On the Generalizations of Some Factors Theorems for Infinite Series and Fourier Series

Şebnem Yıldız ${ }^{\text {a }}$
${ }^{a}$ Ahi Evran University, Department of Mathematics, Arts and Science Faculty Kırşehir- Turkey

Abstract

Quite recently, Bor [Quaest. Math. (doi.org/10.2989/16073606.2019.1578836, in press)] has proved a new result on weighted arithmetic mean summability factors of non decreasing sequences and application on Fourier series. In this paper, we establish a general theorem dealing with absolute matrix summability by using an almost increasing sequence and normal matrices in place of a positive non-decreasing sequence and weighted mean matrices, respectively. So, we extend his result to more general cases.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence (s_{n}), that is (see [15])

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots .(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

Let $a_{1}, a_{2}, \ldots, a_{n}$ be n arbitrary real numbers; their arithmetic mean A is defined to be

$$
\begin{equation*}
A=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \tag{3}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [17])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

[^0]If we take $\alpha=1$, then we have $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that $P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty$ as $n \rightarrow \infty,\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)$. The sequence-to-sequence transformation

$$
\begin{equation*}
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left(w_{n}\right)$ of the weighted arithmetic mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [18]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}$, $k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty . \tag{6}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all n (respect. $k=1$), then $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (respect. $\left|\bar{N}, p_{n}\right|$ (see [23]) summability. Also if we take $p_{n}=\frac{1}{n+1}$ and $k=1$, then we obtain $|R, \log n, 1|$ summability (see [3]).

Let $\sum a_{n}$ be a given series with partial sums $\left(s_{n}\right)$. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{7}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty \tag{8}
\end{equation*}
$$

where $\left(\theta_{n}\right)$ is any sequence of positive constants (see [20] and [21]). If we put $\theta_{n}=\frac{p_{n}}{p_{n}}$, we have $\left|A, p_{n}\right|_{k}$ summability (see [22]). When A is the matrix of weighted mean $\left(\bar{N}, p_{n}\right)$, and $\theta_{n}=\frac{P_{n}}{p_{n}}$, for all n, then $\left|A, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k^{\prime}} k \geq 1$ summability. Further, If $\theta_{n}=n$ for $n \geq 1$ and A is the matrix of Cesàro mean (C, α), then it is the same as summability $|C, \alpha|_{k}$ in Flett's notation. By a weighted mean matrix we state

$$
a_{n v}= \begin{cases}\frac{p_{v}}{P_{n}}, & 0 \leq v \leq \mathrm{n} \\ 0 & v>n,\end{cases}
$$

where $\left(p_{n}\right)$ is a sequence of positive numbers with $P_{n}=p_{0}+p_{1}+p_{2}+\ldots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(z_{n}\right)$ and two positive constants A and B such that $A z_{n} \leq b_{n} \leq B z_{n}$ (see [2]). It is known that every increasing sequences is an almost increasing sequence but the converse need not be true. Many papers concerning almost increasing sequences have been done (see [7]-[14], [24]-[28]). Quite recently, Bor has proved the following theorems concerning on summability factors of the absolute weighted mean using a positive non-decreasing sequence. In Section 2 we give the main results of paper and we generalize Theorem 1.2 for more general matrix summability method by using almost increasing sequences in place of positive non-decreasing sequence. So, we extend Theorem 1.2 to more general cases. In Section 3 we give a theorem dealing with application of absolute matrix summability to Fourier series.

Theorem 1.1. ([6]) Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that there exists sequences (β_{n}) and
$\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{9}\\
& \beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{10}\\
& \sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{11}\\
& \left|\lambda_{n}\right| X_{n}=O(1) . \tag{12}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{13}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence that

$$
\begin{align*}
& P_{n}=O\left(n p_{n}\right) \tag{14}\\
& P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right) \tag{15}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Later on, Bor has proved the following theorem under weaker conditions.
Theorem 1.2. ([14]) Let $\left(X_{n}\right)$ be a positive non-decreasing sequence. If the sequences $\left(X_{n}\right),\left(\beta_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions (9)-(12), (14)-(15), and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{16}
\end{equation*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

2. Main Results

Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \quad \bar{\Delta} a_{n v}=a_{n v}-a_{n-1, v}, \quad a_{-1,0}=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{\Delta} \bar{a}_{n v}, \quad n=1,2, \ldots \tag{18}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{20}
\end{equation*}
$$

With this notation we have the following theorem.

