Some Upper Bounds for the Berezin Number of Hilbert Space Operators

Ali Taghavi ${ }^{\text {a }}$, Tahere Azimi Roushan ${ }^{\text {a }}$, Vahid Darvish ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran. ${ }^{b}$ School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, China.

Abstract

In this paper, we obtain some Berezin number inequalities based on the definition of Berezin symbol. Among other inequalities, we show that if A, B be positive definite operators in $B(H)$, and $A \sharp B$ is the geometric mean of them, then $$
\boldsymbol{\operatorname { b e r }}^{2}(A \sharp B) \leq \boldsymbol{\operatorname { b e r }}\left(\frac{A^{2}+B^{2}}{2}\right)-\frac{1}{2} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right),
$$ where $\zeta\left(\hat{k}_{\lambda}\right)=\left\langle(A-B) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{2}$, and \hat{k}_{λ} is the normalized reproducing kernel of the space H for λ belong to some set Ω.

1. Introduction and preliminaries

Let $B(H)$ stand for C^{*}-algebra of all bounded linear operators on a complex Hilbert space H with inner product $\langle\cdot, \cdot\rangle$. An operator $A \in B(H)$ is called positive semi-definite and write $A \geq 0$ if $\langle A x, x\rangle \geq 0$ for all $x \in H$. Also, it is called positive definite if $A>0$. The numerical range and numerical radius of $A \in B(H)$ are defined by

$$
W(A):=\{\langle A x, x\rangle: x \in H,\|x\|=1\} \text { and } w(A):=\sup \{|\lambda|: \lambda \in W(A)\}
$$

respectively. It is well-known that $w(\cdot)$ defines a norm on $B(H)$, which is equivalent to the usual operator norm $\|$.$\| . In fact, \frac{1}{2}\|A\| \leq w(A) \leq\|A\|$, for any $A \in B(H)$. A functional Hilbert space is the Hilbert space of complex-valued functions on some set Ω such that the evaluation functional $\varphi_{\lambda}(f)=f(\lambda), \lambda \in \Omega$, are continuous on H. Then by the Riesz representation theorem for each $\lambda \in \Omega$ there exists a unique function $k_{\lambda} \in H$ such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for all $f \in H$. The family $\left\{k_{\lambda}: \lambda \in \Omega\right\}$ is called the reproducing kernel of the space H. For A a bounded linear operator on H, the Berezin symbol of A is the function \tilde{A} on Ω defined by

$$
\tilde{A}(\lambda)=\left\langle A \hat{k}_{\lambda}(z), \hat{k}_{\lambda}(z)\right\rangle
$$

[^0]where $\hat{k}_{\lambda}:=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ is the normalized reproducing kernel of the space $H[8,9,13]$.
Berezin set and Berezin number of operator A are defined respectively by
$$
\operatorname{Ber}(A):=\{\tilde{A}(\lambda): \lambda \in \Omega\} \text { and } \operatorname{ber}(A):=\sup \{|\tilde{A}(\lambda)|: \lambda \in \Omega\}
$$

It is clear that the Berezin symbol \tilde{A} is the bounded function on Ω whose value lies in the numerical range of the operator A and hence for any $A \in B(H)$,

$$
\operatorname{Ber}(A) \subseteq W(A) \text { and } \operatorname{ber}(A) \leq w(A)
$$

We remark that this numerical characteristic of operator deserve large investigations. We refer the reader to $[2,3,5,6,8-13,18,19]$ as a sample of recent work in this literature.
The Berezin number of an operator A satisfies the following properties:
(i) $\operatorname{ber}(\alpha A)=|\alpha| \operatorname{ber} A$, for all $\alpha \in \mathbb{C}$,
(ii) $\operatorname{ber}(A+B) \leq \operatorname{ber}(A)+\operatorname{ber}(B)$.

For two positive definite operators $A, B \in B(H)$, define $A \sharp_{t} B$ to be

$$
A \sharp_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}
$$

with $t \in \mathbb{R}$, which is a positive definite operator in $B(H)$. When $0 \leq t \leq 1$, the operator $A \sharp_{t} B$ is called the t - weighted geometric mean of A and B. In particular, for $t=\frac{1}{2}$, the operator $A \sharp B:=A \not{ }_{\frac{1}{2}} B$ is called the geometric mean of A and B. If $A B=B A$, then $A \sharp_{t} B=A^{1-t} B^{t}$.
In this paper we obtain some upper bounds for the Berezin number of the geometric mean of A and B, and in the sequel, we establish some inequalities involving generalization of Berezin number inequalities.

