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Abstract. In this work, we introduce and study the pseudospectra and the essential pseudospectra of linear
operators in a non-Archimedean Banach space and in the non-Archimedean Hilbert space Eω, respectively.
In particular, we characterize these pseudospectra. Furthermore, inspired by T. Diagana and F. Ramaroson
[12], we establish a relationship between the essential pseudospectrum of a closed linear operator and the
essential pseudospectrum of this closed linear operator perturbed by completely continuous operator in
the non-Archimedean Hilbert space Eω.

1. Introduction

Non-Archimedean functional analysis has long whetted the interest and drew the attention of
various researchers. Indeed, it was introduced independently by F. Q. Gouva [13], A. F. Monna [16, 17], P.
Schneider [18] and A. C. M. van Rooij [22]. One of the main objectives of this theory is to study the operator
theory. The theory of a non-Archimedean operators, from which many valued results were obtained, has
been extensively studied (see [5–7, 9]). In recent years, a number of papers presented by diverse authors
about the spectral theory of linear operators in a non-Archimedean Banach and Hilbert space have appeared
such as, e.g., [10–12].

The principal aim of this paper is to extend the concept of pseudospectra (resp. essential pseudospectra)
to in a non-Archimedean Banach space (resp. Hilbert space Eω). This work is devoted to the investigation
of some properties as well as the characterization of these pseudospectra.

There are many interesting works on pseudospectra in the classical Banach space (see [8, 19–21, 23]).
In [23], J. M. Varah was the pioneer consider this notion. In [19, 20], L. N. Trefethen developed the
pseudospectrum for matrices and operators, and applied it to such multiple fields of science as mathematics
and physics. This concept of the closed linear operator A is usually defined by

σε(A) := σ(A) ∪
{
λ ∈ C : ‖(λ − A)−1

‖ >
1
ε

}
,

where ε > 0 and σ(A) is the spectrum of the operator A. By convention, λ ∈ σ(A) if, and only if, ‖(λ−A)−1
‖ =

∞. In [8], E. B. Davies found a characterization of the pseudospectrum of the closed linear operator A, for

2010 Mathematics Subject Classification. 11B05, 47A53, 39B42.
Keywords. Non-Archimedean space, pseudospectra.
Received: 10 June 2018; Accepted: 24 September 2019
Communicated by Snežana Živković-Zlatanović
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every ε > 0, defined by
σε(A) =

⋃
‖B‖<ε

σ(A + B).

This is equivalent to saying that a number λ belongs to the spectrum of some perturbed A + B with ‖B‖ < ε
if, and only if, it belongs to the pseudospectrum of A.
In the literature, there are several definitions of the essential spectrum of a closed densely defined linear
operator in a Banach space, which are not equivalent. In particular, the Weyl essential spectrum of the
closed densely defined linear operator A in a Banach space X is defined by

σw(A) =
⋂

K∈K (X)

σ(A + K),

whereK (X) designates the subspace of all compact operator on X. Inspired by the notions of pseudospectra
and essential spectrum, the new concept of the essential pseudospectra was declared (see [1–4]). In [2], A.
Ammar and A. Jeribi introduced the notion of Weyl pseudospectra of densely closed, linear operator A in
a Banach space X which is defined by

σw,ε(A) =
⋂

K∈K (X)

σε(A + K),

and characterized by

σw,ε(A) =
⋃
‖B‖<ε

σw(A + B), (see [2, Remark 2. 4]).

Our paper is organized in the following way: In Section 2, some results are recalled from the operator
theory and the spectral theory in a non-Archimedean Banach space. Such results are used to prove the
main theorems. In Section 3, some properties of the pseudospectra (resp. the essential pseudospectra) of a
linear operator in the non-Archimedean Banach space (resp. Hilbert space Eω) are introduced and studied.
The main focus of this section is Theorems 3.4 and 3.11 in where we investigate a characterization of these
pseudospectra.

2. Preliminary and auxiliary results

The goal of this section consists in recalling the basic concepts of non-Archimedean functional
analysis, including valuation, norm and Banach space, and some results of the theory of linear operator in
a non-Archimedean Banach space needed in the sequel.

Definition 2.1. LetK be a field. A valuation onK is a map | · | : K −→ R satisfying
(i) |x| ≥ 0 for any x ∈ K with equality only for x = 0.
(ii) |xy| = |x| · |y| for any x, y ∈ K.
(iii) For some real number c ≥ 1 and any x ∈ K, if |x| ≤ 1, then |x + 1| ≤ c. ♦

Definition 2.2. (i) A valuation | · | onK satisfies the triangle inequality if for any x, y ∈ K

|x + y| ≤ |x| + |y|.

(ii) A valuation | · | onK satisfies the ultrametric inequality if for any x, y ∈ K

|x + y| ≤ max
{
|x|, |y|

}
. (1)

(iii) A valuation onK is called non-Archimedean if it satisfies (1). ♦
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Remark 2.3. (i) [12, Proposition 1.6] Let | · | be a valuation onK, then it satisfies the triangle inequality if, and only
if, one can take c = 2.
(ii) [12, Proposition 1.13] Let | · | be a valuation on K, then it satisfies the ultrametric inequality if, and only if, one
can take c = 1.
(iii) It is known that there are two kinds of valuation, one is the Archimedean valuation, as in the cases of C and R,
and the other is the non-Archimedean valuation. ♦

In the sequel of the paper, let (K, | · |) be a complete non-Archimedean filed. Now, we shall recall a some
basics properties of non-Archimedean norm.

