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Abstract. Let A, B and AB be closed range operators. The explicit matrix expressions for various general-
ized inverses are obtained by using block operator matrix methods. Some subtle relationships between the
properties of sub-blocks in operator matrices A, B and their range relations are built. New necessary and
sufficient conditions for the equivalent relations, inclusion relations and mixed-type generalized inverses
relations are presented. Some recent mixed-type reverse-order laws results are covered and many new
mixed-type generalized inverses relations are established by using this block-operator matrix technique.

1. Introduction

Let H and K be complex Hilbert spaces. We denote the set of all bounded linear operators from H
into K by B(H ,K ). For A ∈ B(H ,K ), let A∗, R(A) and N(A) be the adjoint, the range and the null space
of A, respectively. IM denotes the identity ontoM or I if there is no confusion. A generalized inverse of A
is an operator G ∈ B(K ,H) which satisfies some of the following four equations, which are said to be the
Penrose conditions:

(1) AGA = A, (2) GAG = G, (3) (AG)∗ = AG, (4) (GA)∗ = GA.

For a subset {K} ⊆ {1, 2, 3, 4}, we say that G is a {K}-inverse of A if G satisfies the Moore-Penrose equation ( j)
for each j ∈ K. We use A{K} for the collection of all K-inverses of A. The unique {1, 2, 3, 4}-inverse of A is
denoted by A†, which is called the Moore-Penrose inverse of A.

In the 1960s, Greville was the first to study it by considering the reverse order law for the Moore-Penrose
inverse and gave a classical result

(AB)† = B†A† ⇐⇒ R(A∗AB) ⊆ R(B), R(BB∗A∗) ⊆ R(A∗)

for complex matrices A and B in [15]. This result was extended for linear bounded operators on Hilbert
spaces by Bouldin [1] and Izumino [16]. Many scholars have considered the mixed-type generalized in-
verses in different settings (matrix, operator algebras, C∗-algebras, rings etc). For two matrices cases, the
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necessary and sufficient conditions for B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3} and B{1, 2, 4}A{1, 2, 4} ⊆ (AB){1, 2, 4}
are presented in [26] by using the expressions for maximal and minimal ranks of the generalized Schur-
complement. The necessary and sufficient conditions for (AB){1, 3} ⊆ B{1, 3}A{1, 3} and (AB){1, 4} ⊆
B{1, 4}A{1, 4} are presented in [3]. See [20, 22, 24, 25, 27, 28] for more matrix cases. X. Liu, S. Huang
and D.S. Cvetković-Ilić in [17], J. Wang, H. Zhang and G. Ji in [21] considered the necessary and suffi-
cient conditions for reverse order law in the case of bounded linear operators on Hilbert spaces. D.S.
Cvetković-Ilić and Harte [4] offered purely algebraic necessary and sufficient conditions for reverse order
law B{1, 3}A{1, 3} ⊆ (AB){1, 3} for generalized inverses in C*-algebras, extending rank conditions for matri-
ces and range conditions for Hilbert space operators. Some more contributors in this area can be seen in
[5–12, 23].

In this paper, by the block operator matrix technique, we obtain the necessary and sufficient conditions
for which the equivalent relations or the inclusion relations among some mixed-type generalized inverses
hold. Specifically, we discuss the mixed-type {K}-generalized inverses and relations among A{K}, B{K} and
(AB){K} when {K} ∈ {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}, present their detailed matrix
expressions and build their relations. Many mixed-type generalized inverses relations are established by
using this block-operator matrix technique.

2. The matrix representations of two operators A and B

Throughout this paper, we suppose that A ∈ B(H ,K ) and B ∈ B(L,H) withR(A),R(B) andR(AB) being
closed. Also, suppose that AB , 0. It is well known that A, as an operator from H = R(A∗) ⊕ N(A) into
K = R(A)⊕N(A∗), has the diagonal matrix form A = A1 ⊕ 0, where A1 ∈ B(R(A∗),R(A)) is invertible. In this
case, the Moore-Penrose inverse A† of A can be represented by A† = A−1

1 ⊕ 0.
We begin with the following auxiliary notations [2, 17–19, 21]. Denote by


H1 = R(A∗) 	H2,
H2 = R(A∗) ∩N(B∗),
H3 = N(A) 	H4,
H4 = N(A) ∩N(B∗),


K1 = R(A) 	K2,
K2 = (A∗)†H2,
K3 = N(A∗),


L1 = R(B∗A∗),
L2 = R(B∗) 	 L1,
L3 = N(B).

(1)

Note that, ifM andN are two closed subspaces ofH , the orthogonal different is defined byM	N =M∩N⊥.
The space decomposition forms in (1) first appeared in the paper [21, Theorem 1]. It was also used in the
papers [17, 18, 29, 30]. Then

H = H1 ⊕H2 ⊕H3 ⊕H4, K = K1 ⊕K2 ⊕K3, L = L1 ⊕ L2 ⊕ L3

and

A =

A11 A12 0 0
A21 A22 0 0
0 0 0 0

 :


R(A∗) 	H2
R(A∗) ∩N(B∗)
N(A) 	H4
N(A) ∩N(B∗)

→
R(A) 	K2

(A∗)†H2
N(A∗)

 ,

B =


B11 B12 0
0 0 0

B31 B32 0
0 0 0

 :

 R(B∗A∗)
R(B∗) 	 L1
N(B)

→

R(A∗) 	H2
R(A∗) ∩N(B∗)
N(A) 	H4
N(A) ∩N(B∗)

 ,
where Ai j ∈ B(H j,Ki) and Bi j ∈ B(L j,Hi). Taking ∗-operation,

A∗ =


A∗11 A∗21 0
A∗12 A∗22 0
0 0 0
0 0 0

 :

K1
K2
K3

→

H1
H2
H3
H4

 .
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Since
A∗K2 = A∗(A∗)†H2 = A†AH2 = H2 = R(A∗) ∩N(B∗),

we get that A∗21 = 0 and A∗22 is surjective. Since K2 ⊆ R(A) = N(A∗)⊥, we get that A∗22 is injective. Hence,
A∗22 is invertible. Since A∗, as an operator from K = R(A) ⊕N(A∗) intoH = R(A∗) ⊕N(A) has the diagonal

matrix form A∗ = A∗1 ⊕ 0 with A∗1 =:
(

A∗11 0
A∗12 A∗22

)
∈ B(K1 ⊕ K2,H1 ⊕H2) being invertible, the invertibility

of A∗1 and A∗22 imply that A∗11 is invertible. Hence,

A =

A11 A12 0 0
0 A22 0 0
0 0 0 0

 :