Theorem 2.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
\bar{a}_{n 0} & =1, n=0,1, \ldots, \tag{21}\\
a_{n-1, v} & \geq a_{n v}, \text { for } n \geq v+1, \tag{22}\\
a_{n n} & =O\left(\frac{p_{n}}{P_{n}}\right), \tag{23}\\
n a_{n n} & =O(1), \tag{24}\\
\hat{a}_{n, v+1} & =O\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right) . \tag{25}
\end{align*}
$$

Let $\left(X_{n}\right)$ be an almost increasing sequence and $\left(\theta_{n} a_{n n}\right)$ be a non-increasing sequence. If the sequences $\left(X_{n}\right),\left(\beta_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions (9)-(12) and (14)-(15) of Theorem 1.1, and the condition

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{26}
\end{equation*}
$$

is satisfied, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.
We need the following lemmas for the proof of Theorem 2.1
Lemma 2.2. ([19]) Under conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$, and $\left(\lambda_{n}\right)$ as expressed in the statement of Theorem 1.1, we have the following:

$$
\begin{align*}
n X_{n} \beta_{n} & =O(1), \tag{27}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n} & <\infty . \tag{28}
\end{align*}
$$

Lemma 2.3. ([6]) If the conditions (14) and (15) of Theorem 1.1 are satisfied, then $\Delta\left(\frac{P_{n}}{n^{2} p_{n}}\right)=O\left(\frac{1}{n^{2}}\right)$.
Remark 2.4. Under the conditions on the sequence (λ_{n}) of Theorem 1.1, we have that $\left(\lambda_{n}\right)$ is bounded and $\Delta \lambda_{n}=O(1 / n)$ (see [5]).

Proof of Theorem 2.1. Let (V_{n}) denotes the A-transform of the series $\sum a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$. Then, by the definition, we have that

$$
V_{n}-V_{n-1}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \frac{P_{v} \lambda_{v}}{v p_{v}} .
$$

Applying Abel's transformation to this sum, we have that

$$
\begin{aligned}
& \bar{\Delta} V_{n}=\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} P_{v} \lambda_{v}}{v^{2} p_{v}}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}} \sum_{r=1}^{n} r a_{r} \\
& \bar{\Delta} V_{n}=\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} P_{P} \lambda_{v}}{v^{2} p_{v}}\right)(v+1) t_{v}+\frac{\hat{a}_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}}(n+1) t_{n}
\end{aligned}
$$

by the formula for the difference of products of sequences (see [18]) we have

$$
\begin{aligned}
\bar{\Delta} V_{n} & =\frac{a_{n n} P_{n} \lambda_{n}}{n^{2} p_{n}}(n+1) t_{n}+\sum_{v=1}^{n-1} \frac{P_{v} \lambda_{v}}{v^{2} p_{v}} \Delta_{v}\left(\hat{a}_{n v}\right) t_{v}(v+1)+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right)(v+1) t_{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \frac{P_{v}}{v^{2} p_{v}} \Delta \lambda_{v} t_{v}(v+1) \\
\bar{\Delta} V_{n} & =V_{n, 1}+V_{n, 2}+V_{n, 3}+V_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 2.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|V_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{29}
\end{equation*}
$$

Firstly, by applying Abel's transformation and in view of the hypotheses of Theorem 2.1 we have

$$
\begin{aligned}
& \sum_{n=1}^{m} \theta_{n}^{k-1}\left|V_{n, 1}\right|^{k} \leq \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{n+1}{n}\right)^{k}\left|\lambda_{n}\right|^{k} \frac{\left|t_{n}\right|^{k}}{n^{k}} \\
& =O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}} a_{n n}\left(\frac{P_{n}}{p_{n}}\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}}\left(\frac{p_{n}}{P_{n}}\right)\left(\frac{P_{n}}{p_{n}}\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} \frac{\left|t_{n}\right|^{k}}{n^{k}} n^{k-1} \\
& =O(1) \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right| \frac{1}{X_{n}^{k-1}} \frac{\left|t_{n}\right|^{k}}{n} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\theta_{n} a_{n n}\right)^{k-1} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

By applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ and as in $V_{n, 1}$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \frac{P_{v} \lambda_{v}}{v^{2} p_{v}} \Delta_{v}\left(\hat{a}_{n v}\right)(v+1) t_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \frac{\lambda_{v}}{v} t_{v} \frac{P_{v}}{p_{v}}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|^{k}\right. \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} v a_{v v} \frac{\left|\lambda_{v}\right|^{k}}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\left|\lambda_{v}\right| \frac{1}{v}=O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1. Also, since $\Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right)=O\left(\frac{1}{v^{2}}\right)$, by Lemma 2.3, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta\left(\frac{P_{v}}{v^{2} p_{v}}\right) \lambda_{v+1} t_{v}(v+1)\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right|\left|t_{v}\right| \frac{1}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =\left.O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{1}{v X_{v}^{k-1}}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1. Finally, by virtue of the hypotheses of Theorem 2.1, by Lemma 2.2, we have $v \beta_{v}=O\left(\frac{1}{X_{v}}\right)$, then

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1}(v+1) \frac{P_{v}}{v^{2} p_{v}} \Delta \lambda_{v} t_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \Delta \lambda_{v}| | t_{v} \mid\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left(v \beta_{v}\right)^{k}\left|t_{v}\right|^{k}\left|\Delta_{v} \hat{a}_{n v}\right|\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left(v \beta_{v}\right)^{k}\left|t_{v}\right|^{k}\left|\Delta_{v} \hat{a}_{n v}\right|\right) \\
& =O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)\left(v \beta_{v}\right)^{k-1}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left(v \beta_{v}\right)\left(v \beta_{v}\right)^{k-1}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left(v \beta_{v}\right)\left(v \beta_{v}\right)^{k-1}\left|t_{v}\right|^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{1}{X_{v}^{k-1}} \beta_{v}\left|t_{v}\right|^{k} \frac{v}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v}\left(\theta_{r} a_{r r}\right)^{k-1} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1) m \beta_{m} \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v} \beta_{v}+O(1) m \beta_{m} X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

This completes the proof of Theorem 2.1.
If we take $\left(X_{n}\right)$ as a positive non-decreasing sequence, $\theta_{n}=\frac{p_{n}}{p_{n}}$, then we have a result concerning the $\left|A, p_{n}\right|_{k}$ summability factors (see [1]).

3. An Application of Absolute Matrix Summability to Fourier Series

Let f be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality the constant term in the Fourier series of f can be taken to be zero, so that

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} C_{n}(t) . \tag{30}
\end{equation*}
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t .
$$

We write

$$
\begin{array}{r}
\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} \\
\phi_{\alpha}(t)=\frac{\alpha}{t^{\alpha}} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u, \quad(\alpha>0) \tag{32}
\end{array}
$$

It is well known that if $\phi(t) \in \mathcal{B V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the $(C, 1)$ mean of the sequence $\left(n C_{n}(x)\right)$ (see [16]).

The Fourier series play an important role in many areas of applied mathematics and mechanics. Using these series, Bor has obtained the following result.

Theorem 3.1. ([14]) Let $\left(X_{n}\right)$ be a positive non-increasing sequence. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right)$, $\left(\lambda_{n}\right),\left(\beta_{n}\right)$ and $\left(X_{n}\right)$ satisfy the conditions of Theorem 1.2, then the series $\sum \frac{C_{n}(x) P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Similarly to Theorem 2.1 we can prove the following result.
Theorem 3.2. Let A be a positive normal matrix satisfying the conditions of Theorem 2.1 Let Let $\left(X_{n}\right)$ be an almost increasing sequence. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right),\left(\lambda_{n}\right),\left(\beta_{n}\right)$, and $\left(X_{n}\right)$ satisfy the conditions of Theorem 1.2, then the series $\sum \frac{C_{n}(x) P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.

We now apply the above theorems to the weighted mean in which $A=\left(a_{n v}\right)$ is defined as $a_{n v}=\frac{p_{v}}{P_{n}}$ when $0 \leq v \leq n$, where $P_{n}=p_{0}+p_{1}+\ldots+p_{n}$. Therefore, it is well known that

$$
\bar{a}_{n v}=\frac{P_{n}-P_{v-1}}{P_{n}} \quad \text { and } \quad \hat{a}_{n, v+1}=\frac{p_{n} P_{v}}{P_{n} P_{n-1}} .
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ in Theorem 3.2, then we have a result concerning the $\left|A, p_{n}\right|_{k}$ summability factors of the trigonometric Fourier series, and if we take $a_{n v}=\frac{p_{v}}{P_{n}}$ Theorem 3.2, then we have another result dealing with $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors of the trigonometric Fourier series. Also, if we put $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n in Theorem 3.2, then we obtain a result concerning $\left|C, 1, \theta_{n}\right|_{k}$ summability factors of the trigonometric Fourier series. Moreover, if we take $\theta_{n}=\frac{P_{n}}{p_{n}}, k=1$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.2, then we have a result dealing with $\left|\bar{N}, p_{n}\right|$ summability factors of the trigonometric Fourier series, and if we take $\theta_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n in Theorem 3.2, then we obtain a result concerning the $|C, 1|_{k}$ summability factors of the trigonometric Fourier series.