Definition 2.4. Let X be a vector space overK. A non-Archimedean norm on X is a map ‖ · ‖ : X→ R∗+ satisfying
(i) ‖x‖ = 0 if, and only if, x = 0,
(ii) ‖λx‖ = |λ| ‖x‖ for any x ∈ X and any λ ∈ K, and

(iii) ‖x + y‖ ≤ max
{
‖x‖, ‖y‖

}
for any x, y ∈ X. ♦

Definition 2.5. A non-Archimedean Banach space is a non-Archimedean normed vector space, which is complete. ♦

Now, let us recall the space Eω which plays a very important role in the sequel. The reader interested in
this space may also refer to T. Diagana and F. Ramaroson [12].

Definition 2.6. Let ω = (ωi)i be a sequence of non-zero elements inK. We define Eω by

Eω =
{
x = (xi)i : xi ∈ K,∀ i ∈N and lim

i→+∞
|ωi|

1/2
|xi| = 0

}
,

and it is equipped with the norm

x = (xi)i ⊂ Eω, ‖x‖ = sup
i∈N

(
|ωi|

1/2
|xi|

)
. ♦

Remark 2.7. (i) [12, Example 2.21] The space
(
Eω, ‖ · ‖

)
is a non-Archimedean Banach space.

(ii) [12, Section 2.4] For x = (xi)i and y = (yi)i, the inner product is defined by

〈·, ·〉 : Eω × Eω −→ K

(x, y) 7−→

+∞∑
i=0

xiyiwi.

Hence, the space
(
Eω, ‖ · ‖, 〈·, ·〉

)
is called a p-adic (or non-Archimedean) Hilbert space.

(iii) [12, Remark 2.44] The orthogonal basis {ei : i = 0, 1, 2, . . . } is called the canonical basis of Eω. ♦

Let (X, ‖ · ‖) be a non-Archimedean Banach space. The operator A acting on X is called linear if D(A),
which designate its domain, is a linear subspace of X, and if A(αx + βy) = αAx + βAy, for all α, β ∈ K and x,
y ∈ D(A).
The symbols R(A), N(A) and G(A) stand respectively for the range, the null space and the graph of the
operator A, which are defined by

R(A) =
{
Ax : x ∈ D(A)

}
,

N(A) =
{
x ∈ D(A) : Ax = 0

}
, and

G(A) =
{
(x,Ax) : x ∈ D(A)

}
.
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Definition 2.8. Let (X, ‖ ·‖) be a non-Archimedean Banach space. The linear operator A : X −→ X is called bounded,
if there exists M ≥ 0 such that

‖Ax‖ ≤M ‖x‖, for all x ∈ X. ♦

The collection of all bounded linear operators on X is denoted by L(X).

Remark 2.9. Let (X, ‖ · ‖) a non-Archimedean Banach space.

(i) If A ∈ L(X), then ‖A‖ := sup
x∈X\{0}

‖Ax‖
‖x‖

is finite.

(ii) If A ∈ L(X), then ‖Ax‖ ≤ ‖A‖ ‖x‖, for all x ∈ X. ♦

Definition 2.10. Let X be a non-Archimedean Banach space. If A ∈ L(X), then
(i) A is said to be one-to-one if N(A) = {0}.
(ii) A is said to be onto if R(A) = X.
(iii) A is said to be invertible if it is both one-to-one and onto. ♦

Remark 2.11. Let X be a non-Archimedean Banach space and let A ∈ L(X). If A is invertible, then there exists a
unique bounded linear operator denoted A−1 : X −→ X called the inverse of A such that A−1A = AA−1 = I, where
I : X→ X is the identity operator. ♦

The following theorem is developed by T. Diagana and F. Ramaroson in [12].

Theorem 2.12. Let X be a non-Archimedean Banach space.
(i) If A, B ∈ L(X) and λ ∈ K, then A + B, λA, AB and BA belong to L(X).
(ii) The space (L(X), ‖ · ‖) of bounded linear operators on X, is a non-Archimedean Banach space.

(iii) Let A ∈ L(X). If ‖A‖ < 1, then I − A is invertible and (I − A)−1 =
∑
n≥0

An. ♦

Remark 2.13. Let X be a non-Archimedean Banach space. Then, L(X,K) which is called the dual of X and denoted
X′, is a non-Archimedean Banach space. ♦

Theorem 2.14. [14] Let X be a non-Archimedean Banach space. For any non zero x ∈ X, there exists x∗ ∈ X′ such
that x∗(x) = 1 and ‖x∗‖ = ‖x‖−1. ♦

Definition 2.15. Let A ∈ L(Eω). The linear operator B is called the adjoint of A if 〈Ax, y〉 = 〈x,By〉, for all
x, y ∈ Eω, where 〈., .〉 is the inner product of Eω. ♦

Remark 2.16. Let A ∈ L(Eω).
(i) In the classical Banach space, any bounded linear operator admit an adjoint, but in the non-Archimedean Banach
space, it is not true (see [9, Examples 17 and 18]).
(ii) The adjoint of an operator A is denoted by A∗. If A∗ exists, then it is unique.
(iii) A∗ is an adjoint for A if, and only if, 〈Aei, e j〉 = 〈ei,A∗e j〉, for all i, j ∈N.
(iv) If M is a subspace of Eω, then M⊥ =

{
x ∈ Eω : 〈x, y〉 = 0, for all y ∈ Eω

}
. ♦

The collection of all bounded linear operators on Eω whose adjoint operators do exist is denoted by
L̃(Eω).