H1
H2
H3
H4

→
K1
K2
K3

 , where A11,A22 are invertible. (2)

Similarly, from

B∗ =

B∗11 0 B∗31 0
B∗12 0 B∗32 0
0 0 0 0

 :


R(A∗) 	H2
R(A∗) ∩N(B∗)
N(A) 	H4
N(A) ∩N(B∗)

→
 R(B∗A∗)
R(B∗) 	 L1
N(B)

 ,
it is obvious that B∗12 = 0, R(B∗11) = L1 and B∗11 is invertible. Since L1 ⊕ L2 = R(B∗) = R(B∗11) ⊕ R(B∗32), we get
B∗32 is surjective and a closed range operator, i.e., B†32B32 = I. Hence,

B =


B11 0 0
0 0 0

B31 B32 0
0 0 0

 :

L1
L2
L3

→

H1
H2
H3
H4

 , where B11 is invertible and B†32B32 = I. (3)

Throughout this paper, we assume that A and B have the matrix forms (2) and (3), respectively and denote
by

∆ =:
[
B∗11B11 + B∗31(I − B32B†32)B31

]−1
. (4)

Next, we present the explicit matrix expressions for K-generalized inverses A{K}, B{K} and (AB){K}when
{K} ∈ {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}. The following results are elementary but
useful.

Theorem 2.1. Let A and B be denoted as the matrix forms (2) and (3), respectively. Then the following results hold.
(i) The generalized inverses A{K} have the representations:

A{1} =


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

X31 X32 X33

X41 X42 X43

; A{1, 3} =


A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
X31 X32 X33

X41 X42 X43

; A{1, 4} =


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

0 0 X33

0 0 X43

;

A{1, 2, 3} =


A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
X31 X32 0
X41 X42 0

; A{1, 2, 4} =


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

0 0 0
0 0 0

; A{1, 3, 4} =


A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
0 0 X33

0 0 X43

;

A{1, 2} =


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

X31 X32 X31A11X13 + (X31A12 + X32A22)X23

X41 X42 X41A11X13 + (X41A12 + X42A22)X23

; A† = A{1, 2, 3, 4} =


A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
0 0 0
0 0 0

,
where Xm,n, m = 1, 2, 3, 4, n = 1, 2, 3 are arbitrary.



R. Liu et al. / Filomat 33:14 (2019), 4361–4376 4364

(ii) The generalized inverses B{K} have the representations:

B{1} =

B−1
11 − Y13B31B−1

11 Y12 Y13 Y14

−Y23B31B−1
11 Y22 Y23 Y24

Y31 Y32 Y33 Y34

 with Y13B32 = 0, Y23B32 = I;

B{1, 2} =

B−1
11 − Y13B31B−1

11 Y12 Y13 Y14

−Y23B31B−1
11 Y22 Y23 Y24

Y31 Y32 Y33 Y34

 with


Y13B32 = 0, Y23B32 = I,

Y32 = (Y31B11 + Y33B31)Y12 + Y33B32Y22,
Y33 = (Y31B11 + Y33B31)Y13 + Y33B32Y23,
Y34 = (Y31B11 + Y33B31)Y14 + Y33B32Y24;

B{1, 4} =

B−1
11 − Y13B31B−1

11 Y12 Y13 Y14

−Y23B31B−1
11 Y22 Y23 Y24

−Y33B31B−1
11 Y32 Y33 Y34

 with Y13B32 = 0, Y23B32 = I, Y33B32 = 0;

B{1, 2, 4} =

B−1
11 − Y13B31B−1

11 Y12 Y13 Y14

−Y23B31B−1
11 Y22 Y23 Y24

0 0 0 0

 with Y13B32 = 0, Y23B32 = I,

where Ym,n, m = 1, 2, 3, n = 1, 2, 3, 4 are arbitrary. Let ∆ be defined by (4). Then

B{1, 3} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

Y31 Y32 Y33 Y34

 ;

B{1, 3, 4} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0
−Y33B31B−1

11 Y32 Y33 Y34

 with Y33B32 = 0;

B{1, 2, 3} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

Y31 0 Y33 0

 with
{

Y33(I − B32B†32)
(
I − B31∆B∗31

)
(I − B32B†32)

= Y31B11∆B∗31(I − B32B†32);

B† =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

0 0 0 0

 ,
where Y3,n, n = 1, 2, 3, 4 are arbitrary.

(iii) The generalized inverses (AB){K} have the representations:

(AB){1} =

B−1
11 A−1

11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

; (AB){1, 3} =

B−1
11 A−1

11 0 0
Z21 Z22 Z23

Z31 Z32 Z33

; (AB){1, 4} =

B−1
11 A−1

11 Z12 Z13

0 Z22 Z23

0 Z32 Z33

;

(AB){1, 2, 3} =

B−1
11 A−1

11 0 0
Z21 0 0
Z31 0 0

; (AB){1, 2, 4} =

B−1
11 A−1

11 Z12 Z13

0 0 0
0 0 0

; (AB){1, 3, 4} =

B−1
11 A−1

11 0 0
0 Z22 Z23

0 Z32 Z33

;

(AB){1, 2} =

B−1
11 A−1

11 Z12 Z13

Z21 Z21A11B11Z12 Z21A11B11Z13

Z31 Z31A11B11Z12 Z31A11B11Z13

; (AB)† = (AB){1, 2, 3, 4} =

B−1
11 A−1

11 0 0
0 0 0
0 0 0

,
where Zm,n, m = 1, 2, 3, n = 1, 2, 3 are arbitrary.

