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Abstract. Using the convolution of harmonic functions, we introduce a generalization for a previously
defined class of right half-strip harmonic mappings and determine sharp radii of univalence, full convexity
and starlikeness for such functions.

1. Introduction

LetH be the class of all complex-valued harmonic functions f in the unit diskD = {z : |z| < 1}normalized
by f (0) = fz(0) − 1 = 0. It is well known [2] that each f ∈ H can be decomposed as f = h + 1, where h and 1
are analytic inD such that

h(z) = z +

∞∑
n=2

anzn and 1(z) =

∞∑
n=1

bnzn (|b1| < 1). (1)

The Jacobian of f = h + 1 is given by J f (z) = |h′(z)|2 − |1′(z)|2. According to Lewy,s Theorem [11], f is locally
univalent inD if and only if J f (z) , 0 for any z ∈ D.

It is also known (see [2]) that necessary and sufficient condition for the harmonic function f = h +1 to be
sense preserving and locally univalent inD is that the Jacobian J f is positive inD. Denote by SH the class
of univalent and orientation-preserving functions f ∈ H . We note that if f = h + 1 ∈ SH and 1(z) ≡ 0 inD,
then f = h ∈ S, where S denotes the well-known class of normalized univalent analytic functions inD.
Also let KH, (K ), S∗H, (S∗) and CH, (C) be the subclass of SH, (S) consisting of mapping D onto convex,
starlike and close-to-convex domains, respectively. Denoted by K0

H,S
∗0
H ,C

0
H and S0

H the class consisting of
those functions f inKH,S∗H,CH and SH respectively, for which fz(0) = b1 = 0.
A harmonic mapping f ofD is said to be fully convex of order α, 0 ≤ α < 1, if it maps every circle |z| = r < 1
in a one-to-one manner onto a convex curve satisfying

∂
∂θ

(
ar1

(
∂
∂θ

f (reiθ)
))
> α, 0 ≤ θ < 2π, 0 < r < 1.
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If α = 0, then f is said to be fully convex.
Similarly, a harmonic mapping f of D with f (0) = 0 is said to be fully starlike of order α, 0 ≤ α < 1, if it
maps every circle |z| = r < 1 in a one-to-one manner onto a curve that bounds a domain starlike with respect
to the origin satisfying

∂
∂θ

(arg( f (reiθ))) > α, 0 ≤ θ < 2π, 0 < r < 1.

If α = 0, then f is said to be fully starlike.
Let FKH(α) and FS∗H(α) denote the subclass ofKH consisting of fully convex functions of order α and the
subclass of S∗H consisting of fully starlike functions of order α, respectively.

For f (z) = z +
∑
∞

n=2 anzn
∈ S, de Branges [1] obtained the sharp coefficient bound that |an| ≤ n, n ≥ 2.

But this coefficient bound is not sufficient for f to be univalent. For example, f (z) = z + 2z2 is clearly not a
member of S.
We remark that several subclasses ofS possess a similar coefficient bound. For instance, the nth coefficients
of starlike analytic functions, convex analytic functions in the direction of imaginary axis, and close-to-
convex functions satisfy |an| ≤ n (n ≥ 2) (see [14-15]).
Other examples include functions which are convex, starlike of order α = 1/2, and starlike with respect to
symmetric points. The nth coefficients of these analytic functions satisfy |an| ≤ 1 (n ≥ 2), see [16]. Also we
note that a normalized analytic function f with Re f ′(z) > 0 satisfies |an| ≤

2
n for n ≥ 2.

Simple examples show that these bounds are not sufficient to characterize the geometric properties of the
classes of functions. The problem of determining sharp radius of univalence, or starlikeness of subclasses
of analytic or harmonic functions have been investigated by many authors (see [6-8-9-10-16-17]) .
Gavrilov [6] showed that the radius of univalence of normalized analytic functions f satisfying |an| ≤

n (n ≥ 2) is the real root r0 ' 0.164 of the equation 2(1 − r)3
− (1 + r) = 0, and the result is sharp for

f (z) = 2z− z
(1−z)2 . Gavrilov also proved that the radius of univalence of functions f satisfying the coefficient

bound |an| ≤ M (n ≥ 2) is 1 −
√

M
1+M . The condition |an| ≤ M clearly holds for functions f ∈ A satisfying

| f (z)| ≤ M, and for these functions, Landau [12] proved that the radius of univalence is M −
√