Proposition 2.17. [12, Proposition 3.20] If A ∈ L̃(Eω) and for λ ∈ K, then
(i) (λ + A)∗ = λ + A∗.
(ii) ‖A‖ = ‖A∗‖. ♦
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Lemma 2.18. If A ∈ L̃(Eω), then N(A∗) = R(A)⊥. ♦

Proof. Let x ∈ N(A∗), then A∗x = 0. This implies that 〈y,A∗x〉 = 0, for all y ∈ Eω. Hence, we have
〈Ay, x〉 = 0, for all y ∈ Eω, which yields x ∈ R(A)⊥. We conclude that N(A∗) ⊂ R(A)⊥. Conversely, let
x ∈ R(A)⊥, then for all y ∈ Eω, we have 〈Ay, x〉 = 0. This implies that 〈y,A∗x〉 = 0, for all y ∈ Eω.
Consequently, we obtain x ∈ N(A∗).

Definition 2.19. Let X be a non-Archimedean Banach space and let A ∈ L(X). A is called an operator of finite rank
if R(A) is a finite dimensional subspace of X. ♦

The collection of all finite rank operators on X is denoted by F0(X).

Definition 2.20. Let X be a non-Archimedean Banach space and let A ∈ L(X). A is said to be completely continuous
if, there exists a sequence (An)n in F0(X) such that ‖A − An‖ converge to 0 as n −→ +∞. ♦

The collection of completely continuous linear operators on X is denote by Cc(X).

Remark 2.21. (i) Every finite rank operators on non-Archimedean Banach space is completely continuous.
(ii) Let X be a non-Archimedean Banach space. If A, B ∈ Cc(X) and C ∈ L(X), then A + B, AC and CA all belong to
Cc(X) (see [12, Theorem 3.32]). ♦

Definition 2.22. Let X be a non-Archimedean Banach space. An unbounded linear operator A : D(A) ⊂ X −→ X
is said to be closed if, its graph as a subset of X × X is closed. ♦

The collection of closed linear operator on X is denote by C(X).

Remark 2.23. Every bounded linear operator on non-Archimedean Banach space is closed (see [12, Remark 6.5]).♦

Definition 2.24. Let X be a non-Archimedean Banach space and let A ∈ L(X). A is said to be a Fredholm operator
if, it satisfies the following conditions:
(i) α(A) := dim N(A) is finite,
(ii) R(A) is closed, and
(iii) β(A) := dim (X/R(A)) is finite. ♦

The collection of all bounded Fredholm operators on X is denote by Φb(X). The set of unbounded
Fredholm operators on a non-Archimedean Banach space X is defined by

Φ(X) :=
{
A ∈ C(X) : α(A) < ∞ and β(A) < ∞

}
.

If A is a Fredholm operator, then its index is defined by i(A) := α(A) − β(A).
The following theorem give a result of Fredholm operators in a non-Archimedean Hilbert Eω.

Theorem 2.25. [12, Theorem 6.18] If A ∈ Φ(Eω), then for all C ∈ Cc(Eω), we have

A + C ∈ Φ(Eω) and i(A + C) = i(A). ♦

At the end of this section, we shall recall the definition of the spectrum and essential spectrum of linear
operators on a non-Archimedean Banach space.

Definition 2.26. Let X be a non-Archimedean Banach space.
(i) The resolvent set of a linear operator A is defined by

ρ(A) := {λ ∈ K : (λ − A) is invertible in L(X)} .

(ii) The spectrum of a linear operator A is defined by σ(A) = K\ρ(A).

(iii) The essential spectrum of a linear operator A is defined by

σe(A) =
{
λ ∈ K : λ − A is not a Fredholm operator of index 0

}
. ♦
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Remark 2.27. Let X be a non-Archimedean Banach space and let A be a linear operator on X. Then, we have
σe(A) ⊂ σ(A) (see [12]). ♦

The following theorem gives a characterization of the essential spectrum of bounded linear operators
on Eω.

Theorem 2.28. Let A ∈ L̃(Eω). Then,

σe(A) =
⋂

C∈Cc(Eω)

σ(A + C). ♦

Proof. Let us assume that λ <
⋂

C∈Cc(Eω)

σ(A + C), then there exists C ∈ Cc(Eω) such that λ < σ(A + C). This

equivalent to say that λ ∈ ρ(A + C). Therefore, λ − A − C ∈ Φb(Eω) and i(λ − A − C) = 0 and, by using
Theorem 2.25, we infer that

λ − A ∈ Φb(Eω) and i(λ − A) = 0.

Hence, λ < σe(A). As a result, σe(A) ⊂
⋂

C∈Cc(Eω)

σ(A + C), as desired. Conversely, we suppose that λ < σe(A),

then

λ − A ∈ Φb(Eω) and i(λ − A) = 0. (2)

Let n = α(λ−A) = β(λ−A). It follows from Proposition 2.17 (i) and Lemma 2.18 that dim N(λ−A∗) = n. Let
{x1, . . . , xn} be a basis for N(λ − A) and {y∗1, . . . , y

∗
n} be a basis for N(λ − A∗). By [15, Lemma 2.1.1], there are

functionals x∗1, . . . , x
∗
n in E′ω and elements y1, . . . , yn in Eω such that x∗k(x j) = δ jk and y∗k(y j) = δ jk, for all 1 ≤

j, k ≤ n with

δ jk =

{
1 if j = k
0 otherwise.

