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Abstract. For 0 < p < 1, the notions of symmetric and asymmetric Lp-intersection bodies were introduced
by Haberl and Ludwig. Recently, Wang and Li defined the general Lp-intersection bodies. In this paper,
associated with the Lp-dual affine surface areas, we give the extremum values of the general Lp-intersection
bodies. Moreover, a Brunn-Minkowski type inequality and a monotone inequality for the Lp-dual affine
surface area version of general Lp-intersection bodies are established, respectively.

1. Introduction and Main Results

LetKn denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean
spaceRn. Kn

o denote the set of convex bodies (containing the origin in their interiors) inRn. Let Sn−1 denote
the unit sphere in Rn and V(K) denote the n-dimensional volume of a body K. For the standard unit ball B
in Rn, its volume is written by ωn = V(B).

If K is a compact star shaped (with respect to the origin) in Rn, then its radial function, ρK = ρ(K, ·) :
Rn
\ {0} → [0,∞), is defined by (see [4])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn
\ {0}.

If ρK is positive and continuous, K will be called a star body (respect to the origin). Two star bodies K and
L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1. For the set of star bodies
about the origin, the set of star bodies whose centroid lie at the origin and the set of origin-symmetric star
bodies in Rn, we write Sn

o , S
n
c and Sn

os, respectively.
The notion of classical intersection body was introduced by Lutwak [14]. In the past three decades, the

intersection bodies have received considerable attentions, see two good books [4, 21].
The Lp-intersection bodies were first introduced by Haberl and Ludwig (see [6]). For K ∈ Sn

o and
0 < p < 1, the Lp-intersection body, IpK, of K is the origin-symmetric star body whose radial function is
defined by

ρ(IpK,u)p =
1
2

∫
K
| u · x |−p dx =

1
2(n − p)

∫
Sn−1
| u · v |−p ρ(K, v)n−pdS(v),
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for all u ∈ Sn−1. Here u · x denotes the standard inner product of u and x. Regarding the investigation of
Lp-intersection body, we refer to [5, 6, 37, 38].

Meanwhile, Haberl and Ludwig ([6]) defined the asymmetric Lp-intersection bodies as follows: For
K ∈ Sn

o and 0 < p < 1, the asymmetric Lp-intersection body, I+
p K, of K is given by

ρ(I+
p K,u)p =

∫
K∩u+

| u · x |−p dx, (1)

for all u ∈ Sn−1, where u+ = {x : u · x ≥ 0, x ∈ Rn
}. They ([6]) also defined I−p K = I+

p (−K). From this, we see
that for all u ∈ Sn−1,

ρ(I−p K,u)p = ρ(I+
p (−K),u)p =

∫
−K

⋂
u+

| u · x |−p dx =

∫
K

⋂
(−u)+

| u · x |−p dx = ρ(I+
p K,−u)p = ρ(−I+

p K,u)p.

This yields that

I−p K = I+
p (−K) = −I+

p K. (2)

Based on above asymmetric Lp-intersection bodies, Wang and Li (see [29, 30]) introduced the notion of
general Lp-intersection bodies with a parameter τ as follows: For K ∈ Sn

o , 0 < p < 1 and τ ∈ [−1, 1], the
general Lp-intersection body, IτpK ∈ Sn

o , of K is given by

ρ(IτpK,u)p = f1(τ)ρ(I+
p K,u)p + f2(τ)ρ(I−p K,u)p, (3)

for all u ∈ Sn−1. Here

f1(τ) =
(1 + τ)p

(1 + τ)p + (1 − τ)p , f2(τ) =
(1 − τ)p

(1 + τ)p + (1 − τ)p . (4)

Obviously, for τ = 0, we see that I0
pK = IpK. From (4), we easily know that

f1(−τ) = f2(τ), f2(−τ) = f1(τ). (5)

f1(τ) + f2(τ) = 1. (6)

Further, by (1), (3), (5) and (6), Wang and Li ([29]) gave that for τ ∈ [−1, 1],

I−τp K = Iτp(−K) = −IτpK. (7)

Associated with the general Lp-intersection bodies, Wang and Li ([29]) proved the following extremal
values inequality and a Brunn-Minkowski inequality.

