\}$ and $\lambda_{li}(\langle x_n \rangle) = \{x \in I: x \le \limsup x_n\}$ we have

$$\lim_{O_{\leftarrow}} = \lambda_{ls} \text{ and } \lim_{O_{\rightarrow}} = \lambda_{li} \text{ and } \lim_{O_{st}} = \lambda_{s}.$$
(6)

We recall that a topology O is sequential if and only if $O = O_{\lim_{O}}$. So since the topology O_{\leftarrow} is first countable and, hence, sequential, by (6) we have $O_{\lambda_{ls}} = O_{\lim_{O_{\leftarrow}}} = O_{\leftarrow}$; and similarly for the other two topologies. So

$$O_{\lambda_{\rm ls}} = O_{\leftarrow} \quad \text{and} \quad O_{\lambda_{\rm li}} = O_{\rightarrow} \quad \text{and} \quad O_{\lambda_{\rm s}} = O_{\rm st}.$$
 (7)

Since $O_{\leftarrow} \cup O_{\rightarrow}$ is a subbase of O_{st} we have $O_{st} = O(O_{\leftarrow} \cup O_{\rightarrow})$ and by (7) we have $O_{\lambda_s} = O_{st} = O(O_{\leftarrow} \cup O_{\rightarrow}) = O(O_{\lambda_{ls}} \cup O_{\lambda_{ls}}) = O_{lsi}$ and (4) is true.

Power set algebras. Let $\kappa \ge \omega$ be a cardinal. We recall that the *Alexandrov cube of weight* κ is the product of κ many copies of the two point space $2 = \{0, 1\}$ with the topology $\{\emptyset, \{0\}, \{0, 1\}\}$. Identifying the sets $P(\kappa)$ and 2^{κ} via characteristic functions we obtain a homeomorphic copy $\mathbb{A}_{\kappa} = \langle P(\kappa), \tau_{\mathbb{A}_{\kappa}} \rangle$ of that space. We recall that for a sequence $\langle X_n : n \in \omega \rangle$ in $P(\kappa)$ we have

 $\liminf_{n \in \omega} X_n = \bigcup_{k \in \omega} \bigcap_{n \ge k} X_n = \{x \colon x \in X_n \text{ for all but finitely many } n\},\$

 $\limsup_{n \in \omega} X_n = \bigcap_{k \in \omega} \bigcup_{n \ge k} X_n = \{x \colon x \in X_n \text{ for infinitely many } n\}.$ Further, the *Cantor cube of weight* κ is the product of κ many copies of the two point discrete space $2 = \{0, 1\}$ and, identifying the sets $P(\kappa)$ and 2^{κ} again, we obtain its homeomorphic copy $\mathbb{C}_{\kappa} = \langle P(\kappa), \tau_{\mathbb{C}_{\kappa}} \rangle$. By [11, Theorem 4.2] we have

Fact 3.3. For the power algebra $P(\kappa)$ with the Aleksandrov topology we have

(a) $\lambda_{ls} = \lim_{O_{\lambda_{ls}}} = \lim_{\tau_{A_k}}$; thus λ_{ls} is a topological convergence;

(b) $\langle P(\kappa), \tau_{A_{\kappa}} \rangle$ is a sequential space if and only if $O_{\lambda_{ls}} = \tau_{A_{\kappa}}$ if and only if $\kappa = \omega$;

(c) If $\kappa > \omega$, then $\tau_{\mathbb{A}_{\kappa}} \subsetneq O_{\lambda_{\mathrm{ls}}} \not\subset \tau_{\mathbb{C}_{\kappa}}$.

For the power algebra $P(\kappa)$ with the Cantor topology we have

(*d*) $\lambda_{s} = \lim_{O_{\lambda_{s}}} = \lim_{\tau_{C_{k}}}$; thus λ_{s} is a topological convergence;

(e) $\langle P(\kappa), \tau_{\mathbb{C}_{\kappa}} \rangle$ is a sequential space if and only if $O_{\lambda_s} = \tau_{\mathbb{C}_{\kappa}}$ if and only if $\kappa = \omega$;

(f) If $\kappa > \omega$, then $\tau_{\mathbb{C}_{\kappa}} \subsetneq O_{\lambda_{s}}$.