2. Main results

To prove our Berezin number inequalities, we need the following well-known results.
For $a, b>0$ and $0 \leq v \leq 1$, the Young's inequality says that

$$
\begin{equation*}
a^{v} b^{1-v} \leq v a+(1-v) b \tag{1}
\end{equation*}
$$

Recently Kittaneh and Manasrah in [15] refined inequality (1) as following

$$
\begin{equation*}
a^{v} b^{1-v}+r_{0}(\sqrt{a}-\sqrt{b})^{2} \leq v a+(1-v) b \tag{2}
\end{equation*}
$$

where $r_{0}=\min \{v, 1-v\}$.
Furthermore, in [1] they generalized inequality (2) in the following form.

$$
\begin{equation*}
\left(a^{v} b^{1-v}\right)^{m}+r_{0}^{m}\left(a^{\frac{m}{2}}-b^{\frac{m}{2}}\right)^{2} \leq(v a+(1-v) b)^{m} \tag{3}
\end{equation*}
$$

for $m=1,2,3, \cdots$.
From the spectral theorem for positive operators and Jensen's inequality we have:
Lemma 2.1. [14] Let A be a positive operator in $B(H)$ and let $x \in H$ be any unit vector. Then
(a) $\langle A x, x\rangle^{r} \leq\left\langle A^{r} x, x\right\rangle$ for $r \geq 1$,
(b) $\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}$ for $0<r \leq 1$.

Dragomir in [4] obtained an useful extension for four operators of the Schwarz inequality as following.
Theorem 2.2. Let $A, B, C, D \in B(H)$. Then for $x, y \in H$ we have the inequality

$$
\begin{equation*}
\left.\left.|\langle D C B A x, y\rangle|^{2} \leq\left.\left\langle A^{*}\right| B\right|^{2} A x, x\right\rangle\left.\langle D| C^{*}\right|^{2} D^{*} y, y\right\rangle . \tag{4}
\end{equation*}
$$

From now on, our means of r_{0} and R_{0} are $\min \{v, 1-v\}$ and $\max \{v, 1-v\}$, respectively.
Now we are in a position to present our first result.
Theorem 2.3. Let $A, B, X \in B(H)$ such that $A, B>0$ and $v \in[0,1]$. Then for all $r \geq 2 m(m=1,2,3, \cdots)$, and $\alpha \geq 0$

$$
\begin{equation*}
\operatorname{ber}^{r}\left(\left(A \not \sharp_{\alpha} B\right) X\right) \leq \boldsymbol{\operatorname { b e r }}\left(v\left(X^{*} A X\right)^{\frac{r}{2 m v}}+(1-v)\left(A \not \sharp_{2 \alpha} B\right)^{\frac{r}{2 m(1-v)}}\right)^{m}-r_{0}^{m} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right) \tag{5}
\end{equation*}
$$

where $\zeta\left(\hat{k}_{\lambda}\right)=\left(\left\langle\left(X^{*} A X\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{m}{2 v}}-\left\langle\left(A \not \sharp_{2 \alpha} B\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{m}{2(1-v)}}\right)^{2}$.
Proof. Let \hat{k}_{λ} be the normalized reproducing kernel of $H(\Omega)$, then

$$
\begin{aligned}
\left|\left\langle\left(A \not \sharp_{\alpha} B\right) X \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r}= & \left|\left\langle A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} X \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r} \\
& \quad \text { By Theorem } 2.2 \\
\leq & \left\langle X^{*} A X \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}}\left\langle A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{2 \alpha} A^{\frac{1}{2}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}} \\
= & \left(\left\langle X^{*} A X \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2 m}}\left\langle\left(A \not \sharp_{2 \alpha} B\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2 m}}\right)^{m} \\
\leq & \left(\left\langle\left(X^{*} A X\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\left\langle\left(A \not \#_{2 \alpha} B\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right)^{m} . \quad \text { By Lemma 2.1(a) }
\end{aligned}
$$