Theorem 1.A. For K ∈ Sn
o , 0 < p < 1 and τ ∈ [−1, 1], then

V(IpK) ≤ V(IτpK) ≤ V(I±p K).

If K is not origin-symmetric, there is equality in the left inequality if and only if τ = 0 and equality in the right
inequality if and only if τ = ±1.

Theorem 1.B. For K,L ∈ Sn
o , 0 < p < 1 and n − p > q > 0, then for τ ∈ [−1, 1],

V(Iτp(K+̃qL))
pq

n(n−p) ≤ V(IτpK)
pq

n(n−p) + V(IτpL)
pq

n(n−p) ,

with equality if and only if K and L are dilates. Here “+̃q” denotes the Lq-radial addition.
The general Lp-intersection bodies belong to a new and rapidly evolving asymmetric Lp-Brunn-Minkowski

theory that has its own origin in the work of Ludwig, Haberl and Schuster (see [5–9, 16, 17]). For the further
researches of asymmetric Lp-Brunn-Minkowski theory, also see [1–3, 10–13, 18–20, 22, 25–36, 39–41].
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In 2010, Wang, Yuan and He ([23]) showed a type of Lp-dual affine surface area Ω̃p(K) of K. In 2015,
Wang and Wang ( [24]) made the following improvement: For K ∈ Sn

o and p > 0, the Lp-dual affine surface
area, Ω̃p(K), of K is defined by

n−
p
n Ω̃p(K)

n+p
n = sup{nṼp(K,Q∗)V(Q)

p
n : Q ∈ Sn

c }. (8)

Here the Ṽp(M,N) denotes the Lp-dual mixed volume of M,N ∈ Sn
o . When Q ∈ Sn

os, definition (8) was given
by Pei and Wang (see [19]). Now, we improve above definition (8) as follows: For K ∈ Sn

o and p > 0, the
Lp-dual affine surface area, Ω̃p(K), of K is defined by

n−
p
n Ω̃p(K)

n+p
n = sup{nṼp(K,Q∗)V(Q)

p
n : Q ∈ Sn

o }. (9)

Remark 1.1. Recall that Lutwak’s Lp affine surface area was defined as follows (see [15]): For K ∈ Kn
o and

p ≥ 1, the Lp affine surface area, Ωp(K), of K is defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V(Q)

p
n : Q ∈ Sn

o }. (10)

Here, Vp(M,N) denotes the Lp mixed volume of M,N ∈ Kn
o (see [15]). Compare to (9) and (10), we see that

definition (9) is really the duality of definition (10).
In this paper, associated with the Lp-dual affine surface areas, we study the general Lp-intersection

bodies. Firstly, combined with (9), we obtain the extremum values for the Lp-dual affine surface areas of
general Lp-intersection bodies.

Theorem 1.1. For K ∈ Sn
o , 0 < p < 1 and τ ∈ [−1, 1], then

Ω̃p(IpK) ≤ Ω̃p(IτpK) ≤ Ω̃p(I±p K), (11)

if K is not origin-symmetric, there is equality in the left inequality if and only if τ = 0 and equality in the right
inequality if and only if τ = ±1.

Then, we establish the following Lp-dual affine surface areas version of Brunn-Minkowski inequality
for the general Lp-intersection bodies.

Theorem 1.2. For K,L ∈ Sn
o , n ≥ 2, 0 < p < 1, 0 < q < n − p and τ ∈ [−1, 1], then

Ω̃p(Iτp(K+̃qL))
pq(n+p)
n(n−p)2 ≤ Ω̃p(IτpK)

pq(n+p)
n(n−p)2 + Ω̃p(IτpL)

pq(n+p)
n(n−p)2 , (12)

with equality if and only if IτpK and IτpL are dilates.
Finally, we give a monotone inequality for the general Lp-intersection bodies.
Theorem 1.3. For K,L ∈ Sn

o , 0 < p < 1 and τ ∈ [−1, 1], if K ⊆ L, then

Ω̃p(IτpK) ≤ Ω̃p(IτpL), (13)

equality holds when K = L.
Please see the next section for the above interrelated background materials. The proofs of Theorems

1.1-1.3 will be completed in Section 3.

2. Notation and Background Material

In order to complete the proofs of Theorems 1.1-1.3, we will require the following notions.
If E is a nonempty subset and contains the origin inRn, then the polar set, E∗, of E is defined by (see [4])

E∗ = {x ∈ R : x · y ≤ 1, y ∈ E}.

