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Abstract. For the algebraic convergence λs, which generates the well known sequential topology τs on
a complete Boolean algebra B, we have λs = λls ∩ λli, where the convergences λls and λli are defined by
λls(x) = {lim sup x}↑ and λli(x) = {lim inf x}↓ (generalizing the convergence of sequences on the Alexandrov
cube and its dual). We consider the minimal topology Olsi extending the (unique) sequential topologies
Oλls (left) and Oλli (right) generated by the convergences λls and λli and establish a general hierarchy
between all these topologies and the corresponding a priori and a posteriori convergences. In addition, we
observe some special classes of algebras and, in particular, show that in (ω, 2)-distributive algebras we have
limOlsi = limτs = λs, while the equality Olsi = τs holds in all Maharam algebras. On the other hand, in some
collapsing algebras we have a maximal (possible) diversity.

1. Introduction

It is known that a sequence 〈xn : n ∈ ω〉 of reals from the unit interval I = [0, 1] converges to a point a ∈ I
with respect to the left (resp. right, standard) topology on I if and only if a ≥ lim sup xn (resp. a ≤ lim inf xn,
a = lim inf xn = lim sup xn) and, more generally, these three properties define three convergence structures
on any complete lattice or σ-complete Boolean algebra. In this paper, continuing the investigation from
[8]–[12], we consider the corresponding convergences λls, λli and λs on a complete Boolean algebra B,
as well as the sequential topologies Oλls , Oλli and Oλs on B generated by them. Having in mind that the
union of the left and the right topology on I generates the standard topology on that interval, we regard
the minimal topology Olsi on B extending Oλls ∪Oλli , as well as the corresponding topological convergence
limOlsi on B, and explore the relationship between all the topologies and convergences mentioned above.
It turns out that λs ≤ limOλs

≤ limOlsi and Olsi ⊂ Oλs and that there are several possibilities consistent with
these constraints. For example, if B is the power set algebra P(ω), then we have an analogy to the unit
interval: λs = limOlsi and Olsi = Oλs ; if B is a Maharam algebra (i.e. admits a strictly positive Maharam
submeasure), then λs < limOlsi and Olsi = Oλs ; finally, for some collapsing algebras we obtain a maximal
diversity: λs < limOλs

< limOlsi and Olsi  Oλs .
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We note that the topologyOλs on a complete Boolean algebra (c.B.a)B (traditionally called the sequential
topology and denoted by τs), generated by the convergence λs (traditionally called the algebraic convergence)
was widely considered in the context of the von Neumann problem [14]: Is each ccc weakly distributive
c.B.a. a measure algebra? A consistent counter-example (a Suslin algebra) was given by Maharam [13]. In
addition, Maharam has shown that the topology Oλs is metrizable iff B is a Maharam algebra and asked
whether this implies that B admits a measure (the Control Measure Problem, negatively solved by M.
Talagrand [15, 16]). Moreover, Balcar, Jech and Pazák [3] and, independently, Veličković [18], proved that
it is consistent that the topology Oλs is metrizable on each complete ccc weakly distributive algebra. (See
also [1, 2, 6, 17] for that topic).

Regarding the power set algebras, P(κ), the convergence λs is exactly the convergence on the Cantor
cube, while λls generalizes the convergence on the Alexandrov cube in the same way (see [11]). Further,
on any c.B.a., the topologies Oλls and Oλli are homeomorphic (take f (a) = a′) and generated by some other
convergences relevant for set-theoretic forcing (see [9, 10]). For obvious reasons, the topology Oλls (resp.
Oλli ) will be called the left (resp. the right) topology on B (see also Fact 2.3(i)).

2. Preliminaries

Convergence. Here we list the standard facts concerning convergence structures which will be used in the
paper. (For details and proofs see, for example, [9].)

Let X be a non-empty set. Each mapping x : ω → X is called a sequence in X. Usually, instead of x(n)
we write xn and x = 〈xn : n ∈ ω〉. A constant sequence 〈a, a, . . .〉 is denoted shortly by 〈a〉. A sequence y ∈ Xω

is said to be a subsequence of x iff there is an increasing function f : ω → ω (notation: f ∈ ω↑ω) such that
y = x ◦ f ; then we write y ≺ x.

