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Abstract. In this paper, we obtain some Berezin number inequalities based on the definition of Berezin
symbol. Among other inequalities, we show that if A,B be positive definite operators in B(H), and A]B is
the geometric mean of them, then

ber2(A]B) ≤ ber
(

A2 + B2

2

)
−

1
2

inf
λ∈Ω

ζ(k̂λ),

where ζ(k̂λ) = 〈(A − B)k̂λ, k̂λ〉2, and k̂λ is the normalized reproducing kernel of the space H for λ belong to
some set Ω.

1. Introduction and preliminaries

Let B(H) stand for C∗-algebra of all bounded linear operators on a complex Hilbert space H with inner
product 〈·, ·〉. An operator A ∈ B(H) is called positive semi-definite and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for all
x ∈ H. Also, it is called positive definite if A > 0. The numerical range and numerical radius of A ∈ B(H)
are defined by

W(A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} and w(A) := sup{|λ| : λ ∈W(A)},

respectively. It is well-known that w(·) defines a norm on B(H), which is equivalent to the usual operator
norm ‖.‖. In fact, 1

2‖A‖ ≤ w(A) ≤ ‖A‖, for any A ∈ B(H). A functional Hilbert space is the Hilbert space
of complex-valued functions on some set Ω such that the evaluation functional ϕλ( f ) = f (λ), λ ∈ Ω, are
continuous on H. Then by the Riesz representation theorem for each λ ∈ Ω there exists a unique function
kλ ∈ H such that f (λ) = 〈 f , kλ〉 for all f ∈ H. The family {kλ : λ ∈ Ω} is called the reproducing kernel of the
space H. For A a bounded linear operator on H, the Berezin symbol of A is the function Ã on Ω defined by

Ã(λ) = 〈Ak̂λ(z), k̂λ(z)〉,
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where k̂λ := kλ
‖kλ‖

is the normalized reproducing kernel of the space H [8, 9, 13].
Berezin set and Berezin number of operator A are defined respectively by

Ber(A) := {Ã(λ) : λ ∈ Ω} and ber(A) := sup{|Ã(λ)| : λ ∈ Ω}.

It is clear that the Berezin symbol Ã is the bounded function on Ω whose value lies in the numerical range
of the operator A and hence for any A ∈ B(H),

Ber(A) ⊆W(A) and ber(A) ≤ w(A).

We remark that this numerical characteristic of operator deserve large investigations. We refer the reader
to [2, 3, 5, 6, 8–13, 18, 19] as a sample of recent work in this literature.
The Berezin number of an operator A satisfies the following properties:

(i) ber(αA) = |α|berA, for all α ∈ C,
(ii) ber(A + B) ≤ ber(A) + ber(B).

For two positive definite operators A,B ∈ B(H), define A]tB to be

A]tB = A
1
2 (A−

1
2 BA−

1
2 )

t
A

1
2

with t ∈ R, which is a positive definite operator in B(H). When 0 ≤ t ≤ 1, the operator A]tB is called the
t − wei1hted 1eometric mean of A and B. In particular, for t = 1

2 , the operator A]B := A] 1
2
B is called the

1eometric mean of A and B. If AB = BA, then A]tB = A1−tBt.
In this paper we obtain some upper bounds for the Berezin number of the geometric mean of A and B, and
in the sequel, we establish some inequalities involving generalization of Berezin number inequalities.

2. Main results

To prove our Berezin number inequalities, we need the following well-known results.
For a, b > 0 and 0 ≤ ν ≤ 1, the Young’s inequality says that

aνb1−ν
≤ νa + (1 − ν)b. (1)

Recently Kittaneh and Manasrah in [15] refined inequality (1) as following

aνb1−ν + r0(
√

a −
√

b)2
≤ νa + (1 − ν)b, (2)

where r0 = min{ν, 1 − ν}.
Furthermore, in [1] they generalized inequality (2) in the following form.

(aνb1−ν)m + rm
0 (a

m
2 − b

m
2 )2
≤ (νa + (1 − ν)b)m, (3)

for m = 1, 2, 3, · · · .
From the spectral theorem for positive operators and Jensen’s inequality we have:

Lemma 2.1. [14] Let A be a positive operator in B(H) and let x ∈ H be any unit vector. Then

(a) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1,
(b) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.

Dragomir in [4] obtained an useful extension for four operators of the Schwarz inequality as following.