Now, by refinement of Young's inequality (3) we have

$$
\left.\begin{array}{rl}
\left(\left\langle\left(X^{*} A X\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\left\langle\left(A \sharp_{2 \alpha} B\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right)^{m} \\
\leq & \left(v\left\langle\left(X^{*} A X\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right)^{\frac{1}{v}}+(1-v)\left\langle\left(A \sharp_{2 \alpha} B\right)^{\frac{r}{2 m}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \frac{1}{1-v}\right.
\end{array}\right)^{m} .
$$

Now, by taking supremum over $\lambda \in \Omega$, we get the desired inequality.
choosing $m=1$ in the proof of Theorem 2.3 we have:
Corollary 2.4. Let $A, B, X \in B(H)$ such that $A, B>0$ and $v \in[0,1]$. Then for all $r \geq 2 R_{0}$

$$
\begin{equation*}
\operatorname{ber}^{r}\left(\left(A \not \sharp_{\alpha} B\right) X\right) \leq \boldsymbol{\operatorname { b e r }}\left(v\left(X^{*} A X\right)^{\frac{r}{2 v}}+(1-v)\left(A \sharp_{2 \alpha} B\right)^{\frac{r}{2(1-v)}}\right)-r_{0} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right), \tag{6}
\end{equation*}
$$

where $\zeta\left(\hat{k}_{\lambda}\right)=\left(\left\langle\left(X^{*} A X\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{4 v}}-\left\langle\left(A \sharp_{2 \alpha} B\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{4(1-v)}}\right)^{2}$.
By letting $\alpha=\frac{1}{2}$ and $m=1$ in the proof of Theorem 2.3 , since $A \sharp B=B \sharp A$ we obtain the following corollary which was proved earlier in [17] for the numerical radius in (p, q)-version.
Corollary 2.5. Let $A, B, X \in B(H)$ such that $A, B>0$ and $v \in[0,1]$. Then for all $r \geq 2 R_{0}$

$$
\begin{equation*}
\boldsymbol{\operatorname { b e r }}^{r}((A \sharp B) X) \leq \boldsymbol{\operatorname { b e r }}\left(v A^{\frac{r}{2 v}}+(1-v)\left(X^{*} B X\right)^{\frac{r}{2(1-v)}}\right)-r_{0} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right) \tag{7}
\end{equation*}
$$

where $\zeta\left(\hat{k}_{\lambda}\right)=\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{4 v}}-\left\langle X^{*} B X \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{4(1-v)}}\right)^{2}$.

Remark 2.6. Note that, if we set $X=I, r=2$ and $v=\frac{1}{2}$ in (7), then we have

$$
\begin{equation*}
\operatorname{ber}^{2}(A \sharp B) \leq \boldsymbol{\operatorname { b e r }}\left(\frac{A^{2}+B^{2}}{2}\right)-\frac{1}{2} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right), \tag{8}
\end{equation*}
$$

where $\zeta\left(\hat{k}_{\lambda}\right)=\left\langle(A-B) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{2}$. Actually, (8) is an operator Berezin number version for arithmetic-geometric mean. The next result reads as follows.

Theorem 2.7. Let A, B be positive definite operators in $B(H)$ and $v \in[0,1]$. Then for $\alpha \in[0,1]$ and all $r \geq R_{0} / \alpha$

$$
\begin{equation*}
\operatorname{ber}^{r}\left(A \not \oiint_{\alpha} B\right) \leq \boldsymbol{\operatorname { b e r }}\left(v A^{\frac{(1-\alpha) r}{v}}+(1-v) B^{\frac{\alpha r}{1-v}}\right)-r_{0} \inf _{\lambda \in \Omega} \zeta\left(\hat{k}_{\lambda}\right), \tag{9}
\end{equation*}
$$

where $\zeta\left(\hat{k}_{\lambda}\right)=\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{2 v}}-\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\left.\frac{a r}{2(1-v)}\right)^{2} \text {. }}\right.$
Proof. If \hat{k}_{λ} is the normalized reproducing kernel of $H(\Omega)$, then