Each mapping λ : Xω
→ P(X) is called a convergence. The set Conv(X) = P(X)(Xω) of all convergences on

the set X ordered by the relation λ1 ≤ λ2 ifand only if λ1(x) ⊆ λ2(x), for each x ∈ Xω, is, clearly, a Boolean
lattice and λ1 ∩ λ2 will denote the infimum λ1 ∧ λ2; that is, (λ1 ∩ λ2)(x) = λ1(x) ∩ λ2(x), for all x ∈ Xω. If
|λ(x)| ≤ 1 for each sequence x, then λ is called a Hausdorff convergence.

Let 〈X,O〉 be a topological space. A point a ∈ X is a limit point of a sequence x ∈ Xω if and only if each
neighborhood of a contains all but finitely many members of x. The set of all limit points of a sequence
x ∈ Xω is denoted by limO(x) and so we obtain a convergence limO : Xω

→ P(X), that is, limO ∈ Conv(X).
Let Top(X) denote the lattice of all topologies on the set X. A convergence λ ∈ Conv(X) is called

topological, we will write λ ∈ TopConv(X), if and only if there is a topology O ∈ Top(X) such that λ = limO.
So we establish the mapping

G : Top(X)→ TopConv(X), where G(O) = limO .

A topology O ∈ Top(X) is called sequential, we will write O ∈ SeqTop(X) if and only if in the space 〈X,O〉
we have: a set A ⊂ X is closed if and only if it is sequentially closed (that is, limO(x) ⊂ A, for each sequence
x ∈ Aω). If O1,O2 ∈ SeqTop(X) and limO1 = limO2 , then O1 = O2. (We note that this is false in general:
take the discrete and the co-countable topology on the real line; in both spaces exactly the almost-constant
sequences converge.) So, G is one-to-one on SeqTop(X).

For each convergence λ ∈ Conv(X) there is a (unique) maximal topology Oλ such that λ ≤ limOλ . The
topology Oλ is sequential; so, we obtain the mapping

F : Conv(X)→ SeqTop(X), defined by F(λ) = Oλ.

F and G are antitone mappings, that is, λ1 ≤ λ2 implies that Oλ2 ⊂ Oλ1 and O1 ⊂ O2 implies limO2 ≤ limO1 .
Moreover, a convergence λ is topological if and only if λ = limOλ (= G(F(λ))) and, by Theorem 2.6 of [9], a
topologyO is sequential if and only ifO = OlimO (= F(G(O)). We remark that, in fact, the pair F,G is an antitone
Galois connection between the complete lattices Conv(X) and Top(X), because O ⊂ F(λ) ⇔ λ ≤ G(O), for
each λ ∈ Conv(X) andO ∈ Top(X). (IfO ⊂ Oλ, then λ ≤ limOλ ≤ limO. Conversely, if λ ≤ limO, thenO ⊂ Oλ,
by the maximality of Oλ). Moreover, the restriction F � TopConv(X) is a bijection from TopConv(X) onto
SeqTop(X) and G � SeqTop(X) is its inverse.
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Each topological convergence λ satisfies the following conditions:
(L1) ∀a ∈ X a ∈ λ(〈a〉),
(L2) ∀x ∈ Xω

∀y ≺ x λ(x) ⊂ λ(y),
(L3) ∀x ∈ Xω

∀a ∈ X ((∀y ≺ x ∃z ≺ y a ∈ λ(z))⇒ a ∈ λ(x)).
If λ ∈ Conv(X) satisfies (L1) and (L2), then Oλ = {X \ F : F ⊂ X ∧ uλ(F) = F}, where uλ : P(X) → P(X) is
the operator of sequential closure determined by λ, defined by uλ(A) =

⋃
x∈Aω λ(x). In addition, the minimal

closure of λ under (L1)–(L3) is given by λ∗(x) =
⋂

f∈ω↑ω
⋃
1∈ω↑ω λ(x ◦ f ◦ 1) and λ is called a weakly-topological

convergence iff the convergence λ∗ is topological.