Theorem 2.2. Let A,B,C,D ∈ B(H). Then for x, y ∈ H we have the inequality

|〈DCBAx, y〉|2 ≤ 〈A∗|B|2Ax, x〉〈D|C∗|2D∗y, y〉. (4)
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From now on, our means of r0 and R0 are min{ν, 1 − ν} and max{ν, 1 − ν}, respectively.
Now we are in a position to present our first result.

Theorem 2.3. Let A,B,X ∈ B(H) such that A,B > 0 and ν ∈ [0, 1]. Then for all r ≥ 2m (m = 1, 2, 3, · · · ), and α ≥ 0

berr((A]αB)X) ≤ ber
(
ν(X∗AX)

r
2mν + (1 − ν)(A]2αB)

r
2m(1−ν)

)m
− rm

0 inf
λ∈Ω

ζ(k̂λ), (5)

where ζ(k̂λ) =
(
〈(X∗AX)

r
2m k̂λ, k̂λ〉

m
2ν − 〈(A]2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2
.

Proof. Let k̂λ be the normalized reproducing kernel of H(Ω), then

|〈(A]αB)Xk̂λ, k̂λ〉|r = |〈A
1
2 (A−

1
2 BA−

1
2 )
α
A

1
2 Xk̂λ, k̂λ〉|r

By Theorem 2.2

≤ 〈X∗AXk̂λ, k̂λ〉
r
2 〈A

1
2 (A−

1
2 BA−

1
2 )2αA

1
2 k̂λ, k̂λ〉

r
2

=
(
〈X∗AXk̂λ, k̂λ〉

r
2m 〈(A]2αB)k̂λ, k̂λ〉

r
2m

)m

≤

(
〈(X∗AX)

r
2m k̂λ, k̂λ〉〈(A]2αB)

r
2m k̂λ, k̂λ〉

)m
. By Lemma 2.1(a)

Now, by refinement of Young’s inequality (3) we have(
〈(X∗AX)

r
2m k̂λ, k̂λ〉〈(A]2αB)

r
2m k̂λ, k̂λ〉

)m

≤

(
ν〈(X∗AX)

r
2m k̂λ, k̂λ〉

1
ν + (1 − ν)〈(A]2αB)

r
2m k̂λ, k̂λ〉

1
1−ν

)m

− rm
0

(
〈(X∗AX)

r
2m k̂λ, k̂λ〉

m
2ν − 〈(A]2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

≤

(
ν〈(X∗AX)

r
2mν k̂λ, k̂λ〉 + (1 − ν)〈(A]2αB)

r
2m(1−ν) k̂λ, k̂λ〉

)m

− rm
0

(
〈(X∗AX)

r
2m k̂λ, k̂λ〉

m
2ν − 〈(A]2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2
By Lemma 2.1 (b)

=
〈(
ν(X∗AX)

r
2mν + (1 − ν)(A]2αB)

r
2m(1−ν)

)
k̂λ, k̂λ

〉m

− rm
0

(
〈(X∗AX)

r
2m k̂λ, k̂λ〉

m
2ν − 〈(A]2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

≤ ber
(
ν(X∗AX)

r
2mν + (1 − ν)(A]2αB)

r
2m(1−ν)

)m

− rm
0

(
〈(X∗AX)

r
2m k̂λ, k̂λ〉

m
2ν − 〈(A]2αB)

r
2m k̂λ, k̂λ〉

m
2(1−ν)

)2

Now, by taking supremum over λ ∈ Ω, we get the desired inequality.

choosing m = 1 in the proof of Theorem 2.3 we have:

Corollary 2.4. Let A,B,X ∈ B(H) such that A,B > 0 and ν ∈ [0, 1]. Then for all r ≥ 2R0

berr((A]αB)X) ≤ ber
(
ν(X∗AX)

r
2ν + (1 − ν)(A]2αB)

r
2(1−ν)

)
− r0 inf

λ∈Ω
ζ(k̂λ), (6)

where ζ(k̂λ) = (〈(X∗AX)k̂λ, k̂λ〉
r

4ν − 〈(A]2αB)k̂λ, k̂λ〉
r

4(1−ν) )2.

By letting α = 1
2 and m = 1 in the proof of Theorem 2.3, since A]B = B]A we obtain the following corollary

which was proved earlier in [17] for the numerical radius in (p, q)−version.