M2 − 1. In
fact, Yamashita [17] showed that the radius of of univalence obtained by Gavrilov [6] is also the radius of
of starlikeness for functions f satisfying |an| ≤ n or |an| ≤ M. Additionally, Yamashita [17] determined that
the radius of convexity for functions f ∈ A satisfying |an| ≤ n is the real root r0 ' 0.090 of the equation
2(1 − r)4

− (1 + 4r + r2) = 0, while the radius of convexity for functions f ∈ A satisfying |an| ≤ M is the real
root (M + 1)(1 − r)3

−M(1 + r) = 0.
Recently, Kalaj et al. [9] obtained the radii of univalence, starlikeness, and convexity for harmonic map-
pings satisfying certain coefficient inequalities. Also Long and Huang [10] obtained the radii of univalence,
starlikeness, and convexity for the convolution and convex combination harmonic mappings satisfying
certain coefficient inequalities.
The following lammas give sufficient conditions for functions f ∈ H to be in the classes FKH(α) and
FS

∗
H(α), respectively.

Lemma 1.1. ([7]). Let f = h + 1, where h and 1 are given by (1). Furthermore, let
∞∑

n=2

n − α
1 − α

|an| +

∞∑
n=1

n + α
1 − α

|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent inD, and f ∈ FS∗H(α).

Lemma 1.2. ([8]). Let f = h + 1, where h and 1 are given by (1). Furthermore, let
∞∑

n=2

n(n − α)
1 − α

|an| +

∞∑
n=1

n(n + α)
1 − α

|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent inD, and f ∈ FKH(α).
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The convolution of two harmonic functions

f (z) = h(z) + 1(z) == z +

∞∑
n=2

anzn +

∞∑
n=1

bnzn,

and

F(z) = H(z) + G(z) == z +

∞∑
n=2

Anzn +

∞∑
n=1

Bnzn.

is defined as

( f ∗ F)(z) = (h ∗H)(z) + (1 ∗ G)(z) == z +

∞∑
n=2

anAnzn +

∞∑
n=1

bnBnzn.

There have been some results about harmonic convolution, (see [2-3-5]). The harmonic convolution f ∗F
of two harmonic functions f and F may not preserve the properties of f or F, such as convexity or even
univalence.

In 1984, Clunie and Sheil-Small [2] introduced what is now the well-known shear construction for pro-
ducing a planar harmonic mapping on D. One interesting example is the harmonic right half-plane
mapping L0 : D 7→ C defined as

L0(z) =
I(z) + zI′(z)

2
+

I(z) − zI′(z)
2

,

where I(z) = z/(1− z).Note that L0 is often considered the harmonic counterpart to the normalized analytic
half-plane mapping I. Recently Muir [13] introduced a family of right half- strip harmonic mapping and
investigate convolution preserving properties for this family. Motivated by her work we consider the
generalized half-plane mappings Lc : D 7→ C defined as

Lc(z) =
(1 + c)zI′(z) + (1 − c)I(z)

2
+

(1 + c)zI′(z) − (1 − c)I(z)
2

, (2)

where z ∈ D and 0 ≤ c < 1. For

f (z) = z +

∞∑
n=2

anzn, 1(z) =

∞∑
n=2

bnzn

define

Lc[ f , 1](z) = Lc(z) ∗ h(z), (3)

where h(z) = f (z) + 1(z). We note that

Lc[ f , 1](z) = z +

∞∑
n=2

(
(1 + c)n + (1 − c)

2

)
anzn +

∞∑
n=2

(
(1 + c)n − (1 − c)

2

)
bnzn.

For simplification we set Lc[ f , 1](z) = z +
∑
∞

n=2 Anzn +
∑
∞

n=2 Bnzn = H(z) + G(z), where

An =

(
(1 + c)n + (1 − c)

2

)
an and Bn =

(
(1 + c)n − (1 − c)

2

)
bn.
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In this paper analogous to the works of Kalaj and et al. [9] and Long and et al. [10] we obtain the radii of
univalence, full convexity, and starlikeness of order α, for the Lc[ f , 1].

To prove our theorems in the next few sections, we shall need the following identities.