Let us consider the following operator

C : Eω −→ Eω

x 7−→

n∑
k=1

x∗k(x)yk.

SinceD(C) = Eω and

‖Cx‖ =

∥∥∥∥∥∥∥
n∑

k=1

x∗k(x)yk

∥∥∥∥∥∥∥
≤ max

1≤k≤n

∥∥∥x∗k(x)yk

∥∥∥
≤ max

1≤k≤n

{
‖x∗k‖ ‖yk‖

}
‖x‖,

then C is bounded. Moreover, R(C) is contained in a finite dimensional subspace of Eω. So, C is a finite
rank operator. It follows from Remark 2.21 (i) that C ∈ Cc(Eω). Now, we show that

N(λ − A) ∩N(C) = {0} and (3)

R(λ − A) ∩ R(C) = {0}. (4)

Let x ∈ N(λ − A) ∩N(C). On the one hand, if x ∈ N(λ − A), then

x =

n∑
k=1

αkxk, where α1, . . . , αn are scalars inK.
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This implies that x∗j(x) =

n∑
k=1

αkδk, j = α j, for all 1 ≤ j ≤ n. On the other hand, if x ∈ N(C), then Cx = 0. This

implies that
n∑

k=1

x∗k(x)yk = 0.

Therefore, we obtain x∗j(x) = 0, for all 1 ≤ j ≤ n. Hence, we conclude x = 0. Thus,

N(λ − A) ∩N(C) = {0}.

Now, we show that (4) holds. Let y ∈ R(λ − A) ∩ R(C). On the one hand, if y ∈ R(C), then

y =

n∑
k=1

αkyk, where α1, . . . , αn are scalars inK.

Hence, we get y∗j(y) = α j, for all 1 ≤ j ≤ n.On the other hand, if y ∈ R(λ−A), then y∗j(y) = 0, for all 1 ≤ j ≤ n.
Therefore, y = 0. This leads to

R(λ − A) ∩ R(C) = {0}.

It follows from Theorem 2.25 and (2) that λ − A − C ∈ Φb(Eω) and i(λ − A − C) = 0. Consequently, we have

α(λ − A − C) = β(λ − A − C). (5)

Let us assume that x ∈ N(λ − A − C), then (λ − A)x = Cx ∈ R(λ − A) ∩ R(C). It follows from (4) that
(λ−A)x = Cx = 0, which yields x ∈ N(λ−A)∩N(C), and by using (3), we infer that x = 0. This implies that
α(λ − A − C) = 0, and from (5), we deduce that R(λ − A − C) = X. Consequently, λ − A − C is invertible and
we can conclude that λ <

⋂
C∈Cc(Eω)

σ(A + C).

3. Main results

In this section, we study the pseudospectra and the essential pseudospectra of linear operator in a
non-Archimedean Banach space.

Definition 3.1. Let X be a non-Archimedean Banach space and ε > 0. The pseudospectrum of a linear operator A
on X is defined by

σε(A) := σ(A)
⋃{

λ ∈ K : ‖(λ − A)−1
‖ >

1
ε

}
,

by convention ‖(λ − A)−1
‖ = +∞ if, and only if, λ ∈ σ(A). ♦

Proposition 3.2. Let X be a non-Archimedean Banach space and ε > 0. Let A be a linear operator on X.
(i) If 0 < ε1 < ε2, then σ(A) ⊂ σε1 (A) ⊂ σε2 (A).

(ii) σ(A) =
⋂
ε>0

σε(A). ♦

Proof. (i) It is clear that

σ(A) ⊂ σε(A), for all ε > 0. (6)

Let 0 < ε1 < ε2, we show that
σε1 (A) ⊂ σε2 (A).
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Let us assume that λ ∈ σε1 (A)\σ(A), then ‖(λ − A)−1
‖ >

1
ε1

. By the assumption 0 < ε1 < ε2, we obtain

‖(λ − A)−1
‖ >

1
ε2

. This leads to
{
λ ∈ K : ‖(λ − A)−1

‖ >
1
ε1

}
⊂ σε2 (A). It follows from (6) that σε1 (A) ⊂

σε2 (A), for all ε1 < ε2. Finally, the use of (6) gives the wanted inclusion and achieves the proof of (i).
(ii) Let ε > 0, we have⋂

ε>0

σε(A) =
⋂
ε>0

(
σ(A)

⋃{
λ ∈ K : ‖(λ − A)−1

‖ >
1
ε

})
= σ(A)

⋃(⋂
ε>0

{
λ ∈ K : ‖(λ − A)−1

‖ >
1
ε

})
.

It suffices to prove that ⋂
ε>0

{
λ ∈ K : ‖(λ − A)−1

‖ >
1
ε

}
⊂ σ(A).

If λ ∈
⋂
ε>0

{
λ ∈ K : ‖(λ − A)−1

‖ >
1
ε

}
, then ‖(λ − A)−1

‖ >
1
ε

, for all ε > 0. Hence, ‖(λ − A)−1
‖ = +∞ as ε→ 0+.