Corollary 2.5. Let A,B,X ∈ B(H) such that A,B > 0 and ν ∈ [0, 1]. Then for all r ≥ 2R0

berr((A]B)X) ≤ ber
(
νA

r
2ν + (1 − ν)(X∗BX)

r
2(1−ν)

)
− r0 inf

λ∈Ω
ζ(k̂λ), (7)

where ζ(k̂λ) = (〈Ak̂λ, k̂λ〉
r

4ν − 〈X∗BXk̂λ, k̂λ〉
r

4(1−ν) )2.
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Remark 2.6. Note that, if we set X = I, r = 2 and ν = 1
2 in (7), then we have

ber2(A]B) ≤ ber
(

A2 + B2

2

)
−

1
2

inf
λ∈Ω

ζ(k̂λ), (8)

where ζ(k̂λ) = 〈(A − B)k̂λ, k̂λ〉2. Actually, (8) is an operator Berezin number version for arithmetic-geometric mean.

The next result reads as follows.

Theorem 2.7. Let A,B be positive definite operators in B(H) and ν ∈ [0, 1]. Then for α ∈ [0, 1] and all r ≥ R0/α

berr(A]αB) ≤ ber
(
νA

(1−α)r
ν + (1 − ν)B

αr
1−ν

)
− r0 inf

λ∈Ω
ζ(k̂λ), (9)

where ζ(k̂λ) = (〈Ak̂λ, k̂λ〉
(1−α)r

2ν − 〈Bk̂λ, k̂λ〉
αr

2(1−ν) )2.

Proof. If k̂λ is the normalized reproducing kernel of H(Ω), then

〈(A]αB)k̂λ, k̂λ〉r = 〈A
1
2 (A−

1
2 BA−

1
2 )
α
A

1
2 k̂λ, k̂λ〉r

= 〈(A−
1
2 BA−

1
2 )
α
A

1
2 k̂λ,A

1
2 k̂λ〉r

≤ ‖A
1
2 k̂λ‖(2−2α)r

〈(A−
1
2 BA−

1
2 )A

1
2 k̂λ,A

1
2 k̂λ〉αr By Lemma 2.1(b)

= 〈A
1
2 k̂λ,A

1
2 k̂λ〉(1−α)r

〈(A−
1
2 BA−

1
2 )A

1
2 k̂λ,A

1
2 k̂λ〉αr

= 〈Ak̂λ, k̂λ〉(1−α)r
· 〈Bk̂λ, k̂λ〉αr

≤ ν〈Ak̂λ, k̂λ〉
(1−α)r
ν + (1 − ν)〈Bk̂λ, k̂λ〉

αr
1−ν

− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν − 〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2
By Inequality(2)

≤ ν〈A
(1−α)r
ν k̂λ, k̂λ〉 + (1 − ν)〈B

αr
1−ν k̂λ, k̂λ〉

− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν − 〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2
By Lemma 2.1(a)

=
〈(
νA

(1−α)r
ν + (1 − ν)B

αr
1−ν

)
k̂λ, k̂λ

〉
− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν − 〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2

≤ ber
(
νA

(1−α)r
ν + (1 − ν)B

αr
1−ν

)
− r0

(
〈Ak̂λ, k̂λ〉

(1−α)r
2ν − 〈Bk̂λ, k̂λ〉

αr
2(1−ν)

)2

Now, by taking supremum over λ ∈ Ω, we get the inequality.

Remark 2.8. If we put α = 1
2 , r = 2 and ν = 1

2 in (9), we get the inequality in (8).

Finally, we end this section by the following results.

Theorem 2.9. Let A,B ∈ B(H) be positive definite operators and α ∈ [0, 1], then

ber(A]αB) ≤ ber1−α(A)berα(B).

In particular,
ber(A]B) ≤

√
ber(A)ber(B).
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Proof. let k̂λ be the normalized reproducing kernel of H(Ω), then

〈(A]αB)k̂λ, k̂λ〉 = 〈A
1
2 (A−

1
2 BA−

1
2 )
α
A

1
2 k̂λ, k̂λ〉

= 〈(A−
1
2 BA−

1
2 )
α
A

1
2 k̂λ,A

1
2 k̂λ〉

≤ 〈(A−
1
2 BA−

1
2 )A

1
2 k̂λ,A

1
2 k̂λ〉α〈A

1
2 k̂λ,A

1
2 k̂λ〉(1−α)

= 〈Ak̂λ, k̂λ〉(1−α)
· 〈Bk̂λ, k̂λ〉α

Now, by taking supremum over λ ∈ Ω, we get the first inequality. In particular, for α = 1
2 we obtain the

second one.