(5)

Let $\tau_{\mathbb{A}_{\kappa}^{c}}$ be the topology on the power algebra $P(\kappa)$ obtained by the standard identification of $P(\kappa)$ and 2^{κ} with the Tychonov topology of κ many copies of the space 2 with the topology $\{\emptyset, \{1\}, \{0, 1\}\}$. Then, clearly, $X \mapsto \kappa \setminus X$ is a homeomorphism from $\mathbb{A}_{\kappa} = \langle P(\kappa), \tau_{\mathbb{A}_{\kappa}} \rangle$ onto the reversed Alexandrov cube $\mathbb{A}_{\kappa}^{c} = \langle P(\kappa), \tau_{\mathbb{A}_{\kappa}^{c}} \rangle$. Replacing $\tau_{\mathbb{A}_{\kappa}}$ by $\tau_{\mathbb{A}_{\kappa}^{c}}$ and λ_{ls} by λ_{li} in (a), (b) and (c) of Fact 3.3 we obtain the corresponding dual statements. In addition, we have

Theorem 3.4. For the power algebra $P(\kappa)$ we have

(a) lim<sub>O_{lsi} = λ_s;
(b) τ_{C_κ} is the minimal topology containing τ_{A_κ} and τ_{A^κ_κ};
(c) τ_{C_κ} ⊂ O_{lsi} and so O_{lsi} is a Hausdorff topology on P(κ);
(d) For κ = ω we have O_{lsi} = τ_{C_ω} = O_{λ_s};
(e) O_{lsi} = τ_{C_κ} if and only if κ = ω.
</sub>

Proof. (a) By Fact 3.3(a) and its dual we have $\lim_{O_{\lambda_{ls}}} = \lambda_{ls}$ and $\lim_{O_{\lambda_{li}}} = \lambda_{li}$. Now, by Theorem 3.1, $\lim_{O_{\lambda_{ls}}} = \lim_{O_{\lambda_{ls}}} \cap \lim_{O_{\lambda_{ls}}} = \lambda_{ls} \cap \lambda_{li} = \lambda_{s}$.

(b) Let *O* be the minimal topology containing $\tau_{\mathbb{A}_{\kappa}}$ and $\tau_{\mathbb{A}_{\kappa}^{c}}$. A subbase for the topology $\tau_{\mathbb{A}_{\kappa}}$ (resp. $\tau_{\mathbb{A}_{\kappa}^{c}}$) consists of the sets $B_{i} := \{X \subset \kappa : i \notin X\}$ (resp. $B_{i}^{c} := \{X \subset \kappa : i \in X\}$), where $i \in \kappa$; while the family $S_{\mathbb{C}_{\kappa}} := \bigcup_{i \in \kappa} \{B_{i}, B_{i}^{c}\}$ is a subbase for the topology $\tau_{\mathbb{C}_{\kappa}}$. Thus $\tau_{\mathbb{A}_{\kappa}} \cup \tau_{\mathbb{A}_{\kappa}^{c}} \subset \tau_{\mathbb{C}_{\kappa}}$ and, hence, $O \subset \tau_{\mathbb{C}_{\kappa}}$. On the other hand, $S_{\mathbb{C}_{\kappa}} \subset \tau_{\mathbb{A}_{\kappa}} \cup \tau_{\mathbb{A}_{\kappa}^{c}} \subset O$, which gives $\tau_{\mathbb{C}_{\kappa}} \subset O$.

(c) By Fact 3.3 and its dual we have $\tau_{\mathbb{A}_{\kappa}} \subset O_{\lambda_{\text{ls}}}$ and $\tau_{\mathbb{A}_{\kappa}^{c}} \subset O_{\lambda_{\text{li}}}$. Thus $\tau_{\mathbb{A}_{\kappa}} \cup \tau_{\mathbb{A}_{\kappa}^{c}} \subset O_{\text{lsi}}$ and $\tau_{\mathbb{C}_{\kappa}} \subset O_{\text{lsi}}$, by the minimality of $\tau_{\mathbb{C}_{\kappa}}$ proved in (b).