Fact 2.1. ([9]) If λ ∈ Conv(X) is a convergence satisfying (L1) and (L2), then
(a) λ is weakly-topological if and only if limOλ = λ∗, that is, for each x ∈ Xω and a ∈ X

a ∈ limOλ (x)⇔ ∀y ≺ x ∃z ≺ y a ∈ λ(z)

(see [9, Theorem 4.1]);
(b) If λ is a Hausdorff convergence, then λ∗ is Hausdorff and weakly-topological ([9, Theorem 4.2]).

Convergences on Boolean algebras. LetB be a complete Boolean algebra or, more generally, a complete lattice.
If 〈xn : n ∈ ω〉 is a sequence of its elements, lim inf xn :=

∨
k∈ω
∧

n≥k xn and lim sup xn :=
∧

k∈ω
∨

n≥k xn, then,
clearly, lim inf xn ≤ lim sup xn. We consider the convergences λls, λli, λs : Bω → P(B) defined by

λls(〈xn〉) = {lim sup xn}↑, (1)
λli(〈xn〉) = {lim inf xn}↓, (2)

λs(〈xn〉) =

{
{x} if lim inf xn = lim sup xn = x,
0 if lim inf xn < lim sup xn,

(3)

where A ↑:= {b ∈ B : ∃a ∈ A b ≥ a} and A ↓:= {b ∈ B : ∃a ∈ A b ≤ a}, for A ⊂ B. The following property of
c.B.a.’s will play a role in this paper

∀x ∈ Bω ∃y ≺ x ∀z ≺ y lim sup z = lim sup y. (~)

We note that property (~) is closely related to the cellularity of Boolean algebras. Namely, by [8], t-cc⇒ (~)⇒
s-cc and, in particular, ccc complete Boolean algebras satisfy (~). By [12], the set {κ ∈ Card: κ-cc ⇒ (~)} is
equal either to [0, h), or to [0, h] and {κ ∈ Card: (~) ⇒ κ-cc } = [s,∞). Basic facts concerning the invariants
of the continuum t, s, and h can be found in [5].

Fact 2.2. ([8]) If B is a complete Boolean algebra, then we have
(a) λs is a weakly-topological Hausdorff convergence satisfying (L1) and (L2) ([8, Lemma 3]);
(b) λs is a topological convergence if and only if the algebra B is (ω, 2)-distributive (see [8, Theorem 2]).

Fact 2.3. ([11]) If B is a complete non-trivial Boolean algebra, then
(a) λls and λli are non-Hausdorff convergences satisfying (L1) and (L2) ([11, Theorem 4.3]);
(b) If B satisfies (~), then λls and λli are weakly-topological convergences ([11, Theorem 6.1]);
(c) λls is topological if and only if λli is topological if and only if the algebra B is (ω, 2)-distributive ([11, Theorem

3.5]);
(d) λs = λls ∩ λli ([11, Theorem 4.3]);
(e) Oλls ,Oλli ⊂ Oλs ([11, Theorem 4.3]);
(f) λ∗ls ≤ limOλls

and λ∗li ≤ limOλli
([11, Theorem 4.3]);

(g) λ∗s = λ∗ls ∩ λ
∗

li ([11, Theorem 4.3]);
(h) Oλls and Oλli are homeomorphic, T0, connected and compact topologies ([11, Theorem 4.4]);
(i) A set F ⊂ B is Oλls -closed if and only if it is upward-closed and

∧
n∈ω xn ∈ F, for each decreasing sequence

〈xn〉 ∈ Fω; (and dually, for Oλli -closed sets) ([11, Theorem 4.4]).
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3. The Topology Olsi on Boolean Algebras

On a complete Boolean algebra B we consider the minimal topology containing the topologies Oλls and
Oλli . This topology, denoted by Olsi, is generated by the base Blsi = {O1 ∩O2 : O1 ∈ Oλls ∧O2 ∈ Oλli }. By Fact
2.3(i), the sets from Oλls (resp.Oλli ) are downward (resp. upward)-closed; so, the elements ofBlsi are convex
subsets of B.