Corollary 2.10. Let A,B ∈ B(H) be positive definite operators which commute with each other and α ∈ [0, 1], then

ber(A1−αBα) ≤ ber1−α(A)berα(B).

In particular, if α = 1
2 , then

ber(
√

AB) ≤
√

ber(A)ber(B).

3. Additional results

To prove our results in this section, the following basic lemmas are also required.

Lemma 3.1. [14] Let A be an operator in B(H), and f , 1 be nonnegative functions on [0,∞) which are continuous
and satisfy the relation f (t)1(t) = t for all t ∈ [0,∞). Then for all x, y in H,

|〈Ax, y〉| ≤ ‖ f (|A|)x‖‖1(|A∗|)y‖ (10)

Lemma 3.2. [16] Let ai be a positive real number (i = 1, 2, . . . ,n). Then

 n∑
i=1

ai


r

≤ nr−1
n∑

i=1

ar
i ∀r ≥ 1 (11)

The following result is proved in [16], for the numerical radius. We bring the proof here with a slight
difference for the convenience of readers.

Theorem 3.3. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . ,n), and let f and 1 be nonnegative continuous functions on [0,∞)
which satisfy the relation f (t)1(t) = t for all t ∈ [0,∞). Then

berr

 n∑
i=1

A∗i XiBi

 ≤ nr−1

2
ber

 n∑
i=1

([A∗i1
2(|X∗i |)Ai]r + [B∗i f 2(|Xi|)Bi]r)

 (12)

for all r ≥ 1.
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Proof. If k̂λ is the normalized reproducing kernel of H(Ω), then∣∣∣∣∣∣∣
〈 n∑

i=1

A∗i XiBi

 k̂λ, k̂λ

〉∣∣∣∣∣∣∣
r

=

∣∣∣∣∣∣∣
n∑

i=1

〈A∗i XiBik̂λ, k̂λ〉

∣∣∣∣∣∣∣
r

≤

 n∑
i=1

|〈A∗i XiBik̂λ, k̂λ〉|


r

=

 n∑
i=1

|〈XiBik̂λ,Aik̂λ〉|


r

≤

 n∑
i=1

〈 f 2(|Xi|)Bik̂λ,Bik̂λ〉
1
2 〈12(|X∗i |)Aik̂λ,Aik̂λ〉

1
2


r

By (3.1)

≤ nr−1
n∑

i=1

〈B∗i f 2(|Xi|)Bik̂λ, k̂λ〉
r
2 〈A∗i1

2(|X∗i |)Aik̂λ, k̂λ〉
r
2 By (3.2)

≤ nr−1
n∑

i=1

〈
(B∗i f 2(|Xi|)Bi)rk̂λ, k̂λ

〉 1
2
〈
(A∗i1

2(|X∗i |)Ai)rk̂λ, k̂λ
〉 1

2 By Lemma 2.1

≤
nr−1

2

n∑
i=1

(〈
[B∗i f 2(|Xi|)Bi]rk̂λ, k̂λ

〉
+

〈
[A∗i1

2(|X∗i |)Ai]rk̂λ, k̂λ
〉)

By (1)

=
nr−1

2

〈 n∑
i=1

(
[B∗i f 2(|Xi|)Bi]r + [A∗i1

2(|X∗i |)Ai]r
)

k̂λ, k̂λ

〉

≤
nr−1

2
ber

 n∑
i=1

([A∗i1
2(|X∗i |)Ai]r + [B∗i f 2(|Xi|)Bi]r)


Now, by taking supremum over λ ∈ Ω, we get the desired inequality.

If we take f (t) = tα and 1(t) = t1−α, α ∈ (0, 1), in inequality (12), we get the following inequality.

Corollary 3.4. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . ,n)and 0 < α < 1. Then

berr

 n∑
i=1

A∗i XiBi

 ≤ nr−1

2
ber

 n∑
i=1

([A∗i |X
∗

i |
2(1−α)Ai]r + [B∗i |Xi|

2αBi]r)

 (13)

for r ≥ 1.

Inequality (13) includes some special cases as follows.