Acknowledgment

The author would like to express her sincerest thanks to the referees for valuable suggestions for the improvement of this paper.

References

[1] T. Ari, A new study on absolute matrix summability factors of infinite series, Southeast Asian Bull. Math. 42 (2018) $801-808$.
[2] N.K. Bari, S.B. Stechkin, Best approximation and differential properties of two conjugate functions, Tr. Mosk. Mat. Obshch. 5 (1956) 483-522.
[3] S.N. Bhatt, An aspect of local property of $|R, \operatorname{logn}, 1|$ summability of Fourier series, Tohoku Math. J. 11:2 (1959) 13-19.
[4] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
[5] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987) 330-336.
[6] H. Bor, Absolute summability factors for infinite series, Indian J. Pure Appl. Math. 19 (1988) 664-671.
[7] H. Bor, H.M. Srivastava, W.T. Sulaiman, A new application of certain generalized power increasing sequences, Filomat 26 (2012) 871-879.
[8] H. Bor, On absolute weighted mean summability of infinite series and Fourier series, Filomat 30 (2016) 2803-2807.
[9] H. Bor, Factors for absolute weighted arithmetic mean summability of infinite series, Internat. J. Anal. Appl. 14 (2017) 175-179.
[10] H. Bor, An application of power increasing sequences to infinite series and Fourier series, Filomat 31 (2017) 1543-1547.
[11] H. Bor, A new application of quasi monotone sequences and quasi power increasing sequences to factored infinite series, Filomat 31 (2017) 5105-5109.
[12] H. Bor, Absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series, Filomat 31 (2017) 4963-4968.
[13] H. Bor, An application of power increasing sequences to infinite series and Fourier series, Filomat 31 (2017) 1543-1547.
[14] H. Bor, Certain new factor theorems for infinite seies and trigonometric Fourier series, Quaes. Math., doi.org/10.2989/16073606.2019.1578836 (in press).
[15] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.
[16] K.K. Chen, Functions of bounded variation and the cesaro means of Fourier series, Acad. Sin. Sci. Record 1 (1945) 283-289.
[17] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[18] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
[19] K.N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983) 40-43.
[20] H.S. Özarslan, T. Kandefer, On the relative strength of two absolute summability methods, J. Comput. Anal. Appl. 11 (2009) 576-583.
[21] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010) 3386-3390.
[22] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series, IV. Indian J. Pure Appl. Math. 34 (2003) 1547-1557.
[23] G. Sunouchi, Notes on Fourier analysis, XVIII. Absolute summability of series with constant terms, Tohoku Math. J. 2 (1949) 57-65.
[24] Ş. Yıldız, A new note on general matrix application of quasi-monotone sequences, Filomat 32 (2018) 3709-3715.
[25] Ş. Yıldız, On the absolute matrix summability factors of Fourier series, Math. Notes 103:1-2 (2018) 297-303.
[26] Ş. Yıldız, On application of matrix summability to Fourier series, Math. Methods Appl. Sci. 41 (2018) 664-670.
[27] Ş. Yıldız, A matrix application on absolute weighted arithmetic mean summability of infinite series, Tibilisi Math. J. 11 (2018) 59-65.
[28] Ş. Yıldız, A general matrix application of convex sequences to Fourier series, Filomat 32 (2018) 2443-2449.

[^0]: 2010 Mathematics Subject Classification. Primary: 26D15; Secondary: 40D15, 40F05, 40G99, 42A24
 Keywords. Riesz mean, absolute matrix summability, summability factors, infinite series, Fourier series, Hölder inequality, Minkowski inequality, sequence space

 Received: 18 February 2019; Revised: 02 August 2019; Accepted: 02 September 2019
 Communicated by Ljubiša D.R. Kočinac
 Email address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com (Şebnem Yıldız)