This implies that λ ∈ σ(A). This enables us to conclude that
⋂
ε>0

σε(A) ⊂ σ(A).

Proposition 3.3. Let Eω be a p-adic Hilbert space over K. Let (λi)i be a sequence of element in K such that
lim

i→+∞
|λi| = +∞. Let A be an unbounded diagonal operators on Eω defined by

D(A) =
{
x = (xi)i ⊂ Eω : lim

i→+∞
|xi| · |λi| · ‖ei‖ = 0

}
,

and
Ax =

∑
i∈N

λi xi ei, for all x ∈ D(A).

Let B be an unbounded diagonal operators on Eω defined by

D(B) =
{
x = (xi)i ⊂ Eω : lim

i→+∞
|xi| · |µi| · ‖ei‖ = 0

}
,

and
Bx =

∑
i∈N

µi xi ei, for all x ∈ D(B).

(i) The pseudospectrum of the operator A is

σε(A) =
{
λi : i ∈N

}⋃{
λ ∈ K : inf

i∈N
|λ − λi| < ε

}
.

(ii) Suppose that |µi| < |λi| for each i ∈N, then the pseudospectrum of the operator A + B is

σε(A + B) =
{
δi, i ∈N

}⋃{
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
,

where δi = λi + µi, for all i ∈N.
(iii) Suppose that lim

i→+∞
|µiλi| = +∞, then the pseudospectrum of the operator AB is

σε(AB) =
{
δi, i ∈N

}⋃{
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
,

where δi = λiµi, for all i ∈N. ♦
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Proof. (i) From [9, Proposition 28], we have ‖(λ −A)−1
‖ = sup

i∈N

1
|λ − λi|

and σ(A) =
{
λi : i ∈N

}
. Then, we can

write

σε(A) =
{
λi : i ∈N

}⋃{
λ ∈ K : sup

i∈N

1
|λ − λi|

>
1
ε

}
.

Since
{
λ ∈ K : sup

i∈N

1
|λ − λi|

>
1
ε

}
=

{
λ ∈ K : inf

i∈N
|λ − λi| < ε

}
, then we deduce that

σε(A) =
{
λi : i ∈N

}⋃{
λ ∈ K : inf

i∈N
|λ − λi| < ε

}
.

(ii) The operator A + B is defined by (A + B)x =
∑
i∈N

δi xi ei, for all x ∈ D(A + B), with D(A + B) ={
x = (xi)i ⊂ Eω : lim

i→+∞
|xi| · |δi| · ‖ei‖ = 0

}
, where δi = λi + µi, for all i ∈ N. It follows from [9, Corollary

7], that σε(A + B) can be expressed in the form

σε(A + B) =
{
δi : i ∈N

}⋃{
λ ∈ K : sup

i∈N

1
|λ − δi|

>
1
ε

}
. (7)

Using the fact that
{
λ ∈ K : sup

i∈N

1
|λ − δi|

>
1
ε

}
=

{
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
and by (7), we conclude that

σε(A + B) =
{
δi, i ∈N

}⋃{
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
.

(iii) The operator AB is defined by, (AB)x =
∑
i∈N

δi xi ei, for all x ∈ D(AB), with

D(AB) =
{
x = (xi)i ⊂ Eω : lim

i→+∞
|λi| · |µi| · |xi| · ‖ei‖ = 0

}
, where δi = λiµi, for all i ∈ N. From [9, Corollary 8],

we can write

σε(AB) =
{
δi : i ∈N

}⋃{
λ ∈ K : sup

i∈N

1
|λ − δi|

>
1
ε

}
.

Since
{
λ ∈ K : sup

i∈N

1
|λ − δi|

>
1
ε

}
=

{
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
, we conclude that

σε(AB) =
{
δi, i ∈N

}⋃ {
λ ∈ K : inf

i∈N
|λ − δi| < ε

}
.

Theorem 3.4. Let X be a non-Archimedean Banach space such that ‖X‖ ⊆ |K|. Let A be a linear operator on X and
ε > 0. Then,

σε(A) =
⋃
‖B‖<ε

σ(A + B). ♦

Proof. Let us assume that λ ∈
⋃
‖B‖<ε

σ(A + B). We argue by contradiction. Suppose that λ ∈ ρ(A) and

‖(λ − A)−1
‖ ≤

1
ε
. let us consider the bounded linear operator C defined on X by

C :=
+∞∑
n=0

(λ − A)−1
(
B(λ − A)−1

)n
.
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By Theorem 2.12 (iii), we can write C = (λ − A)−1
(
I − B(λ − A)−1

)−1
. This implies that C is invertible with

R(C) = D(A). For all x ∈ X, we have C
(
I − B(λ − A)−1

)
x = (λ − A)−1x. Putting y := (λ − A)−1x, we deduce

that C(λ − A − B)y = y, for all y ∈ D(A). Moreover, we have (λ − A − B)C x = x, for all x ∈ X. Hence, we
conclude that (λ − A − B) is invertible with C = (λ − A − B)−1. Conversely, suppose that λ ∈ σε(A). We
discuss two cases.
First case. If λ ∈ σ(A), then we may put B = 0.
Second case. Assume that λ ∈ σε(A) and λ < σ(A). Then, there exists z0 ∈ X\{0} such that

‖(λ − A)−1z0‖

‖z0‖
>

1
ε
. (8)

Since ‖X‖ ⊆ |K|, then we infer that there exists c0 ∈ K\{0} such that |c0| = ‖z0‖. Then, setting y0 = c−1
0 z0, one

indeed has ‖y0‖ = 1. Hence, we obtain

‖(λ − A)−1y0‖ = ‖(λ − A)−1c−1
0 z0‖ =

‖(λ − A)−1z0‖

|c0|
=
‖(λ − A)−1z0‖

‖z0‖
.