Proof. The results in items (i) and (iii) can be gotten by using the definition of K-inverses. Here, we only
show that the results in item (ii) hold. Let Y = (Yi j)1≤i≤3,1≤ j≤4. By solving the operator equations BYB = B,
YBY = Y, (BY)∗ = BY and (YB)∗ = YB, respectively, one gets that B{1}, B{1, 2}, B{1, 4}, B{1, 2, 4} have the
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representations as in item (ii) and

B{1, 3} =

B−1
11 − Y13B31B−1

11 0 Y13 0
−Y23B31B−1

11 0 Y23 0
Y31 Y32 Y33 Y34

 with


Y13B32 = 0, Y23B32 = I,

B31Y13 + B32Y23 is selfadjoint,
B11Y13 = (B∗11)−1B∗31(I − B31Y13 − B32Y23),

B{1, 3, 4} =

B−1
11 − Y13B31B−1

11 0 Y13 0
−Y23B31B−1

11 0 Y23 0
−Y33B31B−1

11 Y32 Y33 Y34

 with


Y13B32 = 0, Y23B32 = I, Y33B32 = 0,

B31Y13 + B32Y23 is selfadjoint,
B11Y13 = (B∗11)−1B∗31(I − B31Y13 − B32Y23),

B{1, 2, 3} =

B−1
11 − Y13B31B−1

11 0 Y13 0
−Y23B31B−1

11 0 Y23 0
Y31 0 Y33 0

 with


Y13B32 = 0, Y23B32 = I,

B31Y13 + B32Y23 is selfadjoint,
B11Y13 = (B∗11)−1B∗31(I − B31Y13 − B32Y23),

Y31B11Y13 = Y33(I − B31Y13 − B32Y23).

Since B31Y13 + B32Y23 is selfadjoint, Y13B32 = 0 and Y23B32 = I, we get

B32 = (B31Y13 + B32Y23)B32 =
[
B∗32B31Y13 + B∗32B32Y23

]∗
,

i.e., B∗32B32Y23 = B∗32−B∗32B31Y13. Since B∗32 is surjective, B∗32B32 is invertible and B†32 = (B∗32B32)−1B∗32. It follows
that Y23 = B†32 − B†32B31Y13. Since B11Y13 = (B∗11)−1B∗31(I − B31Y13 − B32Y23),we get

B∗11B11Y13 = B∗31 − B∗31B31Y13 − B∗31B32Y23 = B∗31 − B∗31B31Y13 − B∗31B32B†32 + B∗31B32B†32B31Y13.

Denote by ∆ =
[
B∗11B11 + B∗31(I − B32B†32)B31

]−1
. Then

Y13 = ∆B∗31(I − B32B†32), Y23 = B†32 − B†32B31∆B∗31(I − B32B†32).

Hence,
B−1

11 − Y13B31B−1
11 = B−1

11 − ∆B∗31(I − B32B†32)B31B−1
11 = ∆B∗11,

Y23B31B−1
11 = B†32B31B−1

11 − B†32B31∆B∗31(I − B32B†32)B31B−1
11 = B†32B31∆B∗11.

We get

B{1, 3} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

Y31 Y32 Y33 Y34


and

B{1, 3, 4} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0
−Y33B31B−1

11 Y32 Y33 Y34

 with Y33B32 = 0.

Note that Y31B11Y13 = Y31B11∆B∗31(I − B32B†32) and

Y33(I − B31Y13 − B32Y23) = Y33

[
I − B31∆B∗31(I − B32B†32) − B32B†32 + B32B†32B31∆B∗31(I − B32B†32)

]
= Y33(I − B32B†32)

(
I − B31∆B∗31

)
(I − B32B†32).

We get

B{1, 2, 3} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

Y31 0 Y33 0


with

Y31B11∆B∗31(I − B32B†32) = Y33(I − B32B†32)
(
I − B31∆B∗31

)
(I − B32B†32).
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Moreover, from B† = B{1, 2, 4} ∩ B{1, 3, 4}, one gets

B† = B{1, 2, 3, 4} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

0 0 0 0

 .
�

Remark 2.1.

(i) In Theorem 2.1, for example, we use A{1} =


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

X31 X32 X33
X41 X42 X43

 for short to express the set A{1}, i.e.,


A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

X31 X32 X33
X41 X42 X43

 =:



A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

X31 X32 X33
X41 X42 X43

 : ∀ Xm,n ∈ B(Kn,Hm), m = 1, 2, 3, 4, n = 1, 2, 3

 .
The matrix forms (2) and (3) can also be applied for the cases {K} ∈ {{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}. The representations
are complicated in these cases and we leave it to interested readers.

(ii) Note that B∗32 is surjective. In addition, if B∗32 is injective, then B32 is invertible and

B† =

 B−1
11 0 0 0

−B−1
32 B31B−1

11 0 B−1
32 0

0 0 0 0

 .
(iii) It is interesting that, although the reverse order law has been considered for many types of generalized inverses
and from various aspects too, the results in Theorem 2.1 provide an effective method to prove these results. In Section
3, the readers can see the importance of the expressions in Theorem 2.1.

We next present the necessary and sufficient conditions for the invertibility of B32, for A12 = 0 and for
B31 = 0, respectively. As we know, B∗32 in (3) is surjective and closed range operator, i.e., B†32B32 = I. But
B∗32 is not necessarily injective. The following theorem studies the situation in which B32 is invertible. The
range relations play an important role in this case.

Theorem 2.2. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:
(i) ∆B∗11 = B−1

11 .

(ii) (I − B32B†32)B31 = 0.
(iii) R(B31) ⊆ R(B32).
(iv) B32 is invertible.

Proof. (i)⇐⇒ (ii)⇐⇒ (iii) By the representation of B, we know B11 is invertible and B∗32 is surjective and a
closed range operator. By (4), ∆B∗11 = B−1

11 if and only if B∗31(I−B32B†32)B31 = 0 if and only if (I−B32B†32)B31 = 0
if and only if R(B31) ⊆ R(B32).

(iv)=⇒ (iii) It is trivial.
(iii)=⇒ (iv) Since B∗32 is surjective, one needs to show that B∗32 is injective if R(B31) ⊆ R(B32). For every

x = (x1, x2, x3, x4), where x1 ∈ H1 = R(A∗) 	 H2, x2 ∈ H2 = R(A∗) ∩ N(B∗), x3 ∈ H3 = N(A) 	 H4 and
x4 ∈ H4 = N(A) ∩N(B∗), then

B∗x =

B∗11 0 B∗31 0
0 0 B∗32 0
0 0 0 0



x1
x2
x3
x4

 = 0
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implies that B∗11x1 + B∗31x3 = 0 and B∗32x3 = 0. If R(B31) ⊆ R(B32), then N(B∗32) ⊆ N(B∗31). We get x1 = 0 and
x3 ∈ H4 = N(A) ∩N(B∗). Since x3 ∈ H3 = N(A) 	H4 = N(A) 	 (N(A) ∩N(B∗)), we get x3 = 0.
�
Note that, ifR(B)∩N(A) = {0}, thenR(B∗)∩N(AB) = {0}. In fact, for every x ∈ R(B∗)∩N(AB), x = B†Bx = 0

since ABx = 0 and Bx ∈ R(B) ∩N(A)={0}.
On the other hand, ifR(B∗)∩N(AB) = {0}, thenR(B)∩N(A) = {0}. In fact, if x ∈ R(B)∩N(A), then Ax = 0

and BB†x = x. So, ABB†x = Ax = 0 and B†x ∈ R(B∗) ∩N(AB) = {0}. It follows that x = BB†x = 0. Hence,

R(B) ∩N(A) = {0} ⇐⇒ R(B∗) ∩N(AB) = {0}.