(d) By (c) and Theorem 3.1, $\tau_{\mathbb{C}_{\omega}} \subset O_{\text{lsi}} \subset O_{\lambda_{\text{s}}}$ and we apply Fact 3.3(e).

(e) By (d) the implication " \Leftarrow " is true. Assuming that $O_{lsi} = \tau_{\mathbb{C}_{\kappa}}$ and $\kappa > \omega$, by Fact 3.3(c) we would have $O_{\lambda_{ls}} \not\subset \tau_{\mathbb{C}_{\kappa}}$, which gives a contradiction because $O_{\lambda_{ls}} \subset O_{lsi}$.

Figure 2: Convergences and topologies on the algebra $P(\kappa)$

For the power set algebras the diagrams from Figure 1 are presented in Figure 2. Namely, by Theorem 3.2(b), the diagram describing convergences collapses to three nodes. The diagram for topologies in Figure 2 contains the topologies from Figure 1 as well as the topologies of the Cantor, Alexandrov and reversed Alexandrov cube (see Fact 3.3(c) and Theorem 3.4(c)). By Fact 3.3(b) and (e), for $\kappa = \omega$ the diagram describing topologies contains exactly three different topologies. So, for the algebra $P(\omega)$ we have $O_{lsi} = O_{\lambda_s}$ and (4) is true.

Maharam algebras. We recall that a *submeasure* on a complete Boolean algebra \mathbb{B} is a function $\mu \colon \mathbb{B} \to [0, \infty)$ satisfying:

(i) $\mu(0) = 0;$

(ii) $a \le b \Rightarrow \mu(a) \le \mu(b)$ and

(iii) $\mu(a \lor b) \le \mu(a) + \mu(b)$.

A submeasure μ is *strictly positive* if and only if

(iv) $a > 0 \Rightarrow \mu(a) > 0$.

A submeasure μ is called a *Maharam* (or a *continuous*) *submeasure* if and only if

(v) $\lim_{n\to\infty} \mu(a_n) = 0$ holds for each decreasing sequence $\langle a_n : n \in \omega \rangle$ in \mathbb{B} satisfying $\bigwedge_{n \in \omega} a_n = 0$.

It is easy to prove that if μ is a Maharam submeasure, then $\lim_{n\to\infty} \mu(a_n) = \mu(\bigwedge_{n\in\omega} a_n)$, for each decreasing sequence $\langle a_n \rangle$ in \mathbb{B} . A complete Boolean algebra \mathbb{B} admitting a strictly positive Maharam submeasure is called a *Maharam algebra*.

Theorem 3.5. On each Maharam algebra \mathbb{B} we have $O_{lsi} = O_{\lambda_s}$.

Proof. Under the assumption, $d(x, y) = \mu(x \Delta y)$ is a metric on \mathbb{B} which generates the topology O_{λ_s} (see [13]). For a non-empty set $O \in O_{\lambda_s}$ we show that $O \in O_{\text{lsi}}$. Let $a \in O$ and r > 0, where $B(a, r) = \{x \in \mathbb{B} : \mu(x \Delta a) < r\} \subset O$. Let

$$O_1 = \{x \in \mathbb{B} \colon \mu(x \setminus a) < r/2\}$$
 and $O_2 = \{x \in \mathbb{B} \colon \mu(a \setminus x) < r/2\}$.

Then by (i) we have $a \in O_1 \cap O_2$. If $x \in O_1 \cap O_2$, then, by (iii), $\mu(x \triangle a) \le \mu(x \setminus a) + \mu(a \setminus x) < r$ and, hence, $x \in B(a, r)$, thus $a \in O_1 \cap O_2 \subset O$.