∞∑
n=1

rn−1 =
1

1 − r
,
∞∑

n=1

nrn−1 =
1

(1 − r)2 ,
∞∑

n=1

n2rn−1 =
1 + r

(1 − r)3 ,

∞∑
n=1

n3rn−1 =
1 + 4r + r2

(1 − r)4 ,
∞∑

n=1

n4rn−1 =
(1 + r)(1 + 10r + r2)

(1 − r)5 . (4)

2. Radius constants concerning |an| ≤ n, |bn| ≤ n

Theorem 2.1. Let f (z) = z +
∑
∞

n=2 anzn , 1(z) =
∑
∞

n=2 bnzn with

|an| ≤ n, |bn| ≤ n (5)

for n ≥ 2. Then for Lc[ f , 1], α ∈ [0, 1), c ∈ [0, 1),

(1) the radius of full starlikeness of order α is rs, where rs = rs(α, c) is the unique real root of the equation

(1 + c)(1 + 4r + r2) − (1 − c)α(1 − r)2 = [2(1 − α) + c(1 + α)](1 − r)4 (6)

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

(1 + c)(1 + 4r + r2) = (2 + c)(1 − r)4 (7)

in the interval (0, 1).
Furthermore, all the results are sharp.

Proof. For r ∈ (0, 1) with r ≤ rs, it is sufficient to show that Lc[ fr, 1r] ∈ FS
∗

H(α) inD, where

Lc[ fr, 1r](z) =
Lc[ f (rz), 1(rz)]

r

= z +

∞∑
n=2

(
(1 + c)n + (1 − c)

2

)
anrn−1zn +

∞∑
n=2

(
(1 + c)n − (1 − c)

2

)
bnrn−1zn.

Consider the sum

S =

∞∑
n=2

n − α
1 − α

|An|rn−1 +

∞∑
n=2

n + α
1 − α

|Bn|rn−1.

According to Lemma 1.1, it is enough to show that S ≤ 1. By putting the values of |An| and |Bn| in the last
equation we show that

∞∑
n=2

n − α
1 − α

(
(1 + c)n + (1 − c)

2

)
nrn−1 +

∞∑
n=2

n + α
1 − α

(
(1 + c)n − (1 − c)

2

)
nrn−1

≤ 1.

Using the identities (4), the last inequality reduces to

P(r, c, α) = (1 + c)(1 + 4r + r2) − (1 − c)α(1 − r)2
− [2(1 − α) + c(1 + α)](1 − r)4

≤ 0.
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We note that P(0, c, α) = −(1 − α) < 0 and P(1, c, α) = 6(1 + c) > 0, and so intermediate value theorem shows
that the equation (6) has a root in the interval (0, 1). It is easy to check that P(r, c, α) is increasing as a
function of r. Thus, Lc[ fr, 1r] ∈ FS

∗

H(α) for r ≤ rs, where rs is the unique real root of (6). Also, taking α = 0,
equation (6) reduces to (7). Thus by Lemma 1.1, we obtain that Lc[ f , 1] is harmonic univalent in |z| ≤ ru,
where ru = rs(0, c).
To prove sharpness, we take

f0(z) = 2z −
z

(1 − z)2 and 10(z) = z −
z

(1 − z)2 .

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
2z −

z(1 + z)
(1 − z)3

)
+

(1 − c
2

) (
2z −

z
(1 − z)2

)
,

G0(z) =
(1 + c

2

) (
z −

z(1 + z)
(1 − z)3

)
−

(1 − c
2

) (
z −

z
(1 − z)2

)
.

Direct computation gives us

H′0(r) =
2r4
− 8r3 + (12 − c)r2

− 2(5 + c)r + 1
(1 − r)4 and G′0(r) =

(cr3
− 4cr2 + (6c − 1)r − 6c − 2)r

(1 − r)4

Considering equation (7), for r = ru, we have

H′0(ru) + G′0(ru) = 0.

Hence,

JLc[ f0,10](ru) = [H′0(ru) + G′0(ru)][H′0(ru) − G′0(ru)] = 0.

Therefore, in view of Lewy,s Theorem, the function Lc[ f0, 10] is not univalent in |z| < r if r > ru. This shows
that ru is sharp.
Furthermore,

∂
∂θ

(ar1(Lc[ f0,−10](reiθ))) =
rH′0(r) + rG′0(r)
H0(r) − G0(r)

(8)

=
(c + 2)r4

− 4(c + 2)r3 + (5c + 11)r2
− 4(2c + 3)r + 1

(1 − r)2((2 − c)r2 − 2(2 − c)r + 1)
.