This result had been pointed out in [17].
Note also that R(A∗AB) ⊆ R(B) if and only if (I − BB†)A∗AB = 0.
As for further relations among R(A∗AB), R(B) and R(B) ∩N(A), one has the following results.

Theorem 2.3. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:
(i) R(A∗AB) ⊆ R(B).
(ii) R(A∗AB) = R(B) 	 (R(B) ∩N(A)).
(iii) A12 = 0 and R(B31) ⊆ R(B32).

Proof. (i)⇐⇒ (iii) Note that A11 and B11 are invertible and

A∗AB =


A∗11A11B11 0 0
A∗12A11B11 0 0

0 0 0
0 0 0

 .
Since R(A∗12A11B11) ⊆ H2 = R(A∗) ∩ N(B∗) ⊆ R(B)⊥, we get R(A∗AB) ⊆ R(B) if and only if A12 = 0 and
R(A∗11A11B11) ⊆ R(B). Note that R(A∗11A11B11) = R(B11) and

R(B) =




B11x
0

B31x + B32y
0

 : x ∈ L1, y ∈ L2

 .
We derive that R(B11) ⊆ R(B) if and only if R(B31) ⊆ R(B32).

(ii) =⇒ (iii) If R(A∗AB) = R(B)	 (R(B)∩N(A)), then R(A∗AB) ⊆ R(B). We get (iii) holds since (i)⇐⇒ (iii).
(iii) =⇒ (ii). If (iii) holds, then R(A∗AB) = R(A∗11A11B11) = R(B11) and R(B) = R(B11) ⊕ R(B32). Since

R(B32) ⊆ N(A), we get R(A∗AB) = R(B) 	 (R(B) ∩N(A)).
�
Note that R(BB∗A∗) ⊆ R(A∗) if and only if (I − A†A)BB∗A∗ = 0.

Theorem 2.4. Let A and B have the matrix representations (2) and (3), respectively. Then the following are equivalent:

(i) R(BB∗A∗) ⊆ R(A∗).

(ii) B∗(R(B) ∩N(A)) = B†(R(B) ∩N(A)).

(iii) R(A∗) = R(BB∗A∗) ⊕ [R(A∗) ∩N(B∗)] .

(iv) B31 = 0.

Proof. (i)⇐⇒ (iv) Note that

BB∗A∗ =


B11B∗11A∗11 0 0

0 0 0
B31B∗11A∗11 0 0

0 0 0

 :

R(A) 	K2
(A∗)†H2
N(A∗)

→

R(A∗) 	 (R(A∗) ∩N(B∗))

R(A∗) ∩N(B∗)
N(A) 	 (N(A) ∩N(B∗))

N(A) ∩N(B∗)

 (5)
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with A11 and B11 being invertible by (2) and (3). Since R(B31B∗11A∗11) ⊆ H3 ⊆ N(A) = R(A∗)⊥, we get
R(BB∗A∗) ⊆ R(A∗) if and only if B31 = 0 and R(B11B∗11A∗11) ⊆ R(A∗). Note that R(B11B∗11A∗11) = R(A∗11) and
R(A∗) = R(A∗11) ⊕ R(A∗22). Hence, R(B11B∗11A∗11) ⊆ R(A∗) is trivial.

(iii)⇐⇒ (iv) By (5), R(BB∗A∗) = [R(A∗) 	 (R(A∗) ∩N(B∗))] ⊕ [N(A) 	 (N(A) ∩N(B∗))] = R(B11) ⊕ R(B31),
i.e.,

B31 = 0⇐⇒ R(A∗) = R(BB∗A∗) ⊕ [R(A∗) ∩N(B∗)] .

(iv) =⇒ (ii) Note that R(B∗32) = R(B†32) and R(B) ∩N(A) = H3. By Theorem 2.1, item (ii),

B† =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

0 0 0 0

 .
Hence, if B31 = 0, then B∗(R(B) ∩N(A)) = B†(R(B) ∩N(A)).

(ii) =⇒ (iv) Note that

BB∗ =


B11B∗11 0 B11B∗31 0

0 0 0 0
B31B∗11 0 B31B∗31 + B32B∗32 0

0 0 0 0

 .
If B∗(R(B)∩N(A)) = B†(R(B)∩N(A)), then BB∗(H3) = BB∗(R(B)∩N(A)) = BB†(R(B)∩N(A)) = R(B)∩N(A) =
H3. One gets that R(B11B∗31) = {0}. Hence, B31 = 0 since B11 is invertible.
�

3. Multi-relations of A{K}, B{K} and (AB){K}

Throughout this section we will use the notation ∗ to denote the arbitrary operator which is the one
suitable entry in the corresponding operator matrices. In Section 2, we have built some equivalent range
relations which ensure that A12 = 0, B31 = 0 and B32 is invertible, respectively. In this section, many new
mixed-type generalized inverses relations are established and some mixed-type reverse-order laws results
appearing in recent papers are covered.

We first study equivalent conditions for the multi-relations among A{K}, B{K} and (AB){K}which ensure
that A12 = 0.

Theorem 3.1. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.
(i) A12 = 0.
(ii) R(AA∗AB) ⊆ R(AB).
(iii) (TAB){1, 3, 4} · A{1, 3, 4} = (AB){1, 3, 4} for T = A† or T belongs to any set of A{1, 4}, A{1, 3, 4}, A{1, 2, 4}.
(iv) Any of the following relations holds:

(TAB){1, 2, 3} · A{1, 2, 3} = (AB){1, 2, 3}; (TAB){1, 2, 3} · A{1, 3, 4} = (AB){1, 2, 3};

(TAB){1, 2, 3} · A{1, 3, 4} ⊆ (AB){1, 3}; (TAB){1, 2, 3} · A{1, 3} ⊆ (AB){1, 3};

(TAB){1, 2, 3} · A{1, 3} = (AB){1, 2, 3}; (TAB){1, 2, 3} · A† = (AB){1, 2, 3};

(TAB){1, 3} · A{1, 3} = (AB){1, 3}; (TAB){1, 3} · A{1, 2, 3} ⊆ (AB){1, 3};

(TAB){1, 3} · A{1, 3, 4} = (AB){1, 3}; (TAB){1, 3} · A† ⊆ (AB){1, 3};

(TAB){1, 3, 4} · A{1, 3} = (AB){1, 3}; (TAB){1, 3, 4} · A{1, 2, 3} ⊆ (AB){1, 3}.

for T = A† or T belongs to any set of A{1, 4}, A{1, 3, 4}, A{1, 2, 4}.
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(v) (A†AB)†A† = (AB)† or (A†AB)†A† belongs to any of (AB){1, 3}, (AB){1, 2, 3}, (AB){1, 3, 4}.