Let us prove that $O_1 \\\in O_{\lambda_{ls}}$. By Fact 2.3(a) the convergence λ_{ls} satisfies (L1) and (L2), so it is sufficient to prove that $\mathbb{B} \setminus O_1$ is a closed set, which means that $u_{\lambda_{ls}}(\mathbb{B} \setminus O_1) \subset \mathbb{B} \setminus O_1$. By (iii), the set $\mathbb{B} \setminus O_1$ is upward-closed and it is sufficient to show that for a sequence $\langle x_n \rangle$ in $\mathbb{B} \setminus O_1$ we have $\limsup x_n \in \mathbb{B} \setminus O_1$, that is $\mu(\limsup x_n \setminus a) \ge r/2$. By the assumption we have $\mu(x_n \setminus a) \ge r/2$, for each $n \in \omega$. Now $\limsup x_n \setminus a = \bigwedge_{k \in \omega} y_k$, where $y_k = \bigvee_{n \ge k} x_n \setminus a$, $k \in \omega$, is a decreasing sequence and $\mu(y_k) \ge r/2$ so, by the continuity of μ , $\mu(\limsup x_n \setminus a) = \lim_{k \to \infty} \mu(y_k) \ge r/2$. Similarly we prove that $O_2 \in O_{\lambda_{li}}$ so $O_1 \cap O_2 \in O_{lsi}$ and O is an O_{lsi} -neighborhood of the point a. \Box

Figure 3: Non- $(\omega, 2)$ -distributive Maharam algebras

Thus, if \mathbb{B} is a Maharam algebra which is not $(\omega, 2)$ -distributive (for example, the algebra of the Lebesguemeasurable subsets of [0, 1] modulo the ideal of the sets of measure zero), then, the Figure 3 describes the corresponding diagrams. Namely, by Facts 2.2(a) and 2.1(a) we have $\lim_{O_{A_s}} = \lambda_s^*$ and, by Fact 2.2(b), $\lambda_s \neq \lim_{O_{A_s}}$. Since the algebras with strictly positive measure satisfy the countable chain condition the algebra \mathbb{B} has (\hbar). Thus, by Facts 2.3(b) and 2.1(a) we have $\lim_{O_{A_{l_s}}} = \lambda_{l_s}^*$ and $\lim_{O_{A_{l_i}}} = \lambda_{l_i}^*$. By Fact 2.3(c) we have $\lambda_{l_s} \neq \lim_{O_{A_s}}$ and $\lambda_{l_i} \neq \lim_{O_{A_{l_i}}}$. By Theorem 3.5 we have $O_{l_{si}} = O_{A_s}$ and, hence, $\lim_{O_{l_{si}}} = \lim_{O_{A_s}}$.

4457

Collapsing algebras. We show that both equalities from (4) can fail. We recall that a family $T \subset [\omega]^{\omega}$ is a *tower* if and only if it is well-ordered by * \supseteq and has no pseudointersection; the *tower number*, t, is the minimal cardinality of a tower. The *distributivity number*, b, is the smallest number of dense open families in the preorder $\langle [\omega]^{\omega}, \subset^* \rangle$ with empty intersection. A family $\mathcal{T} \subset [\omega]^{\omega}$ is called a *base matrix tree* if and only if $\langle \mathcal{T}, * \supset \rangle$ is a tree of height b and \mathcal{T} is a dense set in the preorder $\langle [\omega]^{\omega}, \subset^* \rangle$. By a theorem of Balcar, Pelant and Simon (see [4]), such a tree always exists, its levels are maximal almost disjoint families and maximal chains in \mathcal{T} are towers.

Theorem 3.6. If \mathbb{B} is a complete Boolean algebra satisfying $1 \Vdash_{\mathbb{B}} (\mathfrak{h}^V)^{\check{}} < \mathfrak{t}$ and $\operatorname{cc}(\mathbb{B}) > 2^{\mathfrak{h}}$, then $\lim_{O_{\lambda_s}} < \lim_{O_{\mathrm{lsi}}} O_{\mathrm{lsi}} \subseteq O_{\lambda_s}$.

Proof. Using the construction from the proof of Theorem 6.4 from [11], we will find a sequence *x* in \mathbb{B} such that $0 \in \lim_{O_{1s}}(x) \setminus \lim_{O_{1s}}(x)$.

Let $\mathcal{T} \subset [\omega]^{\omega}$ be a base matrix tree and $Br(\mathcal{T})$ the set of its maximal branches. Since the height of \mathcal{T} is \mathfrak{h} , the branches of \mathcal{T} are of size $\leq \mathfrak{h}$; so $\kappa := |Br(\mathcal{T})| \leq c^{\mathfrak{h}} = 2^{\mathfrak{h}}$ and we take a one-to-one enumeration $Br(\mathcal{T}) = \{T_{\alpha} : \alpha < \kappa\}$.