This implies from (8) that

‖(λ − A)−1y0‖ >
1
ε
. (9)

By the same reasoning above, we infer that there exists c1 ∈ K\{0} such that |c1| = ‖(λ − A)−1y0‖. Then,
setting x0 = c−1

1 (λ − A)−1y0, which yields x0 ∈ D(A) and ‖x0‖ = 1. Consequently, we get that

‖(λ − A)x0‖ =

∥∥∥∥∥∥(λ − A)
(λ − A)−1y0

c1

∥∥∥∥∥∥ =

∥∥∥y0

∥∥∥
|c1|

.

Using the fact that ‖y0‖ = 1, we deduce from (9) that

‖(λ − A)x0‖ = ‖(λ − A)−1y0‖
−1

< ε.

At this level, by using Theorem 2.14, there exists a linear function ψ defined on X satisfy ψ(x0) = 1 and
‖ψ‖ = ‖x0‖

−1 = 1. We consider the following linear operator

By := ψ(y)(λ − A)x0.

Let us observe thatD(B) = X and for all y ∈ X, we have

‖By‖ ≤ ‖ψ(y)‖‖(λ − A)x‖
≤ ε‖y‖,

then we infer that ‖B‖ ≤ ε andD(B) = X. This implies that B is bounded. Moreover, we have (λ−A−B)x0 = 0.
So, λ − A − B is not invertible. This enables us to conclude that,

λ ∈
⋃
‖B‖<ε

σ(A + B).

Lemma 3.5. Let X be a non-Archimedean Banach space such that ‖X‖ ⊆ |K|. Let A be a linear operator on X and
ε, δ > 0. Then, we have

(i) σ(A) +
{
λ ∈ K : |λ| < ε

}
⊆ σε(A).

(ii) σδ(A) +
{
λ ∈ K : |λ| < ε

}
⊆ σε+δ(A). ♦
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Proof. First, we have prove that

λ + µ ∈ σ(A + µ), for all λ ∈ σ(A) and µ ∈ K. (10)

Letλ ∈ σ(A) and µ ∈ K.We assume thatλ+µ ∈ ρ(A+µ), thenλ+µ−(A+µ) is invertible and
(
λ+µ−(A+µ)

)−1
∈

L(X). Hence, we infer that λ ∈ ρ(A). This contradiction implies that λ + µ ∈ σ(A + µ).

(i) Suppose that λ ∈ σ(A) +
{
λ ∈ C : |λ| < ε

}
. Then, there exists λ1 ∈ σ(A) and |λ2| < ε such that λ = λ1 + λ2.

By using (10), we infer that
λ = λ1 + λ2 ∈ σ(A + λ2).

By the assumption |λ2| < ε and by Theorem 3.4, we conclude that λ ∈ σε(A).

(ii) Let us assume that λ ∈ σε(A) +
{
λ ∈ C : |λ| < δ

}
. Then, there exists λ1 ∈ σε(A) and |λ2| < δ such that

λ = λ1 +λ2. From the assumption λ1 ∈ σε(A) and Theorem 3.4, we infer that there exists B ∈ L(X) such that
‖B‖ < ε and λ1 ∈ σ(A + B). From (10), allows us to conclude that

λ = λ1 + λ2 ∈ σ(A + B + λ2).

Furthermore, B + λ2 ∈ L(X) and

‖B + λ2‖ ≤ ε + |λ2|

< ε + δ.

Hence, by using Theorem 3.4, we deduce that λ ∈ σδ+ε(A).

Lemma 3.6. Let X be a non-Archimedean Banach space such that ‖X‖ ⊆ |K|, ε > 0 and let A be a linear operator on
X. The following statements are equivalent

(i) σ(A)
⋃{

λ ∈ K : ∃ x ∈ D(A) and ‖(λ − A)x‖ < ε‖x‖
}
.

(ii) σ(A)
⋃{

λ ∈ K : ∃ xn ∈ D(A), ‖xn‖ = 1 and lim
n→+∞

‖(λ − A)xn‖ < ε
}
. ♦

Proof. This proof is analogous to proof in the classical Banach space.

Now, we characterize the essential pseudospectra of linear operator in non-Archimedean Hilbert space
Eω.

Definition 3.7. Let A ∈ C(Eω) and let ε > 0. The essential pseudospectrum of the linear operator A is defined by

σe,ε(A) = K\
{
λ ∈ K : λ − A − B ∈ Φ0(Eω), for all B ∈ L(Eω), ‖B‖ < ε

}
,

where Φ0(X) designates the set of all unbounded Fredholm operators on X of index 0.

Theorem 3.8. Let A ∈ C(Eω) and ε > 0. Then,

σe,ε(A) =
⋃
‖B‖<ε

σe(A + B). ♦

Proof. Let λ < σe,ε(A). Then, for all B ∈ L(Eω) such that ‖B‖ < ε,

λ − (A + B) ∈ Φ(Eω) and i(λ − (A + B)) = 0.