Proof. (i)⇐⇒ (ii) By (2) and (3), since AB = A11B11 ⊕ 0 ⊕ 0 and

AA∗AB =


(A11A∗11 + A12A∗12)A11B11 0 0

A22A∗12A11B11 0 0
0 0 0
0 0 0

 with A11,B11,A22 are invertible,

we get R(AA∗AB) ⊆ R(AB)⇐⇒R(A22A∗12A11B11) = {0} ⇐⇒ A22A∗12A11B11 = 0⇐⇒ A∗12 = 0⇐⇒ A12 = 0.
(i) ⇐⇒ (iii) By Theorem 2.1, items (i) and (iii), for T = A† or for every T ∈ A{1, 4}, or T ∈ A{1, 3, 4}, or

T ∈ A{1, 2, 4}, we have

TAB =


B11 0 0
0 0 0
0 0 0
0 0 0

 , (AB){1, 3, 4} =

B−1
11 A−1

11 0 0
0 ∗ ∗

0 ∗ ∗

 , (TAB){1, 3, 4} =

B−1
11 0 0 0
0 ∗ ∗ ∗

0 ∗ ∗ ∗

 .
Hence,

(TAB){1, 3, 4} · A{1, 3, 4} =

B−1
11 A−1

11 −B−1
11 A−1

11 A12A−1
22 0

0 ∗ ∗

0 ∗ ∗


It follows that (TAB){1, 3, 4} · A{1, 3, 4} = (AB){1, 3, 4} ⇐⇒ A12 = 0.

(i)⇐⇒ (iv) Similar to (i)⇐⇒ (iii).
(i)⇐⇒ (v) By Theorem 2.1, items (i) and (iii),

A†AB =


B11 0 0
0 0 0
0 0 0
0 0 0

 , (A†AB)† =

B−1
11 0 0 0
0 0 0 0
0 0 0 0

 , (A†AB)†A† =

B−1
11 A−1

11 −B−1
11 A−1

11 A12A−1
22 0

0 0 0
0 0 0

 .
Since (AB)† = B−1

11 A−1
11 ⊕ 0⊕ 0, it follows that (A†AB)†A† = (AB)† ⇐⇒ A12 = 0. By Theorem 2.1, item (iii), it is

easy to get that (A†AB)†A† belongs to any of (AB){1, 3}, (AB){1, 2, 3}, (AB){1, 3, 4} ⇐⇒ A12 = 0.
�
Next theorem gives some mixed-type reverse order laws results associated to A{K}, B{K} and (AB){K}.

These results don’t need any additional conditions.

Theorem 3.2. Let A and B have the matrix representations (2) and (3), respectively.Then the following statements
hold.

(i) M · (ABN){1, 3} ⊆ (AB){1, 3} for M = B†, N = B† or M,N belong to any set of B{1, 3}, B{1, 2, 3}, B{1, 3, 4}.

(ii) M · (ABN){1, 2, 3} ⊆ (AB){1, 2, 3} for M = B†, N = B† or M,N belong to any set of B{1, 3}, B{1, 2, 3}, B{1, 3, 4}.

(iii) (EAB){1, 4} · A† ⊆ (AB){1, 4} for E = A† or E belongs to any set of A{1, 4}, A{1, 2, 4}, A{1, 3, 4}}.

(iv) (EAB){1, 2, 4} · A† ⊆ (AB){1, 2, 4} for E = A† or E belongs to any set of A{1, 4}, A{1, 2, 4}, A{1, 3, 4}}.

(v) (EAB){1, 4} · F = (AB){1, 4} for E = A†, or E,F belong to any set of A{1, 4}, A{1, 2, 4}, A{1, 3, 4}}.

(vi) (EAB){1, 2, 4} · F = (AB){1, 2, 4} for E = A†, or E,F belong to any set of A{1, 4}, A{1, 2, 4}, A{1, 3, 4}}.

Proof. (i) We only show that B{1, 3} · (ABN){1, 3} ⊆ (AB){1, 3} when N = B† or N belong to any set of B{1, 3},
B{1, 2, 3}, B{1, 3, 4}. The rest of the proof is similar. So we omit it. Note that

ABN =

A11B11∆B∗11 0 A11B11∆B∗31(I − B32B†32) 0
0 0 0 0
0 0 0 0

 , (AB){1, 3} =

B−1
11 A−1

11 0 0
∗ ∗ ∗

∗ ∗ ∗

 ,
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(ABN){1, 3} =


N11 N12 N13
∗ ∗ ∗

N31 N32 N33
∗ ∗ ∗

 with


∆B∗11N11 + ∆B∗31(I − B32B†32)N31 = B−1

11 A−1
11 ,

∆B∗11N12 + ∆B∗31(I − B32B†32)N32 = 0,
∆B∗11N13 + ∆B∗31(I − B32B†32)N33 = 0.

Hence,

B{1, 3} · (ABN){1, 3} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

Y31 Y32 Y33 Y34



N11 N12 N13
∗ ∗ ∗

N31 N32 N33
∗ ∗ ∗


=

 B−1
11 A−1

11 0 0
B†32N31 − B†32B31B−1

11 A−1
11 B†32N32 B†32N33

∗ ∗ ∗

 ⊆ (AB){1, 3}.