Theorem 3.1. The following diagrams show the relations between the considered convergences and topologies on a
non-trivial c.B.a. B. In addition, we have

(a) λls ∩ λli = λs, λ∗ls ∩ λ
∗

li = λ∗s and limOλls
∩ limOλli

= limOlsi ;
(b) λs < λls, λli, λ∗s < λ∗ls, λ

∗

li, limOlsi < limOλls
, limOλli

and Olsi ) Oλls ,Oλli .
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Figure 1: Convergences and topologies on B

Proof. By Fact 2.3(e) we have Oλls ,Oλli ⊂ Oλs and the inclusion Olsi ⊂ Oλs follows from the minimality of
Olsi. So the diagram for topologies is correct.

By Fact 2.3(d) and (g) we have λs = λls∩λli and λ∗s = λ∗ls∩λ
∗

li, which implies λs ≤ λls, λli and λ∗s ≤ λ∗ls, λ
∗

li.
By Facts 2.2(a) and 2.3(a), λs is a Hausdorff convergence, while λls and λli are not; thus, λs < λls, λli. By Fact
2.1(b) λ∗s is a Hausdorff convergence and, clearly, λ∗ls and λ∗li are not Hausdorff; so, λ∗s < λ∗ls, λ

∗

li.
By the construction of the closure λ∗ it follows that we always have λ ≤ λ∗; thus λls ≤ λ∗ls, λli ≤ λ∗li and

λs ≤ λ∗s. By Fact 2.3(f) we have λ∗ls ≤ limOλls
and λ∗li ≤ limOλli

. The equality λ∗s = limOλs
follows from Facts

2.2(a) and 2.1(a). Since Olsi ⊂ Oλs we have limOλs
≤ limOlsi .

Further we prove that limOlsi = limOλls
∩ limOλli

. Since Oλls ,Oλli ⊂ Olsi, we have limOlsi ≤ limOλls
, limOλli

.
Conversely, if a ∈ limOλls

(x) ∩ limOλli
(x) and U is a Olsi-neighborhood of a, then there is O1 ∩ O2 ∈ Blsi such

that a ∈ O1 ∩O2 ⊂ U and, hence, there are ni ∈ ω, i ∈ {1, 2}, such that xn ∈ Oi, for each n ≥ ni. Thus for each
n ≥ max{n1,n2}we have xn ∈ U, so a ∈ limOlsi (x).

So we have limOlsi ≤ limOλls
, limOλli

. Since we have 1 ∈ λls(〈0〉), assuming that limOlsi = limOλls
, we would

have λls ≤ limOλls
≤ limOλli

and, therefore 1 ∈ limOλli
(〈0〉). Now, since the sets from Oλli are upward-closed,

for a non-empty set O ∈ Oλli we would have 1 ∈ O and, since 1 ∈ limOλli
(〈0〉), 0 ∈ O as well, which would

give O = B. So Oλli would be the antidiscrete topology which is false, because it is T0. Thus limOlsi < limOλls

and, similarly, limOlsi < limOλli
, which implies that Olsi ) Oλls ,Oλli .

In the sequel we consider the topologyOlsi and its convergence and investigate the form of the diagrams
in Figure 1 for particular (classes of) Boolean algebras. In particular, it is natural to ask for which complete
Boolean algebras we have

Olsi = Oλs or, at least, limOlsi = limOλs
? (4)

First we give some sufficient conditions for these equalities.
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Theorem 3.2. Let B be a complete Boolean algebra. Then
(a) If the algebra B satisfies condition (~), then limOlsi = limOλs

;
(b) If the algebra B is (ω, 2)-distributive, then limOλls

= λls, limOλli
= λli and limOlsi = limOλs

= λs; so the
diagram for convergences collapses to 3 nodes;

(c) If limOlsi = limOλs
, then Olsi = Oλs if and only if 〈B,Olsi〉 is a sequential space.

Proof. (a) By Theorem 3.1 we have Olsi ⊂ Oλs so, limOλs
≤ limOlsi .