Hence, λ < σe(A + B), for all B ∈ L(Eω) such that ‖B‖ < ε. This is equivalent to say that

λ <
⋃
‖B‖<ε

σe(A + B).
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This shows that
⋃
‖B‖<ε

σe(A + B) ⊂ σe,ε(A). Conversely, let λ <
⋃
‖B‖<ε

σe(A + B). Then, for all B ∈ L(Eω) such that

‖B‖ < ε, we have λ < σe(A + B). This implies that λ − A − B ∈ Φ(Eω) and i(λ − A − B) = 0, for all B ∈ L(Eω)
such that ‖B‖ < ε. Hence, λ < σe,ε(A). This prove that σe,ε(A) ⊂

⋃
‖B‖<ε

σe(A + B).

The purpose of this result is to give a characterization of the essential pseudospectra of a closed linear
operator on Eω.

Theorem 3.9. Let A ∈ C(Eω) and ε > 0. Then,

σe,ε(A) = σe,ε(A + C), for all C ∈ Cc(Eω). ♦

Proof. Let us assume that λ < σe,ε(A). Then, for all B ∈ L(Eω) such that ‖B‖ < ε, we have λ − A − B ∈
Φ(Eω) and i(λ − A − B) = 0. Hence, by using Theorem 2.25, for all C ∈ Cc(Eω) and B ∈ L(Eω) such that
‖B‖ < ε, we infer that

λ − (A + C) − B ∈ Φ(Eω) and i(λ − (A + C) − B) = 0. (11)

Moreover, it follows from [12, Reamrk 6.5] that A + C is a closed operator. Thus, by using (11), we deduce
that λ < σe,ε(A + C). As a result, σe,ε(A + C) ⊂ σe,ε(A), as desired. The opposite inclusion follows from
symmetry and we obtain

σe,ε(A) = σe,ε(A + C).

Remark 3.10. From Theorem 3.9, it follows that the pseudospectrum of closed operator is invariant under perturba-
tions of completely continuous operators in Eω. ♦

In the sequel, we assume thatK is quadratically closed. The following result gives a characterization of
the essential pseudospectrum of a closed linear operator by means of the spectra of all perturbed completely
continuous operators.

Theorem 3.11. Let A ∈ L̃(Eω) and ε > 0. Then,

σe,ε(A) =
⋂

C∈Cc(Eω)

σε(A + C). ♦

Proof. Let us assume that λ <
⋂

C∈Cc(Eω)

σε(A + C), then there exists C ∈ Cc(Eω) such that λ < σε(A + C).

Since K is quadratically closed, then we have ‖Eω‖ ⊆ |K|. Now, by referring to Theorem 3.4, we obtain
λ ∈ ρ(A + B + C), for all B ∈ L(Eω) such that ‖B‖ < ε. Therefore,

λ − (A + B + C) ∈ Φb(Eω) and i(λ − (A + B + C)) = 0.

By using Theorem 2.25, we infer that λ−A− B ∈ Φb(Eω) and i(λ−A− B) = 0. Thus, λ < σe,ε(A). This proves
that

σe,ε(A) ⊂
⋂

C∈Cc(Eω)

σε(A + C).

Conversely, we assume that λ < σe,ε(A). By using Theorem 3.8, for all B ∈ L(Eω) such that ‖B‖ < ε, we infer
that λ < σe(A + B). Hence, by applying Theorem 2.28, there exists C ∈ Cc(Eω) such that λ < σ(A + B + C).
This implies that for all B ∈ L(Eω) such that ‖B‖ < ε, we have λ ∈ ρ(A + B + C). Hence,

λ ∈
⋂
‖B‖<ε

ρ(A + B + C).
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It follows from Theorem 3.4 that λ < σε(A + C). Hence, we deduce that

λ <
⋃

C∈Cc(Eω)

σε(A + C).

As a result,
⋂

C∈Cc(Eω)

σε(A + C) = σe,ε(A), as desired.

The following result gives a characterization of the essential pseudospectrum of a closed linear operator
by means of the spectra of all perturbed rank finite operators.

Theorem 3.12. Let A ∈ L̃(Eω) and ε > 0. Then,

σe,ε(A) =
⋂

F∈F0(Eω)

σε(A + F). ♦

Proof. Let O =
⋂

F∈F0(Eω)

σε(A + F). By using Remark 3.13 and Theorem 3.11, we infer that σe,ε(A) ⊂ O.

Conversely, let λ < O. Then, there exists F ∈ F0(Eω) such that

λ < σε(A + F).

Since K is quadratically closed, then we have ‖Eω‖ ⊆ |K|. Hence, by using Theorem 3.4, for all B ∈ L(Eω)
such that ‖B‖ < ε, we deduce that λ ∈ ρ(A + B + F). Therefore, λ − A − B − F is invertible. This implies that

λ − A − B − F ∈ Φb(Eω) and i(λ − A − B − F) = 0.

It follows from Remark 2.21 (i) and Theorem 2.25 that for all B ∈ L(Eω) such that ‖B‖ < ε, λ − A − B ∈
Φb(Eω) and i(λ − A − B) = 0. This is equivalent to say that λ < σe,ε(A).