Since $1 \Vdash (\mathfrak{h}^V)^{\check{}} < \mathfrak{t}$, for each $\alpha < \kappa$ we have $1 \Vdash |\check{T}_{\alpha}| < \mathfrak{t}$ and, consequently, in each generic extension of the ground model by \mathbb{B} the family T_{α} obtains a pseudointersection. Thus $1 \Vdash \exists X \in [\check{\alpha}]^{\check{\alpha}} \forall B \in \check{T}_{\alpha} X \subset^* B$ so, by the Maximum Principle (see [7, p. 226]), there is a name $\sigma_{\alpha} \in V^{\mathbb{B}}$ such that

$$1 \Vdash \sigma_{\alpha} \in [\check{\omega}]^{\check{\omega}} \land \forall B \in \check{T}_{\alpha} \ \sigma_{\alpha} \subset^{*} B.$$
(8)

Since $cc(\mathbb{B}) > 2^{\mathfrak{h}} \ge \kappa$, there is a maximal antichain in \mathbb{B} of cardinality κ , say $\{b_{\alpha} : \alpha < \kappa\}$. By the Mixing lemma (see [7, p. 226]) there is a name $\tau \in V^{\mathbb{B}}$ such that

$$\forall \alpha < \kappa \ b_{\alpha} \Vdash \tau = \sigma_{\alpha}, \tag{9}$$

and, clearly, $1 \Vdash \tau \in [\check{\omega}]^{\check{\omega}}$. Let $x = \langle x_n \rangle \in \mathbb{B}^{\omega}$, where $x_n := ||\check{n} \in \tau||$, for $n \in \omega$. Then for the corresponding name $\tau_x = \{\langle \check{n}, x_n \rangle : n \in \omega\}$ we have

$$1 \Vdash \tau = \tau_x. \tag{10}$$

Now, by Claims 1 and 2 from the proof of Theorem 6.4 from [11] we have

$$0 \in \lim_{O_{\lambda_{ls}}} (x) \setminus \lambda_{ls}^*(x).$$

By Facts 2.2(a) and 2.3(g) we have $\lim_{O_{\lambda_s}}(x) = \lambda_s^*(x) = \lambda_{ls}^*(x) \cap \lambda_{li}^*(x)$ and, since $0 \notin \lambda_{ls}^*(x)$, it follows that $0 \notin \lim_{O_{\lambda_s}}(x)$.

By Theorem 3.1 we have $\lim_{O_{lsi}}(x) = \lim_{O_{\lambda_{ls}}}(x) \cap \lim_{O_{\lambda_{ls}}}(x)$ and, since $0 \in \lim_{O_{\lambda_{ls}}}(x)$, it remains to be proved that $0 \in \lim_{O_{\lambda_{ls}}}(x)$. But, if $0 \in O \in O_{\lambda_{li}}$, then, since O is an upward-closed set, we have $O = \mathbb{B}$. Consequently, $x_n \in O$, for all $n \in \omega$, so $0 \in \lim_{O_{\lambda_{ls}}}(x)$. \Box

Example 3.7. An algebra for which the diagrams describing convergences and topologies from Figure 1 contain exactly 9 and 4 different objects respectively.