Corollary 3.5. Let A,B,X ∈ B(H). Then

(i) berr(A) ≤ 1
2 ber(|A|r + |A∗|r) ∀r ≥ 1,

(ii) ber(A∗B) ≤ 1
2 ber(A∗A + B∗B),

(iii) ber(A∗XB) ≤ 1
2 ber(A∗|X∗|A + B∗|X|B).

Now, we want to generalize inequality (12) in the following form.
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Theorem 3.6. Let Ai,Bi,Xi ∈ B(H) (i = 1, 2, . . . ,n), and let f and 1 be nonnegative functions on [0,∞) which are
continuous and satisfy the relation f (t)1(t) = t for all t ∈ [0,∞). Then for ν ∈ [0, 1] and r ≥ 2R0

berr

 n∑
i=1

A∗i XiBi

 ≤ nr−1ber

 n∑
i=1

ν(B∗i f 2(|Xi|)Bi)
r

2ν + (1 − ν)(A∗i1
2(|X∗i |)Ai)

r
2(1−ν)

 . (14)

Proof. let k̂λ be the normalized reproducing kernel of H(Ω), then∣∣∣∣∣∣∣
〈 n∑

i=1

A∗i XiBi

 k̂λ, k̂λ

〉∣∣∣∣∣∣∣
r

=

∣∣∣∣∣∣∣
n∑

i=1

〈A∗i XiBik̂λ, k̂λ〉

∣∣∣∣∣∣∣
r

≤

 n∑
i=1

|〈A∗i XiBik̂λ, k̂λ〉|


r

=

 n∑
i=1

|〈XiBik̂λ,Aik̂λ〉|


r

≤

 n∑
i=1

〈 f 2(|Xi|)Bik̂λ,Bik̂λ〉
1
2 〈12(|X∗i |)Aik̂λ,Aik̂λ〉

1
2


r

By (3.1)

≤ nr−1
n∑

i=1

〈
B∗i f 2(|Xi|)Bik̂λ, k̂λ

〉 r
2
〈
A∗i1

2(|X∗i |)Aik̂λ, k̂λ
〉 r

2 By (3.2)

By Inequality (1) and Lemma 2.1

≤ nr−1
n∑

i=1

(
ν
〈
(B∗i f 2(|Xi|)Bi)

r
2ν k̂λ, k̂λ

〉
+ (1 − ν)

〈
(A∗i1

2(|X∗i |)Ai)
r

2(1−ν) k̂λ, k̂λ
〉)

= nr−1

〈 n∑
i=1

(
ν(B∗i f 2(|Xi|)Bi)

r
2ν + (1 − ν)(A∗i1

2(|X∗i |)Ai)
r

2(1−ν)
)

k̂λ, k̂λ

〉

≤ nr−1ber

 n∑
i=1

(
ν(B∗i f 2(|Xi|)Bi)

r
2ν + (1 − ν)(A∗i1

2(|X∗i |)Ai)
r

2(1−ν)
)

Now, the result follows by taking the supremum over λ ∈ Ω.

By letting Ai = Bi = I (i = 1, 2, . . . ,n), and f (t) = tα and 1(t) = t1−α, α ∈ (0, 1), in inequality (14), we obtain the
following inequalities.

Corollary 3.7. Let Xi ∈ B(H) (i = 1, 2, . . . ,n) and 0 < α < 1. Then for ν ∈ [0, 1] and r ≥ R0α

berr

 n∑
i=1

Xi

 ≤ nr−1ber

 n∑
i=1

ν|Xi|
rα
ν + (1 − ν)|X∗i |

r(1−α)
1−ν

 . (15)

In particular, if X1 = X2 = · · · = Xn = X, then

berr(X) ≤ ber
(
ν|X|

αr
ν + (1 − ν)|X∗|

(1−α)r
1−ν

)
. (16)

As special cases of (14), (15) and (16), we present the following inequalities.

(i) berr(A) ≤ ber
(
ν|A|

r
2ν + (1 − ν)|A∗|

r
2(1−ν)

)
,

(ii) berr(A∗B) ≤ ber
(
ν|B|

r
ν + (1 − ν)|A|

r
1−ν

)
,

(iii) berr(A∗XB) ≤ ber
(
ν(B∗|X|B)

r
2ν + (1 − ν)(A∗|X∗|A)

r
2(1−ν)

)
.
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