Conversely, assuming that x ∈ Bω and a ∈ limOlsi (x), by Theorem 3.1 we have

a ∈ limOλls
(x) ∩ limOλli

(x) (5)

and we should prove that a ∈ limOλs
(x). Thus, by Facts 2.2(a) and 2.1(a), we have to show that for each y ≺ x

there is z ≺ y such that lim sup z = lim inf z = a.
Let y be a subsequence of x. By Fact 2.3(b) the convergence λls is weakly topological so, by (5) and Fact

2.1(a), there is z′ ≺ y such that lim sup z′ ≤ a. Since z′ ≺ x and the convergence λli is weakly topological, by
(5) and Fact 2.1(a) again, there is z ≺ z′ such that lim inf z ≥ a. Now, we have lim sup z ≤ lim sup z′ ≤ a ≤
lim inf z, which implies that lim inf z = lim sup z = a.

(b) If the algebra B is (ω, 2)-distributive, then by Facts 2.2(b) and 2.3(c) we have limOλs
= λs, limOλls

= λls
and limOλli

= λli. Thus, by Theorem 3.1 we have limOlsi = limOλls
∩ limOλli

= λls ∩ λli = λs = limOλs
.

(c) The implication “⇒” is true because the topology Oλs is sequential. If limOlsi = limOλs
, and Olsi is a

sequential topology, then (since a topology O is sequential if and only if O = OlimO ) we have Olsi = OlimOlsi
=

OlimOλs
= Oλs .

The unit interval. Although the unit interval I = [0, 1] is not a Boolean algebra, it provides obvious examples
of the convergences considered in this paper. Let O← = {[0, a) : 0 < a ≤ 1} ∪ {∅, I} and O→ = {(a, 1] : 0 ≤ a <
1} ∪ {∅, I} be the left and the right topology on I and let Ost denote the standard topology on I. It is easy to
check that defining λls(〈xn〉) = {x ∈ I : x ≥ lim sup xn} and λli(〈xn〉) = {x ∈ I : x ≤ lim inf xn}we have

limO← = λls and limO→ = λli and limOst = λs. (6)

We recall that a topologyO is sequential if and only ifO = OlimO . So since the topologyO← is first countable
and, hence, sequential, by (6) we have Oλls = OlimO← = O←; and similarly for the other two topologies. So

Oλls = O← and Oλli = O→ and Oλs = Ost. (7)

SinceO←∪O→ is a subbase ofOst we haveOst = O(O←∪O→) and by (7) we haveOλs = Ost = O(O←∪O→) =
O(Oλls ∪ Oλli ) = Olsi and (4) is true.

Power set algebras. Let κ ≥ ω be a cardinal. We recall that the Alexandrov cube of weight κ is the product of κ
many copies of the two point space 2 = {0, 1} with the topology {∅, {0}, {0, 1}}. Identifying the sets P(κ) and
2κ via characteristic functions we obtain a homeomorphic copy Aκ = 〈P(κ), τAκ〉 of that space. We recall
that for a sequence 〈Xn : n ∈ ω〉 in P(κ) we have

lim infn∈ω Xn =
⋃

k∈ω
⋂

n≥k Xn = {x : x ∈ Xn for all but finitely many n},
lim supn∈ω Xn =

⋂
k∈ω
⋃

n≥k Xn = {x : x ∈ Xn for infinitely many n}. Further, the Cantor cube of weight κ is
the product of κ many copies of the two point discrete space 2 = {0, 1} and, identifying the sets P(κ) and 2κ

again, we obtain its homeomorphic copy Cκ = 〈P(κ), τCκ〉. By [11, Theorem 4.2] we have

Fact 3.3. For the power algebra P(κ) with the Aleksandrov topology we have
(a) λls = limOλls

= limτAκ ; thus λls is a topological convergence;
(b) 〈P(κ), τAκ〉 is a sequential space if and only if Oλls = τAκ if and only if κ = ω;
(c) If κ > ω, then τAκ  Oλls 1 τCκ .