For K,L ∈ Sn
o , p > 0 and λ, µ ≥ 0 (not both zero), the Lp-radial combination, λ ◦ K+̃pµ ◦ L, of K and L is

given by (see [5])

ρ(λ ◦ K+̃pµ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p, (14)
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where λ ◦ K denotes the Lp-radial scalar multiplication and we easily obtain λ ◦ K = λ
1
p K.

In (14), if K,L ∈ Sn
o , λ, µ ≥ 0 (not both zero) and n > p > 0, the Lp-radial Blaschke combination,

λ ⊗ K ±p µ ⊗ L, of K and L is given by

ρ(λ ⊗ K ±p µ ⊗ L, ·)n−p = ρ(λ ◦ K+̃n−pµ ◦ L, ·)n−p = λρ(K, ·)n−p + µρ(L, ·)n−p.

Associated with the Lp-radial combinations of star bodies, the Lp-dual mixed volumes were given as
follows: For K,L ∈ Sn

o , p > 0 and ε > 0, the Lp-dual mixed volume, Ṽp(K,L), of K and L is given by (see
[5, 38])

n
p

Ṽp(K,L) = lim
ε→0+

V(K+̃pε ◦ L) − V(K)
ε

.

From above definition, the integral representation of Lp-dual mixed volume can be given by (see [5])

Ṽp(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−pρ(L,u)pdS(u), (15)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From (15), we easily know that

Ṽp(K,K) = V(K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u).

3. Proofs of Theorems

In this section, we will prove Theorems 1.1-1.3. To complete the proof of Theorem 1.1, we require the
following lemmas.
Lemma 3.1 ([22]). If K,L ∈ Sn

o , 0 < p < n
2 and λ, µ ≥ 0 (not both zero), then for any Q ∈ Sn

o ,

Ṽp(λ ◦ K+̃pµ ◦ L,Q∗)
p

n−p ≤ λṼp(K,Q∗)
p

n−p + µṼp(L,Q∗)
p

n−p ,

with equality if and only if K and L are dilates.
Lemma 3.2. If K,L ∈ Sn

o , 0 < p < n
2 and λ, µ ≥ 0 (not both zero), then

Ω̃p(λ ◦ K+̃pµ ◦ L)
p(n+p)
n(n−p) ≤ λΩ̃p(K)

p(n+p)
n(n−p) + µΩ̃p(L)

p(n+p)
n(n−p) , (16)

with equality if and only if K and L are dilates.
Proof. Since 0 < p < n

2 , thus p
n−p > 0. Combined with Lemma 3.1 and (9), we have

Ω̃p(λ ◦ K+̃pµ ◦ L)
p(n+p)
n(n−p) =

[
sup{n

n+p
n Ṽp(λ ◦ K+̃pµ ◦ L,Q∗)V(Q)

p
n : Q ∈ Sn

o }

] p
n−p

= sup
{
n

p(n+p)
n(n−p) Ṽp(λ ◦ K+̃pµ ◦ L,Q∗)

p
n−p V(Q)

p2

n(n−p) : Q ∈ Sn
o

}
≤ sup

{
n

p(n+p)
n(n−p) [λṼp(K,Q∗)

p
n−p + µṼp(L,Q∗)

p
n−p ]V(Q)

p2

n(n−p) : Q ∈ Sn
o

}
≤ λ

[
sup{n

n+p
n Ṽp(K,Q∗)V(Q)

p
n : Q ∈ Sn

o }

] p
n−p

+ µ
[

sup{n
n+p

n Ṽp(L,Q∗)V(Q)
p
n : Q ∈ Sn

o }

] p
n−p

= λΩ̃p(K)
p(n+p)
n(n−p) + µΩ̃p(L)

p(n+p)
n(n−p) .



J. Zhang, W. Wang / Filomat 33:14 (2019), 4421–4428 4425

Thus

Ω̃p(λ ◦ K+̃pµ ◦ L)
p(n+p)
n(n−p) ≤ λΩ̃p(K)

p(n+p)
n(n−p) + µΩ̃p(L)

p(n+p)
n(n−p) .