(ii) Similar to (i).
(iii)-(vi) We only show that (EAB){1, 4} ·A{1, 4} = (AB){1, 4}when E = A† or E belongs to any set of A{1, 4},

A{1, 2, 4}, A{1, 3, 4}}. The rest of the proof is similar. So we omit it. For E = A† or E belongs to any set of
A{1, 4}, A{1, 2, 4}, A{1, 3, 4}},we have

EAB =


B11 0 0
0 0 0
0 0 0
0 0 0

 , (AB){1, 4} =

B−1
11 A−1

11 ∗ ∗

0 ∗ ∗

0 ∗ ∗

 , (EAB){1, 4} =

B−1
11 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

 .
Hence,

(EAB){1, 4} · A{1, 4} =

B−1
11 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗



A−1

11 −A−1
11 A12A−1

22 X13

0 A−1
22 X23

0 0 X33
0 0 X43

 =

B−1
11 A−1

11 ∗ ∗

0 ∗ ∗

0 ∗ ∗

 .
Thus, (EAB){1, 4} · A{1, 4} = (AB){1, 4}.
�
Using Theorem 2.1, the new equivalent conditions for B31 = 0 are derived.

Theorem 3.3. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) B31 = 0.

(ii) R(BB∗A∗) ⊆ R(A∗).

(iii) B†A† ∈ (AB){1, 4}.

(iv) B†A† ∈ (AB){1, 2, 4}.

(v) B†T ⊆ (AB){1, 4} for T ∈
{
A{1, 4}, A{1, 2, 4}, A{1, 3, 4}

}
.

(vi) B† · A{1, 2, 4} ⊆ (AB){1, 2, 4}.

(vii) B{1, 4} · A{1, 4} ⊆ (AB){1, 4}.

(viii) B{1, 3, 4} · T ⊆ (AB){1, 4} for T ∈
{
A†, A{1, 4}, A{1, 2, 4}, A{1, 3, 4}

}
.

(ix) BSAB = TAB for S ∈
{
(AB)†, (AB){1, 4}, (AB){1, 2, 4}, (AB){1, 3, 4}

}
and T ∈

{
A†,A{1, 4},A{1, 2, 4},A{1, 3, 4}

}
.
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Proof. (i)⇐⇒ (ii) See Theorem 2.4, items (i) and (iv).
(i)⇐⇒ (iii) Note that, by Theorem 2.1, items (i) and (ii),

B†A† =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

0 0 0 0



A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
0 0 0
0 0 0


=

 ∆B∗11A−1
11 −∆B∗11A−1

11 A12A−1
22 0

−B†32B31∆B∗11A−1
11 B†32B31∆B∗11A−1

11 A12A−1
22 0

0 0 0

 .
(6)

By Theorem 2.1, (iii), B†A† ∈ (AB){1, 4} if and only if ∆B∗11A−1
11 = B−1

11 A−1
11 and B†32B31∆B∗11A−1

11 = 0 if and only if
B†32B31 = 0 and ∆ = B−1

11 (B∗11)−1 if and only if B31 = 0.
(i)⇐⇒ (iv), or (vi), or (vii) Similar to (i)⇐⇒ (iii).
(i)⇐⇒ (viii) For example, we only prove that B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 4} if and only if B31 = 0. By

Theorem 2.1, item (iii), B{1, 3, 4} ·A{1, 3, 4} ⊆ (AB){1, 4} if and only if the first column of B{1, 3, 4} ·A{1, 3, 4} is
same as the first column of (AB){1, 4}, i.e.,

∆B∗11A−1
11 = B−1

11 A−1
11 , B†32B31∆B∗11A−1

11 = 0, Y33B31B−1
11 A−1

11 = 0

if and only if (I − B32B†32)B31 = 0 and B†32B31 = 0 if and only if B31 = 0 if and only if R(BB∗A∗) ⊆ R(A∗).
(i)⇐⇒ (ix) By Theorem 2.1, items (i) and (iii), we have

BSAB =


B11 0 0
0 0 0

B31 0 0
0 0 0

 , TAB =


B11 0 0
0 0 0
0 0 0
0 0 0

 ,
Hence, BSAB = TAB⇐⇒ B31 = 0.
�

Remark 3.1.

(i) In [29], authors had pointed out that

B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 4} ⇐⇒ R(BB∗A∗) ⊆ R(A∗).

(ii) Theorem 3.2, items (iii), (iv) and (vii) have been proved in [14, Theorem 2.3]. Our matrix expressions in Theorem
2.1 are brief and efficient ways to study the various generalized inverse relations.

In Theorem 2.2, we had proved that ∆B∗11 = B−1
11 ⇐⇒ (I − B32B†32)B31 = 0⇐⇒ R(B31) ⊆ R(B32)⇐⇒ B32 is

invertible. In fact, further properties of B32 being invertible can be gotten by using Theorem 2.1.

Theorem 3.4. Let A and B have the matrix representations (2) and (3), respectively. Then

R(B31) ⊆ R(B32)⇐⇒MN ⊆ (AB){1}

for M ∈
{
B†, B{1, 3}, B{1, 2, 3}, B{1, 3, 4}

}
and N ∈

{
A†, A{1}, A{1, 2}, A{1, 3}, A{1, 4}, A{1, 2, 3}, A{1, 2, 4}, A{1, 3, 4}

}
.

Proof. By Theorem 2.1, MN ⊆ (AB){1} if and only if ∆B∗11A−1
11 = B−1

11 A−1
11 or ∆B∗11A−1

11 + ∆B∗31(I − B32B†32)X31 =

B−1
11 A−1

11 for arbitrary X31 if and only if (I − B32B†32)B31 = 0. By Theorem 2.2, we prove the result.
�
In Theorem 2.3, we have gotten that A12 = 0 and R(B31) ⊆ R(B32) ⇐⇒ R(A∗AB) ⊆ R(B) ⇐⇒ R(A∗AB) =

R(B) 	 (R(B) ∩N(A)). In fact, there are various different methods to express these relations.
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Theorem 3.5. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) A12 = 0 and R(B31) ⊆ R(B32).

(ii) B†A† ∈ (AB){1, 3}.

(iii) B†A† ∈ (AB){1, 2, 3}.

(iv) W · A{1, 3} ⊆ (AB){1, 3} for W ∈
{
B†, B{1, 3}, B{1, 2, 3}, B{1, 3, 4}

}
.

(v) B{1, 2, 3} · A{1, 2, 3} ⊆ (AB){1, 3}.

(vi) W · A† ⊆ (AB){1, 3} for W ∈
{
B{1, 3}, B{1, 2, 3}, B{1, 3, 4}

}
.

(vii) B{1, 2, 3} · A† ⊆ (AB){1, 2, 3}.

(viii) W · A{1, 3, 4} ⊆ (AB){1, 3} for W ∈
{
B†, B{1, 3}, B{1, 2, 3}, B{1, 3, 4}

}
.