The following proposition gives some properties of the essential pseudospectra in Eω.

Proposition 3.13. Let A ∈ C(Eω) and ε > 0.
(i) σe,ε(A) ⊂ σε(A).
(ii) Let 0 < ε1 < ε2, σe(A) ⊂ σe,ε1 (A) ⊂ σe,ε2 (A). ♦

Proof. (i) Let λ ∈ σe,ε(A). Then, by using Theorem 3.8, we have λ ∈
⋃
‖B‖<ε

σe(A + B). The fact that σe(A + B) ⊂

σ(A+B) allows us to deduce that λ ∈
⋃
‖B‖<ε

σ(A+B). SinceK is quadratically closed, then we have ‖Eω‖ ⊆ |K|.

Finally, the use of Theorem 3.4 shows that λ ∈ σε(A). As a result, σe,ε(A) ⊂ σε(A), as desired.

(ii) Let 0 < ε1 < ε2. We have to prove that

σe(A) ⊂ σe,ε1 (A). (12)

Let us assume that λ < σe,ε1 (A), then for all B ∈ L(Eω) such that ‖B‖ < ε1, we have λ−A−B ∈ Φ(Eω) and i(λ−
A − B) = 0. As ε1 → 0, then λ − A ∈ Φ(Eω) and i(λ − A) = 0. Hence, we deduce that λ < σe(A). Now, we
propose to show that

σe,ε1 (A) ⊂ σe,ε2 (A).

Let us suppose that λ ∈ σe,ε1 (A). Then, by using Theorem 3.8, we infer that λ ∈
⋃
‖B‖<ε1

σe(A + B). Hence, by

the assumption ε1 < ε2, we deduce that λ ∈
⋃
‖B‖<ε2

σe(A + B). It follows from Theorem 3.8 that λ ∈ σe,ε2 (A).

This shows that σe,ε1 (A) ⊂ σe,ε2 (A), for all 0 < ε1 < ε2.
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Proposition 3.14. Let A ∈ L̃(Eω) and ε > 0. Then,

σe(A) =
⋂
ε>0

σe,ε(A). ♦

Proof. Assume that λ ∈
⋂
ε>0

σe,ε(A). SinceK is quadratically closed, then we have ‖Eω‖ ⊆ |K|. It follows from

Theorem 3.11 that
λ ∈

⋂
ε>0

⋂
C∈Cc(Eω)

σε(A + C) =
⋂

C∈Cc(Eω)

⋂
ε>0

σε(A + C).

This implies from Proposition 3.2 (ii) that λ ∈
⋂

C∈Cc(Eω)

σ(A + C). Hence, it follows from Theorem 2.28 that

λ ∈ σe(A). Conversely , let λ ∈ σe(A). By referring to Theorem 2.28, we infer that λ ∈
⋂

C∈Cc(Eω)

σ(A + C). In

view of Proposition 3.2 (ii) implies that λ ∈
⋂
ε>0

⋂
C∈Cc(Eω)

σε(A + C). Since K is quadratically closed, then we

have ‖Eω‖ ⊆ |K|. Hence, it follows from Theorem 3.4 that

λ ∈
⋂
ε>0

⋃
‖B‖<ε

⋂
C∈Cc(Eω)

σ(A + B + C).

By using Theorem 2.28, we infer that λ ∈
⋂
ε>0

⋃
‖B‖<ε

σe(A + B). Finally, the use of Theorem 3.8 allows us to

conclude that λ ∈
⋂
ε>0

σe,ε(A).

Example 3.15. Let p ≥ 2 be a prime. Let Eω be a p-adic Hilbert space over Qp which is equipped with the usual
p-adic absolute value | · |p. Let ζ ∈ {−1, 1}. We shall recall the spaces Z and ZP, which are defined respectively by

Z :=

 N∑
i=0

ζakpk : 0 ≤ ak ≤ p − 1,N ∈N

 ,
and

ZP :=

 +∞∑
k=0

akpk : 0 ≤ ak ≤ p − 1

 .
Moreover, the closure of Z in Qp is ZP which called the ring of p-adic integers.
Let (λi)i be a sequence in Qp. Let us consider the bounded diagonal linear operator D on Eω defined by,

Dei = λiei, for all i ∈N.

Then,

σε(D) = ZP
⋃{

λ ∈ Qp : inf
i∈N
|λ − λi|p < ε

}
. ♦

Proof. Let λ , λi, for all i ∈ N. Then, by [12, Proposition 3.55], we infer that λ ∈ ρ(D). This implies that
(λ−D) is invertible inL(Eω). Moreover, for all i ∈N, the bounded diagonal operator (λ−D)−1 is expressed

in the form (λ −D)−1ei =
1

λ − λi
ei, and its norm is defined by

‖(λ −D)−1
‖ = sup

i∈N

‖(λ −D)−1ei‖

‖ei‖

= sup
i∈N

‖ei‖

|λ − λi|p‖ei‖

= sup
i∈N

1
|λ − λi|p

.
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Hence,{
λ ∈ Qp : ‖(λ −D)−1

‖ >
1
ε

}
=

{
λ ∈ Qp : inf

i∈N
|λ − λi|p < ε

}
. (13)

Since σ(D) = ZP (see [12]), then by (13), we have

σε(D) = ZP
⋃{

λ ∈ Qp : inf
i∈N
|λ − λi|p < ε

}
.
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