$$
\begin{aligned}
&\left\langle\left(A \not \sharp_{\alpha} B\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{r}=\left\langle A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{r} \\
&=\left\langle\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{r} \\
& \leq\left\|A^{\frac{1}{2}} \hat{k}_{\lambda}\right\|^{(2-2 \alpha) r}\left\langle\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{\alpha r} \quad \text { By Lemma 2.1(b) } \\
&=\left\langle A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{(1-\alpha) r}\left\langle\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{\alpha r} \\
&=\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{(1-\alpha) r} \cdot\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\alpha r} \\
& \leq v\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{v}}+(1-v)\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{a r}{1-v}} \\
&-r_{0}\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{2 v}}-\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda} \frac{\left.\frac{a r}{2(1-v)}\right)^{2}}{} \quad\right. \text { By Inequality(2) }\right. \\
& \leq v\left\langle A^{\left(\frac{1-\alpha) r}{v}\right.} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle+(1-v)\left\langle B^{\frac{a r}{11-v}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \\
&-r_{0}\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{2 v}}-\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{a r r}{2(1-v)}}\right)^{2} \quad \text { By Lemma 2.1(a) } \\
&=\left\langle\left(v A^{\frac{(1-\alpha) r}{v}}+(1-v) B^{\frac{a r}{1-v}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right. \\
&-r_{0}\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{2 v}}-\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda} \frac{\left.\frac{a r}{2(1-v)}\right)^{2}}{\leq}\right.\right. \\
& \leq \operatorname{ber}\left(v A^{\frac{(1-\alpha) r}{v}}+(1-v) B^{\frac{a r}{1-v}}\right) \\
&-r_{0}\left(\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{(1-\alpha) r}{2 v}}-\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle_{2 r r}^{2(1-v)}\right)^{2}
\end{aligned}
$$

Now, by taking supremum over $\lambda \in \Omega$, we get the inequality.
Remark 2.8. If we put $\alpha=\frac{1}{2}, r=2$ and $v=\frac{1}{2}$ in (9), we get the inequality in (8).
Finally, we end this section by the following results.
Theorem 2.9. Let $A, B \in B(H)$ be positive definite operators and $\alpha \in[0,1]$, then

$$
\boldsymbol{\operatorname { b e r }}\left(A \not \sharp_{\alpha} B\right) \leq \boldsymbol{\operatorname { b e r }}^{1-\alpha}(A) \boldsymbol{\operatorname { b e r }}^{\alpha}(B) .
$$

In particular,

$$
\operatorname{ber}(A \sharp B) \leq \sqrt{\boldsymbol{\operatorname { b e r }}(A) \operatorname{ber}(B)} .
$$

Proof. let \hat{k}_{λ} be the normalized reproducing kernel of $H(\Omega)$, then

$$
\begin{aligned}
\left\langle\left(A \sharp_{\alpha} B\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle & =\left\langle A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \\
& =\left\langle\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle \\
& \leq\left\langle\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{\alpha}\left\langle A^{\frac{1}{2}} \hat{k}_{\lambda}, A^{\frac{1}{2}} \hat{k}_{\lambda}\right\rangle^{(1-\alpha)} \\
& =\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{(1-\alpha)} \cdot\left\langle B \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\alpha}
\end{aligned}
$$

Now, by taking supremum over $\lambda \in \Omega$, we get the first inequality. In particular, for $\alpha=\frac{1}{2}$ we obtain the second one.

Corollary 2.10. Let $A, B \in B(H)$ be positive definite operators which commute with each other and $\alpha \in[0,1]$, then

$$
\operatorname{ber}\left(A^{1-\alpha} B^{\alpha}\right) \leq \operatorname{ber}^{1-\alpha}(A) \operatorname{ber}^{\alpha}(B)
$$

In particular, if $\alpha=\frac{1}{2}$, then

$$
\operatorname{ber}(\sqrt{A B}) \leq \sqrt{\boldsymbol{\operatorname { b e r }}(A) \operatorname{ber}(B)}
$$

3. Additional results

To prove our results in this section, the following basic lemmas are also required.

Lemma 3.1. [14] Let A be an operator in $B(H)$, and f, g be nonnegative functions on $[0, \infty)$ which are continuous and satisfy the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Then for all x, y in H,

$$
\begin{equation*}
|\langle A x, y\rangle| \leq\|f(|A|) x \mid\|\left\|g\left(\left|A^{*}\right|\right) y\right\| \tag{10}
\end{equation*}
$$

Lemma 3.2. [16] Let a_{i} be a positive real number $(i=1,2, \ldots, n)$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{r} \leq n^{r-1} \sum_{i=1}^{n} a_{i}^{r} \quad \forall r \geq 1 \tag{11}
\end{equation*}
$$

The following result is proved in [16], for the numerical radius. We bring the proof here with a slight difference for the convenience of readers.