Proof. (i) ⇐⇒ (ii) By (5) and Theorem 2.1, items (iii), B†A† ∈ (AB){1, 3} if and only if ∆B∗11A−1
11 = B−1

11 A−1
11

and ∆B∗11A−1
11 A12A−1

22 = 0 if and only if A12 = 0 and B∗31(I − B32B†32)B31 = 0 if and only if A12 = 0 and
(I − B32B†32)B31 = 0 if and only if A12 = 0 and R(B31) ⊆ R(B32).

(i)⇐⇒ (iii)-(viii) We only show that B{1, 3}·A{1, 3} ⊆ (AB){1, 3} ⇐⇒ (i)⇐⇒ B{1, 3, 4}·A{1, 3, 4} ⊆ (AB){1, 3}.
The rest of the proofs is similar. Note that, by Theorem 2.1, items (i) and (ii),

B{1, 3} · A{1, 3} =

∆B∗11A−1
11 + ∆B∗31(I − B32B†32)X31 −∆B∗11A−1

11 A12A−1
22 + ∆B∗31(I − B32B†32)X32 ∆B∗31(I − B32B†32)X33

∗ ∗ ∗

∗ ∗ ∗


and

B{1, 3, 4} · A{1, 3, 4} =

∆B∗11A−1
11 −∆B∗11A−1

11 A12A−1
22 ∆B∗31(I − B32B†32)X33

∗ ∗ ∗

∗ ∗ ∗

 .
By Theorem 2.1, item (iii),

B{1, 3} · A{1, 3} ⊆ (AB){1, 3} (resp. B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3})

if and only if the first row of B{1, 3} · A{1, 3} (resp. B{1, 3, 4} · A{1, 3, 4}) is same as the first row of (AB){1, 3},
i.e.,

∆B∗11A−1
11 = B−1

11 A−1
11 , ∆B∗11A−1

11 A12A−1
22 = 0, ∆B∗31(I − B32B†32)X33 = 0

if and only if A12 = 0 and (I − B32B†32)B31 = 0 if and only if R(A∗AB) ⊆ R(B) by Theorem 2.3, item (i).
�

Remark 3.2.

(i) In [29], authors had pointed out that

B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3} ⇐⇒ R(A∗AB) ⊆ R(B).

(ii) Theorem 3.5, items (ii)-(iv) have been proved in [14, Theorem 2.2]. Our proofs are brief and efficient.
Moreover, we will establish the equivalent conditions for R(A∗AB) ⊂ R(B) for the mixed-type reverse

order laws.

Theorem 3.6. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) R(A∗AB) ⊂ R(B).
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(ii) ABQA = ABW for Q ∈
{
(AB)†, (AB){1, 3}, (AB){1, 2, 3}, (AB){1, 3, 4}

}
and W ∈

{
B†,B{1, 3},B{1, 2, 3},B{1, 3, 4}

}
.

Proof. (i)⇐⇒ (ii) By Theorem 2.1, items (ii) and (iii), for Q ∈
{
(AB)†, (AB){1, 3}, (AB){1, 2,3}, (AB){1, 3, 4}

}
,

W ∈
{
B†,B{1, 3},B{1, 2, 3},B{1, 3, 4}

}
, we have

ABQA =

A11 A12 0 0
0 0 0 0
0 0 0 0

 , ABW =

A11B11∆B∗11 0 A11B11∆B∗31(I − B32B†32) 0
0 0 0 0
0 0 0 0

 ,
Hence, ABQA = ABW if and only if A11B11∆B∗11 = A11 , A12 = 0 and A11B11∆B∗31(I − B32B†32)B31 = 0 if and
only if A12 = 0 and (I − B32B†32)B31 = 0 if and only if R(A∗AB) ⊂ R(B).
�
We immediately get the mixed-type reverse order laws associated to the Moore-Penrose inverse and the

{1, 3, 4}-inverse.

Corollary 3.7. Let A and B have the matrix representations (2) and (3), respectively. Then the following statements
are equivalent.

(i) (see [13, Theorem 2.2 (c)]) R(BB∗A∗) ⊆ R(A∗) and R(A∗AB) ⊆ R(B).

(ii) B†A† = (AB)†.

(iii) A12 = 0 and B31 = 0.

(iv) B† · A{1, 3, 4} ⊆ (AB){1, 3, 4}.

(v) B† · A† ∈ (AB){1, 3, 4}.

(vi) B{1, 3, 4} · A† ⊆ (AB){1, 3, 4}.

(vii) B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4}.

(viii) One of items in Theorem 3.1 & one of items in Theorems 2.4, 3.3 hold.

(ix) One of items in Theorems 2.4, 3.3 & one of items in Theorems 2.3, 3.5, 3.6 hold.

Proof. (i)⇐⇒ (ii) See [15] for matrix case and [13, Theorem 2.2 (c)] for the bounded operators case.
(ii)⇐⇒ (iii) By (6) and Theorem 2.1, (iii), B†A† = (AB)† if and only if A12 = 0, B†32B31 = 0 and ∆ = B−1

11 (B∗11)−1

if and only if A12 = 0 and B31 = 0.

(iii)⇐⇒ (iv) By Theorem 2.1 again, (AB){1, 3, 4} =

B−1
11 A−1

11 0 0
0 Z22 Z23
0 Z32 Z33

 and

B† · A{1, 3, 4} =

 ∆B∗11 0 ∆B∗31(I − B32B†32) 0
−B†32B31∆B∗11 0 B†32 − B†32B31∆B∗31(I − B32B†32) 0

0 0 0 0



A−1

11 −A−1
11 A12A−1

22 0
0 A−1

22 0
0 0 X33
0 0 X43


=


∆B∗11A−1

11 −∆B∗11A−1
11 A12A−1

22 ∆B∗31(I − B32B†32)X33

−B†32B31∆B∗11A−1
11 B†32B31∆B∗11A−1

11 A12A−1
22

[
B†32 − B†32B31∆B∗31(I − B32B†32)

]
X33

0 0 0

 .
Then B† · A{1, 3, 4} ⊆ (AB){1, 3, 4} if and only if A12 = 0, B†32B31 = 0 and ∆ = B−1

11 (B∗11)−1 if and only if A12 = 0
and B31 = 0.