For the power algebra P(κ) with the Cantor topology we have
(d) λs = limOλs

= limτCκ ; thus λs is a topological convergence;
(e) 〈P(κ), τCκ〉 is a sequential space if and only if Oλs = τCκ if and only if κ = ω;
(f) If κ > ω, then τCκ  Oλs .
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Let τAc
κ

be the topology on the power algebra P(κ) obtained by the standard identification of P(κ) and 2κ

with the Tychonov topology of κ many copies of the space 2 with the topology {∅, {1}, {0, 1}}. Then, clearly,
X 7→ κ \X is a homeomorphism fromAκ = 〈P(κ), τAκ〉 onto the reversed Alexandrov cubeAc

κ = 〈P(κ), τAc
κ
〉.

Replacing τAκ by τAc
κ

and λls by λli in (a), (b) and (c) of Fact 3.3 we obtain the corresponding dual statements.
In addition, we have

Theorem 3.4. For the power algebra P(κ) we have
(a) limOlsi = λs;
(b) τCκ is the minimal topology containing τAκ and τAc

κ
;

(c) τCκ ⊂ Olsi and so Olsi is a Hausdorff topology on P(κ);
(d) For κ = ω we have Olsi = τCω = Oλs ;
(e) Olsi = τCκ if and only if κ = ω.

Proof. (a) By Fact 3.3(a) and its dual we have limOλls
= λls and limOλli

= λli. Now, by Theorem 3.1,
limOlsi = limOλls

∩ limOλli
= λls ∩ λli = λs.

(b) Let O be the minimal topology containing τAκ and τAc
κ
. A subbase for the topology τAκ (resp.

τAc
κ
) consists of the sets Bi := {X ⊂ κ : i < X} (resp. Bc

i := {X ⊂ κ : i ∈ X}), where i ∈ κ; while the family
SCκ :=

⋃
i∈κ{Bi,Bc

i } is a subbase for the topology τCκ . Thus τAκ ∪τAc
κ
⊂ τCκ and, hence, O ⊂ τCκ . On the other

hand, SCκ ⊂ τAκ ∪ τAc
κ
⊂ O, which gives τCκ ⊂ O.

(c) By Fact 3.3 and its dual we have τAκ ⊂ Oλls and τAc
κ
⊂ Oλli . Thus τAκ ∪ τAc

κ
⊂ Olsi and τCκ ⊂ Olsi, by

the minimality of τCκ proved in (b).
(d) By (c) and Theorem 3.1, τCω ⊂ Olsi ⊂ Oλs and we apply Fact 3.3(e).
(e) By (d) the implication “⇐” is true. Assuming thatOlsi = τCκ and κ > ω, by Fact 3.3(c) we would have

Oλls 1 τCκ , which gives a contradiction because Oλls ⊂ Olsi.
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Figure 2: Convergences and topologies on the algebra P(κ)

For the power set algebras the diagrams from Figure 1 are presented in Figure 2. Namely, by Theorem
3.2(b), the diagram describing convergences collapses to three nodes. The diagram for topologies in Figure
2 contains the topologies from Figure 1 as well as the topologies of the Cantor, Alexandrov and reversed
Alexandrov cube (see Fact 3.3(c) and Theorem 3.4(c)). By Fact 3.3(b) and (e), for κ = ω the diagram
describing topologies contains exactly three different topologies. So, for the algebra P(ω) we haveOlsi = Oλs

and (4) is true.
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Maharam algebras. We recall that a submeasure on a complete Boolean algebra B is a function µ : B→ [0,∞)
satisfying:

(i) µ(0) = 0;
(ii) a ≤ b⇒ µ(a) ≤ µ(b) and
(iii) µ(a ∨ b) ≤ µ(a) + µ(b).

A submeasure µ is strictly positive if and only if
(iv) a > 0⇒ µ(a) > 0.

A submeasure µ is called a Maharam (or a continuous) submeasure if and only if
(v) limn→∞ µ(an) = 0 holds for each decreasing sequence 〈an : n ∈ ω〉 in B satisfying

∧
n∈ω an = 0.