Theorem 3.3. Let $A_{i}, B_{i}, X_{i} \in B(H)(i=1,2, \ldots, n)$, and let f and g be nonnegative continuous functions on $[0, \infty)$ which satisfy the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Then

$$
\begin{equation*}
\boldsymbol{b e r}^{r}\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \leq \frac{n^{r-1}}{2} \operatorname{ber}\left(\sum_{i=1}^{n}\left(\left[A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right]^{r}+\left[B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right]^{r}\right)\right) \tag{12}
\end{equation*}
$$

for all $r \geq 1$.

Proof. If \hat{k}_{λ} is the normalized reproducing kernel of $H(\Omega)$, then

$$
\begin{aligned}
& \left|\left\langle\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r} \\
& \quad=\left|\sum_{i=1}^{n}\left\langle A_{i}^{*} X_{i} B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r} \\
& \quad \leq\left(\sum_{i=1}^{n}\left|\left\langle A_{i}^{*} X_{i} B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|\right)^{r} \\
& \quad=\left(\sum_{i=1}^{n}\left|\left\langle X_{i} B_{i} \hat{k}_{\lambda}, A_{i} \hat{k}_{\lambda}\right\rangle\right|\right)^{r} \\
& \quad \leq\left(\sum_{i=1}^{n}\left\langle f^{2}\left(\left|X_{i}\right|\right) B_{i} \hat{k}_{\lambda}, B_{i} \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\left\langle g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i} \hat{k}_{\lambda}, A_{i} \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\right)^{r} \quad \text { By }(3.1) \\
& \quad \leq n^{r-1} \sum_{i=1}^{n}\left\langle B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}}\left\langle A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}} \quad \text { By (3.2) } \\
& \quad \leq n^{r-1} \sum_{i=1}^{n}\left\langle\left(B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right)^{r} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\left\langle\left(A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right)^{r} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}} \quad \text { By Lemma } 2.1 \\
& \quad \leq \frac{n^{r-1}}{2} \sum_{i=1}^{n}\left(\left\langle\left[B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right]^{r} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle+\left\langle\left[A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right]^{r} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right) \text { By }(1) \\
& \quad=\frac{n^{r-1}}{2}\left\langle\sum_{i=1}^{n}\left(\left[B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right]^{r}+\left[A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right]^{r}\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \\
& \quad \leq \frac{n^{r-1}}{2} \mathbf{b e r}\left(\sum_{i=1}^{n}\left(\left[A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right]^{r}+\left[B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right]^{r}\right)\right)^{2}
\end{aligned}
$$

Now, by taking supremum over $\lambda \in \Omega$, we get the desired inequality.
If we take $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}, \alpha \in(0,1)$, in inequality (12), we get the following inequality.
Corollary 3.4. Let $A_{i}, B_{i}, X_{i} \in B(H)(i=1,2, \ldots, n)$ and $0<\alpha<1$. Then

$$
\begin{equation*}
\operatorname{ber}^{r}\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \leq \frac{n^{r-1}}{2} \operatorname{ber}\left(\sum_{i=1}^{n}\left(\left[A_{i}^{*}\left|X_{i}^{*}\right|^{2(1-\alpha)} A_{i}\right]^{r}+\left[B_{i}^{*}\left|X_{i}\right|^{2 \alpha} B_{i}\right]^{r}\right)\right) \tag{13}
\end{equation*}
$$

for $r \geq 1$.
Inequality (13) includes some special cases as follows.
Corollary 3.5. Let $A, B, X \in B(H)$. Then
(i) $\operatorname{ber}^{r}(A) \leq \frac{1}{2} \operatorname{ber}\left(|A|^{r}+\left|A^{*}\right|^{r}\right) \quad \forall r \geq 1$,
(ii) $\operatorname{ber}\left(A^{*} B\right) \leq \frac{1}{2} \operatorname{ber}\left(A^{*} A+B^{*} B\right)$,
(iii) $\operatorname{ber}\left(A^{*} X B\right) \leq \frac{1}{2} \operatorname{ber}\left(A^{*}\left|X^{*}\right| A+B^{*}|X| B\right)$.

Now, we want to generalize inequality (12) in the following form.