This yields (16). According to the equality condition of Lemma 3.1, we see that equality holds in (16) if and
only if K and L are dilates. �
Lemma 3.3 ([29]). If K ∈ Sn

o and 0 < p < 1, then I+
p K = I−p K if and only if K is origin-symmetric.

Lemma 3.4 ([29]). If K ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1] and τ , 0, then IτpK = I−τp K if and only if K is origin-symmetric.

Lemma 3.5. If K ∈ Sn
o and p > 0, then

Ω̃p(−K) = Ω̃p(K). (17)

Proof. From definition (9) and (15), we have

n−
p
n Ω̃p(−K)

n+p
n = sup{nṼp(−K,Q∗)V(Q)

p
n : Q ∈ Sn

o }

= sup
{[ ∫

Sn−1
ρn−p
−K (u)ρp

Q∗ (u)du
]
V(Q)

p
n : Q ∈ Sn

o

}
= sup

{[ ∫
Sn−1

ρn−p
K (−u)ρp

−Q∗ (−u)du
]
V(Q)

p
n : Q ∈ Sn

o

}
= sup{nṼp(K,−Q∗)V(Q)

p
n : Q ∈ Sn

o }

= sup{nṼp(K, (−Q)∗)V(−Q)
p
n : −Q ∈ Sn

o }

= n−
p
n Ω̃p(K)

n+p
n .

This yields (17). �
Proof of Theorem 1.1. For K ∈ Sn

o , 0 < p < 1, and τ ∈ [−1, 1]. By (3) , (14) and (16), we get

Ω̃p(IτpK)
p(n+p)
n(n−p) = Ω̃p( f1(τ) ◦ I+

p K+̃p f2(τ) ◦ I−p K)
p(n+p)
n(n−p)

≤ f1(τ)Ω̃p(I+
p K)

p(n+p)
n(n−p) + f2(τ)Ω̃p(I−p K)

p(n+p)
n(n−p) .

(18)

From (2) and (17), we know

Ω̃p(I−p K) = Ω̃p(−I+
p K) = Ω̃p(I+

p K). (19)

Combined with (18), (19) and (6), we easily get

Ω̃p(IτpK) ≤ Ω̃p(I±p K).

This gives the right side of inequality (11).
According to the equality condition of inequality (16), equality holds in the right side inequality of (11)

if and only if I+
p K and I−p K are dilates. Since I+

p K = −I−p K, this means I+
p K = I−p K. Thus from Lemma 3.3, it

follows that if K is not origin-symmetric, then equality holds in the right-hand side inequality of (11) if and
only if τ = ±1.

On the other hand, by (14), (3) and (5), we have

ρ(IτpK, ·)p + ρ(I−τp K, ·)p

= f1(τ)ρ(I+
p K, ·)p + f2(τ)ρ(I−p K, ·)p + f1(−τ)ρ(I+

p K, ·)p + f2(−τ)ρ(I−p K, ·)p

= f1(τ)ρ(I+
p K, ·)p + f2(τ)ρ(I−p K, ·)p + f2(τ)ρ(I+

p K, ·)p + f1(τ)ρ(I−p K, ·)p

= ρ(I+
p K, ·)p + ρ(I−p K, ·)p,
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i.e.,

1
2
ρ(IτpK, ·)p +

1
2
ρ(I−τp K, ·)p =

1
2
ρ(I+

p K, ·)p +
1
2
ρ(I−p K, ·)p.

Thus, by (3) we get

ρ(IpK, ·)p =
1
2
ρ(IτpK, ·)p +

1
2
ρ(I−τp K, ·)p,

i.e.,

IpK =
1
2
◦ IτpK+̃p

1
2
◦ I−τp K.

This together with (16) gives

Ω̃p(IpK)
p(n+p)
n(n−p) = Ω̃p

(1
2
◦ IτpK+̃p

1
2
◦ I−τp K

) p(n+p)
n(n−p)

≤
1
2

Ω̃p(IτpK)
p(n+p)
n(n−p) +

1
2

Ω̃p(I−τp K)
p(n+p)
n(n−p) .

Similar to the proof of (19), by (7) and (17) we have

Ω̃p(IτpK) = Ω̃p(−I−τp K) = Ω̃p(I−τp K).

Thus

Ω̃p(IpK) ≤ Ω̃p(IτpK).