It is easy to prove that ifµ is a Maharam submeasure, then limn→∞ µ(an) = µ(
∧

n∈ω an), for each decreasing
sequence 〈an〉 in B. A complete Boolean algebra B admitting a strictly positive Maharam submeasure is
called a Maharam algebra.

Theorem 3.5. On each Maharam algebra B we have Olsi = Oλs .

Proof. Under the assumption, d(x, y) = µ(x M y) is a metric onBwhich generates the topologyOλs (see [13]).
For a non-empty set O ∈ Oλs we show that O ∈ Olsi. Let a ∈ O and r > 0, where B(a, r) = {x ∈ B : µ(x M a) <
r} ⊂ O. Let

O1 = {x ∈ B : µ(x \ a) < r/2} and O2 = {x ∈ B : µ(a \ x) < r/2}.

Then by (i) we have a ∈ O1 ∩ O2. If x ∈ O1 ∩ O2, then, by (iii), µ(x M a) ≤ µ(x \ a) + µ(a \ x) < r and, hence,
x ∈ B(a, r), thus a ∈ O1 ∩O2 ⊂ O.

Let us prove that O1 ∈ Oλls . By Fact 2.3(a) the convergence λls satisfies (L1) and (L2), so it is sufficient to
prove that B \O1 is a closed set, which means that uλls (B \O1) ⊂ B \O1. By (iii), the set B \O1 is upward-
closed and it is sufficient to show that for a sequence 〈xn〉 in B \ O1 we have lim sup xn ∈ B \ O1, that is
µ(lim sup xn\a) ≥ r/2. By the assumption we haveµ(xn\a) ≥ r/2, for each n ∈ ω. Now lim sup xn\a =

∧
k∈ω yk,

where yk =
∨

n≥k xn \ a, k ∈ ω, is a decreasing sequence and µ(yk) ≥ r/2 so, by the continuity of µ,
µ(lim sup xn \ a) = limk→∞ µ(yk) ≥ r/2. Similarly we prove that O2 ∈ Oλli so O1 ∩ O2 ∈ Olsi and O is an
Olsi-neighborhood of the point a.
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λ∗li = limOλli

Oλls Oλli

Oλs = Olsi

Figure 3: Non-(ω, 2)-distributive Maharam algebras

Thus, if B is a Maharam algebra which is not (ω, 2)-distributive (for example, the algebra of the Lebesgue-
measurable subsets of [0, 1] modulo the ideal of the sets of measure zero), then, the Figure 3 describes
the corresponding diagrams. Namely, by Facts 2.2(a) and 2.1(a) we have limOλs

= λ∗s and, by Fact 2.2(b),
λs , limOλs

. Since the algebras with strictly positive measure satisfy the countable chain condition the
algebra B has (~). Thus, by Facts 2.3(b) and 2.1(a) we have limOλls

= λ∗ls and limOλli
= λ∗li. By Fact 2.3(c) we

have λls , limOλls
and λli , limOλli

. By Theorem 3.5 we have Olsi = Oλs and, hence, limOlsi = limOλs
.
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Collapsing algebras. We show that both equalities from (4) can fail. We recall that a family T ⊂ [ω]ω is a tower
if and only if it is well-ordered by ∗) and has no pseudointersection; the tower number, t, is the minimal
cardinality of a tower. The distributivity number, h, is the smallest number of dense open families in the
preorder 〈[ω]ω,⊂∗〉 with empty intersection. A family T ⊂ [ω]ω is called a base matrix tree if and only if
〈T , ∗⊃〉 is a tree of height h and T is a dense set in the preorder 〈[ω]ω,⊂∗〉. By a theorem of Balcar, Pelant
and Simon (see [4]), such a tree always exists, its levels are maximal almost disjoint families and maximal
chains in T are towers.

Theorem 3.6. If B is a complete Boolean algebra satisfying 1 B (hV)ˇ < t and cc(B) > 2h, then limOλs
< limOlsi

and Olsi  Oλs .