Theorem 3.6. Let $A_{i}, B_{i}, X_{i} \in B(H)(i=1,2, \ldots, n)$, and let f and g be nonnegative functions on $[0, \infty)$ which are continuous and satisfy the relation $f(t) g(t)=t$ for all $t \in[0, \infty)$. Then for $v \in[0,1]$ and $r \geq 2 R_{0}$

$$
\begin{equation*}
\operatorname{ber}^{r}\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \leq n^{r-1} \mathbf{b e r}\left(\sum_{i=1}^{n} v\left(B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right)^{\frac{r}{2 v}}+(1-v)\left(A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right)^{\frac{r}{2(1-v)}}\right) \tag{14}
\end{equation*}
$$

Proof. let \hat{k}_{λ} be the normalized reproducing kernel of $H(\Omega)$, then

$$
\begin{aligned}
& \left|\left\langle\left(\sum_{i=1}^{n} A_{i}^{*} X_{i} B_{i}\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r} \\
& \quad=\left|\sum_{i=1}^{n}\left\langle A_{i}^{*} X_{i} B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|^{r} \\
& \quad \leq\left(\sum_{i=1}^{n} \mid\left\langle A_{i}^{*} X_{i} B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right)^{r} \\
& \quad=\left(\sum_{i=1}^{n}\left|\left\langle X_{i} B_{i} \hat{k}_{\lambda}, A_{i} \hat{k}_{\lambda}\right\rangle\right|\right)^{r} \\
& \quad \leq\left(\sum_{i=1}^{n}\left\langle f^{2}\left(\left|X_{i}\right|\right) B_{i} \hat{k}_{\lambda}, B_{i} \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\left\langle g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i} \hat{k}_{\lambda}, A_{i} \hat{k}_{\lambda}\right\rangle^{\frac{1}{2}}\right)^{r} \quad \text { By (3.1) } \\
& \quad \leq n^{r-1} \sum_{i=1}^{n}\left\langle B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}}\left\langle A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle^{\frac{r}{2}} \quad \text { By (3.2) }
\end{aligned}
$$

By Inequality (1) and Lemma 2.1

$$
\begin{aligned}
& \leq n^{r-1} \sum_{i=1}^{n}\left(v\left\langle\left(B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right)^{\frac{r}{2 v}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle+(1-v)\left\langle\left(A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right)^{\frac{r}{2(1-v)}} \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right) \\
& =n^{r-1}\left\langle\sum_{i=1}^{n}\left(v\left(B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right)^{\frac{r}{2 v}}+(1-v)\left(A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right)^{\frac{r}{2(1-v)}}\right) \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle \\
& \leq n^{r-1} \operatorname{ber}\left(\sum_{i=1}^{n}\left(v\left(B_{i}^{*} f^{2}\left(\left|X_{i}\right|\right) B_{i}\right)^{\frac{r}{2 v}}+(1-v)\left(A_{i}^{*} g^{2}\left(\left|X_{i}^{*}\right|\right) A_{i}\right)^{\frac{r}{2(1-v)}}\right)\right)
\end{aligned}
$$

Now, the result follows by taking the supremum over $\lambda \in \Omega$.
By letting $A_{i}=B_{i}=I(i=1,2, \ldots, n)$, and $f(t)=t^{\alpha}$ and $g(t)=t^{1-\alpha}, \alpha \in(0,1)$, in inequality (14), we obtain the following inequalities.
Corollary 3.7. Let $X_{i} \in B(H)(i=1,2, \ldots, n)$ and $0<\alpha<1$. Then for $v \in[0,1]$ and $r \geq R_{0} \alpha$

$$
\begin{equation*}
\boldsymbol{\operatorname { b e r }}^{r}\left(\sum_{i=1}^{n} X_{i}\right) \leq n^{r-1} \boldsymbol{\operatorname { e e r }}\left(\left.\sum_{i=1}^{n} v\left|X_{i}\right|^{\frac{r(x}{v}}+(1-v) \right\rvert\, X_{i}^{*} \frac{r(1-\alpha)}{\mid 1-v}\right) \tag{15}
\end{equation*}
$$

In particular, if $X_{1}=X_{2}=\cdots=X_{n}=X$, then

$$
\begin{equation*}
\operatorname{ber}^{r}(X) \leq \boldsymbol{\operatorname { b e r }}\left(v|X|^{\frac{\alpha r}{v}}+(1-v)\left|X^{*}\right|^{\frac{(1-\alpha) r}{1-v}}\right) . \tag{16}
\end{equation*}
$$