From this, we get the left side of inequality (11).
According to the equality condition of (16), we know that equality holds in the left side inequality of

(11) if and only if IτpK = I−τp K. By Lemma 3.4, this implies that if K is not origin-symmetric, then equality
holds in the left-hand side inequality of (11) if and only if τ = 0. �
Lemma 3.6 ([22]). If K,L ∈ Sn

o , n ≥ 2, 0 < p < 1, 0 < q < n − p and τ ∈ [−1, 1], then for any Q ∈ Sn
o ,

Ṽp(Iτp(K+̃qL),Q)
pq

(n−p)2 ≤ Ṽp(IτpK,Q)
pq

(n−p)2 + Ṽp(IτpL,Q)
pq

(n−p)2 , (20)

with equality if and only if IτpK and IτpL are dilates.

Proof of Theorem 1.2. For K,L ∈ Sn
o , n ≥ 2, 0 < p < 1, 0 < q < n − p and τ ∈ [−1, 1], thus (n−p)2

pq > 1, from (9)
and (20), we get

Ω̃p(Iτp(K+̃qL))
pq(n+p)
n(n−p)2 =

[
sup{n

n+p
n Ṽp(Iτp(K+̃qL),Q∗)V(Q)

p
n : Q ∈ Sn

o }

] pq
(n−p)2

= sup
{
n

pq(n+p)
n(n−p)2 Ṽp(Iτp(K+̃qL),Q∗)

pq
(n−p)2 V(Q)

p2q
n(n−p)2 : Q ∈ Sn

o

}
≤ sup

{
n

pq(n+p)
n(n−p)2 [Ṽp(IτpK,Q∗)

pq
(n−p)2 + Ṽp(IτpL,Q∗)

pq
(n−p)2 ]V(Q)

p2q
n(n−p)2 : Q ∈ Sn

o

}
≤

[
sup{n

n+p
n Ṽp(IτpK,Q∗)V(Q)

p
n : Q ∈ Sn

o }

] pq
(n−p)2

+
[

sup{n
n+p

n Ṽp(IτpL,Q∗)V(Q)
p
n : Q ∈ Sn

o }

] pq
(n−p)2

= Ω̃p(IτpK)
pq(n+p)
n(n−p)2 + Ω̃p(IτpL)

pq(n+p)
n(n−p)2 .
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This yields inequality (12).
According to the equality condition of (20), we see that equality holds in (12) if and only if IτpK and IτpL

are dilates. �
Taking q for n − q in Theorem 1.2, we obtain a Brunn-Minkowski type inequality for the Lp-dual affine

surface areas of general Lp-intersection bodies under the Lq-radial Blaschke addition.
Corollary 3.1. If K,L ∈ Sn

o , n ≥ 2, 0 < p < 1, n > q > p > 0 and τ ∈ [−1, 1], then

Ω̃p(Iτp(K ±q L))
p(n−q)(n+p)

n(n−p)2 ≤ Ω̃p(IτpK)
p(n−q)(n+p)

n(n−p)2 + Ω̃p(IτpL)
p(n−q)(n+p)

n(n−p)2 ,

with equality if and only if IτpK and IτpL are dilates.
Proof of Theorem 1.3. For K,L ∈ Sn

o , 0 < p < 1 and τ ∈ [−1, 1]. If K ⊆ L, then

ρ(K, ·) ≤ ρ(L, ·), (21)

with equality if and only if K = L.
From (1), (2), (3) and (21), we have

ρ(IτpK, ·) ≤ ρ(IτpL, ·). (22)

By (15) and (22), we easily get for any Q ∈ Sn
o ,

Ṽp(IτpK,Q) ≤ Ṽp(IτpL,Q). (23)

And Ṽp(IτpK,Q) = Ṽp(IτpL,Q) if and only if IτpK = IτpL.
By (9) and (23), we obtain

Ω̃p(IτpK)
n+p

n = sup{n
n+p

n Ṽp(IτpK,Q∗)V(Q)
p
n : Q ∈ Sn

o }

≤ sup{n
n+p

n Ṽp(IτpL,Q∗)V(Q)
p
n : Q ∈ Sn

o }

= Ω̃p(IτpL)
n+p

n .

This gives (13).
According to the equality conditions of (21) and (23), we see that equality holds in (13) when K = L. �
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