(iii)⇐⇒ (v)-(vii) Similar to the proof of (iii)⇐⇒ (iv).
(iii)⇐⇒ (viii)-(ix) See the proofs of Theorems 2.2-3.6.
�
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Remark 3.3. Let A ∈ B(H ,K ) and B ∈ B(L,H) be such that R(A), R(B) and R(AB) are closed. Corollary 3.7,
items (i) and (vii) had been pointed out in [21, 29]

B{1, 3, 4} · A{1, 3, 4} ⊆ (AB){1, 3, 4} ⇐⇒ R(A∗AB) ⊆ R(B), R(BB∗A∗) ⊆ R(A∗).

In fact, (AB){1, 3, 4} = (AB){1, 3} ∩ (AB){1, 4}. The result follows immediately by Theorem 3.3, item (viii) and
Theorem 3.5, item (viii).

Theorem 3.8. Let A and B be denoted as the matrix forms (2) and (3), respectively. The following statements are
equivalent.

(i) B{1, 2, 4} · A{1, 2, 4} ⊆ (AB){1, 2, 4}.

(ii) B31 = 0, L2 = {0} orH2 = {0} where L2 = R(B∗) 	 R(B∗A∗) andH2 = R(A∗) ⊕N(B∗) are defined in (1).

(iii) R(A∗) = R(BB∗A∗) ⊕ [R(A∗) ∩N(B∗)] , N(AB) = N(B) or R(A∗) ⊕N(B∗) = {0}.

(iv) A∗{1, 2, 3} · B∗{1, 2, 3} ⊆ (B∗A∗){1, 2, 3}.

Proof. By Theorem 2.1, items (i) and (ii),

B{1,2,4}·A{1,2,4}=

(
B−1

11−Y13B31B−1
11 Y12 Y13 Y14

−Y23B31B−1
11 Y22 Y23 Y24

0 0 0 0

)  A−1
11 −A−1

11 A12A−1
22 X13

0 A−1
22 X23

0 0 0
0 0 0


=

(
(B−1

11−Y13B31B−1
11 )A−1

11 −(B−1
11−Y13B31B−1

11 )A−1
11 A12A−1

22 +Y12A−1
22 (B−1

11−Y13B31B−1
11 )X13+Y12X23

−Y23B31B−1
11 A−1

11 Y23B31B−1
11 A−1

11 A12A−1
22 +Y22A−1

22 −Y23B31B−1
11 X13+Y22X23

0 0 0

)
.

Note that
(AB){1,2,4}=

 B−1
11 A−1

11 Z12 Z13

0 0 0
0 0 0


and X∗,∗, Y∗,∗, Z∗,∗ are arbitrary by Theorem 2.1.

(i) ⇐⇒ (ii) B{1, 2, 4} · A{1, 2, 4} ⊆ (AB){1, 2, 4} if and only if Y13B31 = 0, Y23B31 = 0, Y22A−1
22 = 0 and

Y22X23 = 0 if and only if B{1, 2, 4} in Theorem 2.1 satisfies the additional conditions that

Y13B31 = 0, Y23B31 = 0, Y22 = 0.

Which is equivalent with B31 = 0 and the second row or column in B{1, 2, 4}must disappear, that is, B31 = 0,
and L2 = R(B∗) 	 R(B∗A∗) = {0} or R(A∗) ⊕N(B∗) = {0}.

(ii)⇐⇒ (iii) Since

BB∗A∗ =

 B11B∗11A∗11 0 0
0 0 0

B31B∗11A∗11 0 0
0 0 0

 :
(
R(A)	K2

(A∗)†H2
N(A∗)

)
→

 R(A∗)	(R(A∗)∩N(B∗))
R(A∗)∩N(B∗)

N(A)	(N(A)∩N(B∗))
N(A)∩N(B∗)


with A11 and B11 being invertible by (2) and (3), we get R(BB∗A∗) = [R(A∗) 	 (R(A∗) ∩N(B∗))] ⊕ R(B31), i.e.,

B31 = 0⇐⇒ R(A∗) = R(BB∗A∗) ⊕ [R(A∗) ∩N(B∗)]

and
L2 = {0} ⇐⇒ R(B∗) = R(B∗A∗)⇐⇒N(AB) = N(B)

since R(AB) and R(B) are closed.
(i)⇐⇒ (iv) Note that,

X ∈ (AB){1, 2, 4} ⇐⇒ X∗ ∈ (AB)∗{1, 2, 3} ⇐⇒ X∗ ∈ (B∗A∗){1, 2, 3}.

�
It worth point out in [18, Theoren 3.2], the authors gave that B{1, 2, 4} ·A{1, 2, 4} ⊆ (AB){1, 2, 4} if and only

if R(A∗) = R(BB∗A∗) ⊕ [R(A∗) ∩N(B∗)] ,N(AB) = N(B) when A, B and AB have closed range. But this result
does not necessarily hold. We can see from the following example which is provided by the referee.
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Example 1 Let B =

 1 0 0
0 0 0
0 1 0

 and A =

(
1 0 0
0 0 0

)
. By direct computation,

B∗ =

 1 0 0
0 0 1
0 0 0

 , AB =

(
1 0 0
0 0 0

)
, B∗A∗ =

 1 0
0 0
0 0


and

(AB){1, 2, 4} = {

 1 x12
0 0
0 0

 : x12 ∈ C}, B{1, 2, 4}A{1, 2, 4} = {

 1 y12
0 0
0 0

 : y12 ∈ C}.

So L2 , {0},N(B) , N(AB) and B{1, 2, 4}A{1, 2, 4} = (AB){1, 2, 4}.
In [26, Theorem 3.1], the necessary and sufficient conditions for

B{1, 2, 4} · A{1, 2, 4} ⊆ (AB){1, 2, 4}, B{1, 2, 3} · A{1, 2, 3} ⊆ (AB){1, 2, 3}

were presented by using the expressions for maximal and minimal ranks of the generalized Schur comple-
ment.

In this paper, we study the mutual relationships of mixed-type generalized inverses. The range relations,
the properties of matrix entries, the inclusion or equal relationships of mixed-type generalized inverses
of corresponding closed range operators are obtained. Meanwhile some new necessary and sufficient
conditions for various generalized inverses relations are given, and some recent related results are covered.
It is worth pointing out that various relations of mixed-type generalized inverses which we do not discuss
can also be treated effectively by using our methods.
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[8] D.S. Cvetković-Ilić, P. Stanimirović, Marko Miladinović, Comments on some recent results concerning 2,3 and 2,4-generalized

inverses, Appl. Math. Comp. 217(22) (2011), 9358-9367.
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