As special cases of (14), (15) and (16), we present the following inequalities.
(i) $\operatorname{ber}^{r}(A) \leq \operatorname{ber}\left(\left.v|A|^{\frac{r}{2 v}}+(1-v) \right\rvert\, A^{*} \frac{r}{2(1-v)}\right)$,
(ii) $\operatorname{ber}^{r}\left(A^{*} B\right) \leq \operatorname{ber}\left(v|B|^{\frac{r}{v}}+(1-v)|A|^{\frac{r}{1-v}}\right)$,
(iii) $\boldsymbol{b e r}^{r}\left(A^{*} X B\right) \leq \operatorname{ber}\left(v\left(B^{*}|X| B\right)^{\frac{r}{2 v}}+(1-v)\left(A^{*}\left|X^{*}\right| A\right)^{\frac{r}{2(1-v)}}\right)$.

References

[1] Y. Al-Manasrah, F. Kittaneh, A generalization of two refined Young inequalities, Positivity 19 (2015) 757-768.
[2] M. Bakherad, Some Berezin number inequalities for operator matrices, Czech Math. J. 68(4) (2018) 997-1009.
[3] M. Bakherad, M.T. Garayev, Berezin number inequalities for operators, Concrete Operators 6(1) (2019) 33-43.
[4] S.S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat 28:1 (2014) 179-195.
[5] M.T. Garayev, M. Gürdal, A. Okudan, Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators, Mathematical Inequalities and Applications 19(3) (2016) 883-891.
[6] M.T. Garayev, M. Gürdal, S. Saltan, Hardy Type Inequality For Re- producing Kernel Hilbert Space Operators and Related Problems, Positivity 21(4) (2017) 1615-1623.
[7] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, (2nd edition), Cambridge Univ. Press, Cambridge, 1988.
[8] M.T. Karaev, On the Berezin symbol and invertibility of operators on the functional Hilbert Spaces, J. Funct. Anal. 238 (2006) 181-192.
[9] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (2013) 983-1018.
[10] M.T. Karaev, M. Gürdal, On the Berezin symbols and Toeplitz operators, Extracta Mathematicae 25(1) (2010) 83-102.
[11] M.T. Karaev, M. Gürdal, M.B. Huban, Reproducing kernels, Englis algebras and some application, Studia Mathematica 232(2) (2016) 113-141.
[12] M.T. Karaev, M. Gürdal, U. Yamanci, Some results related with Berezin symbols and Toeplitz operators, Mathematical Inequalities and Applications 17(3) (2014) 1031-1045.
[13] M.T. Karaev, S. Saltan, Some results on Berezin symbols, Complex Var. Theory Appl. 50 (3) (2005) 185-193.
[14] F. Kittaneh, Notes on some inequalities for Hilbert Space Operators, Publ. Res. Inst. Math. Sci. 24 (2) (1988) 283-293.
[15] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010) 262-269.
[16] KH. Shebrawi, H. Albadawi, Numerical radius and operator norm inequalities, J. of Inequal. and Appl. (2009) 1-11.
[17] A. Sheikhhosseini, A numerical radius version of the arithmetic-geometric mean of operators, Filomat 30(8) (2016) $2139-2145$.
[18] U. Yamanci, M. Garayev, Some results related to the Berezin number inequalities, Turk J. Math 43(4) (2019) 1940-1952.
[19] U. Yamanci, M. Gürdal, M.T. Garayev, Berezin Number Inequality for Convex Function in Reproducing Kernel Hilbert Space, Filomat 31(18) (2017) 5711-5717.

[^0]: 2010 Mathematics Subject Classification. Primary 47A30; Secondary 15A60, 47B20.
 Keywords. Berezin number, Numerical radius, Geometric mean.
 Received: 23 February 2019; Accepted: 15 September 2019
 Communicated by Fuad Kittaneh
 The third author is supported by the Talented Young Scientist Program of Ministry of Science and Technology of China (Iran-19001).

 Email addresses: taghavi@umz.ac.ir (Ali Taghavi), t.roushan@umz.ac.ir (Tahere Azimi Roushan), vahid.darvish@mail.com (Vahid Darvish)