If \mathbb{B} is a complete Boolean algebra which collapses 2^{b} to ω (e.g. the collapsing algebra $\operatorname{Coll}(\omega, 2^{b}) = \text{r.o.}({}^{<\omega}(2^{b})))$, then \mathbb{B} satisfies the assumptions of Theorem 3.6 and, hence, $\lim_{O_{\lambda_{s}}} < \lim_{O_{\mathrm{lsi}}} \operatorname{and} O_{\mathrm{lsi}} \subsetneq O_{\lambda_{s}}$. By Theorem 6.4 from [11] the same conditions provide that the convergence λ_{ls} is not weakly topological, which, by Fact 2.1(a), gives $\lambda_{\mathrm{ls}}^{*} < \lim_{O_{\lambda_{\mathrm{ls}}}}$. By Theorem 4.4 from [11], the mapping $h: \langle \mathbb{B}, O_{\lambda_{\mathrm{ls}}} \rangle \to \langle \mathbb{B}, O_{\lambda_{\mathrm{li}}} \rangle$ given by h(b) = b', for each $b \in \mathbb{B}$, is a homeomorphism, so $\lambda_{\mathrm{li}}^{*} < \lim_{O_{\lambda_{\mathrm{li}}}} as$ well. Assuming that $\lambda_{\mathrm{ls}} = \lambda_{\mathrm{ls}}^{*}$, by duality we would have $\lambda_{\mathrm{li}} = \lambda_{\mathrm{li}}^{*}$ and, by Theorem 3.1, $\lim_{O_{\lambda_{\mathrm{s}}}} = \lambda_{\mathrm{s}}^{*} = \lambda_{\mathrm{ls}}^{*} \cap \lambda_{\mathrm{li}}^{*} = \lambda_{\mathrm{ls}} \cap \lambda_{\mathrm{li}} = \lambda_{\mathrm{s}}$. But this is not true since the algebra \mathbb{B} is not ($\omega, 2$)-distributive. Thus $\lambda_{\mathrm{ls}} < \lambda_{\mathrm{ls}}^{*}$ and, similarly, $\lambda_{\mathrm{li}} < \lambda_{\mathrm{li}}^{*}$. By Fact 2.2(b) we have $\lambda_{\mathrm{s}} < \lim_{O_{\lambda_{\mathrm{s}}}}$. The rest follows from Theorem 3.1.

References

- [1] B. Balcar, W. Glówczyński, T. Jech, The sequential topology on complete Boolean algebras, Fund. Math. 155 (1998) 59-78.
- [2] B. Balcar, T. Jech, Weak distributivity, a problem of von Neumann and the mistery of measurability, Bull. Symbolic Logic 12:2 (2006) 241–266.
- [3] B. Balcar, T. Jech, T. Pazák, Complete ccc Boolean algebras, the order sequential topology and a problem of von Neumann, Bull. Lond. Math. Soc. 37:6 (2005) 885–898.
- [4] B. Balcar, J. Pelant, P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980) 11-24.
- [5] E.K. van Douwen, The integers and topology, in: K. Kunen and J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 111–167.
- [6] I. Farah, Examples of ε -exhaustive pathological submeasures, Fund. Math. 181 (2004) 257–272.
- [7] K. Kunen, Set Theory, An Introduction to Independence Proofs, (North-Holland, Amsterdam, 1980).
- [8] M. S. Kurilić, A. Pavlović, A posteriori convergence in complete Boolean algebras with the sequential topology, Ann. Pure Appl. Logic 148,1-3 (2007) 49–62.
- [9] M.S. Kurilić, A. Pavlović, Some forcing related convergence structures on complete Boolean algebras, Novi Sad J. Math. 40:2 (2010) 77–94.
- [10] M.S. Kurilić, A. Pavlović, The convergence of the sequences coding the ground model reals, Publ. Math. Debrecen 82:2 (2013) 277–292.
- [11] M.S. Kurilić, A. Pavlović, A convergence on Boolean algebras generalizing the convergence on the Alexandrov cube, Czechoslovak Math. J. 64(139):2 (2014) 519–537.
- [12] M.S. Kurilić, S. Todorčević, Property (ħ) and cellularity of complete Boolean algebras, Arch. Math. Logic 48:8 (2009) 705–718.
- [13] D. Maharam, An algebraic characterization of measure algebras, Ann. of Math., 48 (1947) 154–167.
- [14] R.D. Mauldin (ed.), The Scottish Book (Mathematics from the Scottish Café), Birkhäuser, Boston MA, 1981.
- [15] M. Talagrand, Maharam's problem, C. R. Acad. Sci. Paris, Ser. I 342 (2006) 501-503.
- [16] M. Talagrand, Maharam's problem, Ann. of Math. 168:3 (2008) 981–1009.
- [17] S. Todorčević, A problem of von Neumann and Maharam about algebras supporting continuous submeasures, Fund. Math. 183:2 (2004) 169–183.
- [18] B. Veličković, ccc forcing and splitting reals, Israel J. Math. 147 (2005) 209-220.