Proof. Using the construction from the proof of Theorem 6.4 from [11], we will find a sequence x in B such
that 0 ∈ limOlsi (x) \ limOλs

(x).
Let T ⊂ [ω]ω be a base matrix tree and Br(T ) the set of its maximal branches. Since the height of T

is h, the branches of T are of size ≤ h; so κ := |Br(T )| ≤ ch = 2h and we take a one-to-one enumeration
Br(T ) = {Tα : α < κ}.

Since 1  (hV)ˇ < t, for each α < κ we have 1  |Ťα| < t and, consequently, in each generic extension of
the ground model by B the family Tα obtains a pseudointersection. Thus 1  ∃X ∈ [ω̌]ω̌ ∀B ∈ Ťα X ⊂∗ B so,
by the Maximum Principle (see [7, p. 226]), there is a name σα ∈ VB such that

1  σα ∈ [ω̌]ω̌ ∧ ∀B ∈ Ťα σα ⊂
∗ B. (8)

Since cc(B) > 2h ≥ κ, there is a maximal antichain in B of cardinality κ, say {bα : α < κ}. By the Mixing
lemma (see [7, p. 226]) there is a name τ ∈ VB such that

∀α < κ bα  τ = σα, (9)

and, clearly, 1  τ ∈ [ω̌]ω̌. Let x = 〈xn〉 ∈ Bω, where xn := ‖ň ∈ τ‖, for n ∈ ω. Then for the corresponding
name τx = {〈ň, xn〉 : n ∈ ω}we have

1  τ = τx. (10)

Now, by Claims 1 and 2 from the proof of Theorem 6.4 from [11] we have

0 ∈ limOλls
(x) \ λ∗ls(x).

By Facts 2.2(a) and 2.3(g) we have limOλs
(x) = λ∗s(x) = λ∗ls(x) ∩ λ∗li(x) and, since 0 < λ∗ls(x), it follows that

0 < limOλs
(x).

By Theorem 3.1 we have limOlsi (x) = limOλls
(x)∩ limOλli

(x) and, since 0 ∈ limOλls
(x), it remains to be proved

that 0 ∈ limOλli
(x). But, if 0 ∈ O ∈ Oλli , then, since O is an upward-closed set, we have O = B. Consequently,

xn ∈ O, for all n ∈ ω, so 0 ∈ limOλli
(x).

Example 3.7. An algebra for which the diagrams describing convergences and topologies from Figure 1
contain exactly 9 and 4 different objects respectively.

If B is a complete Boolean algebra which collapses 2h to ω (e.g. the collapsing algebra Coll(ω, 2h) =
r.o.(<ω(2h))), then B satisfies the assumptions of Theorem 3.6 and, hence, limOλs

< limOlsi and Olsi  Oλs .
By Theorem 6.4 from [11] the same conditions provide that the convergence λls is not weakly topological,
which, by Fact 2.1(a), gives λ∗ls < limOλls

. By Theorem 4.4 from [11], the mapping h : 〈B,Oλls〉 → 〈B,Oλli〉

given by h(b) = b′, for each b ∈ B, is a homeomorphism, so λ∗li < limOλli
as well. Assuming that λls = λ∗ls, by

duality we would have λli = λ∗li and, by Theorem 3.1, limOλs
= λ∗s = λ∗ls ∩ λ

∗

li = λls ∩ λli = λs. But this is not
true since the algebra B is not (ω, 2)-distributive. Thus λls < λ∗ls and, similarly, λli < λ∗li. By Fact 2.2(b) we
have λs < limOλs

. The rest follows from Theorem 3.1.
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[9] M.S. Kurilić, A. Pavlović, Some forcing related convergence structures on complete Boolean algebras, Novi Sad J. Math. 40:2

(2010) 77–94.
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[12] M.S. Kurilić, S. Todorčević, Property (~) and cellularity of complete Boolean algebras, Arch. Math. Logic 48:8 (2009) 705–718.
[13] D. Maharam, An algebraic characterization of measure algebras, Ann. of Math., 48 (1947) 154–167.
[14] R.D. Mauldin (ed.), The Scottish Book (Mathematics from the Scottish Café), Birkhäuser, Boston MA, 1981.
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