At the same time, from equation (6), we have

α =
(c + 2)r4

− 4(c + 2)r3 + (5c + 11)r2
− 4(2c + 3)r + 1

(1 − r)2((2 − c)r2 − 2(2 − c)r + 1)
. (9)

Thus it follows from (8), (9) and for r = rs(α, c)

∂
∂θ

(ar1(Lc[ f0,−10](reiθ))) = α.

This shows that bound rs is the best possible.

Theorem 2.2. Under the hypothesis of Theorem 2.1, Lc[ f , 1] is fully convex of order α in |z| ≤ rc, where rc is the
unique root of the equation

(1 + c)(1 + r)(1 + 10r + r2) − (1 − c)α(1 + r)(1 − r)2 = [2(1 − α) + c(1 + α)](1 − r)5 (10)

in the interval (0, 1). Moreover, the result is sharp.
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Proof. For r ∈ (0, 1) with r ≤ ru, it is sufficient to show that Lc[ fr, 1r](z) ∈ FK ∗H(α) in D. The proof of this
part of theorem is similar to the argument of the proof of Theorem 2.1 and so we omit details.
To prove sharpness, we take

f0(z) = 2z −
z

(1 − z)2 and 10(z) = z −
z

(1 − z)2 .

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
2z −

z(1 + z)
(1 − z)3

)
+

(1 − c
2

) (
2z −

z
(1 − z)2

)
,

G0(z) =
(1 + c

2

) (
z −

z(1 + z)
(1 − z)3

)
−

(1 − c
2

) (
z −

z
(1 − z)2

)
.

Direct computation, gives us

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](reiθ)
))

=
H′0(r) + G′0(r) + r(H′′0 (r) + G′′0 (r))

H′0(r) − G′0(r)
(11)

=
−(c + 2)r5 + 5(c + 2)r4

− (11c + 21)r3 + (9 − c)r2
− (16c + 21)r + 1

(1 − r)2((c − 2)r3 + (−3c + 6)r2 + (4c − 7)r + 1)
.

At the same time, from equation (10), we have

α =
−(c + 2)r5 + 5(c + 2)r4

− (11c + 21)r3 + (9 − c)r2
− (16c + 21)r + 1

(1 − r)2((c − 2)r3 + (−3c + 6)r2 + (4c − 7)r + 1)
. (12)

Thus, from (11) and (12), we have

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](rceiθ)
))

= α.

This shows that the bound rc given by equation (10) is sharp.

By putting c = 0 in the Theorems 2.1 and 2.2 we have the following corollary.

Corollary 2.3. Let f0 = 10 + h0 ∈ K
0
H and 1, h ∈ S∗. Then for F = 10 ∗ 1 + h0 ∗ h,

(1) the radius of full starlikeness of order α is rs, where rs = rs(α) is the unique real root of the equation

(1 + 4r + r2) − α(1 − r)2 = 2(1 − α)(1 − r)4

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

(1 + 4r + r2) = 2(1 − r)4

in the interval (0, 1).
(3) The radius of full convexity of order α is rc, where rc = rc(α) is the unique root of the equation

(1 + r)(1 + 10r + r2) − α(1 + r)(1 − r)2 = 2(1 − α)(1 − r)5

in the interval (0, 1).
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3. Radius constants concerning |an| ≤ M, |bn| ≤ M

Theorem 3.1. Let f (z) = z +
∑
∞

n=2 anzn and 1(z) =
∑
∞

n=2 bnzn, with

|an| ≤M, |bn| ≤M (13)

for n ≥ 2. Then for Lc[ f , 1], α ∈ [0, 1), c ∈ [0, 1), M > 0,

(1) the radius of full starlikeness of order α is rs, where rs = rs(α, c,M) is the unique real root of the equation

M(1 + c)(1 + r) −M(1 − c)α(1 − r)2 = [(M + 1)(1 − α) + Mc(1 + α)](1 − r)3 (14)

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

((1 + c)M + 1)r3
− 3((c + 1)M + 1)r2 + (4(c + 1)M + 3)r − 1 = 0 (15)

in the interval (0, 1).
Furthermore, all the results are sharp.

Proof. The first part of the proof is similar to Theorem 2.1 and so we omit the details. To prove sharpness,
we take

f0(z) = z −M
z2

1 − z
and 10(z) = −M

z2

1 − z
.

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
z −M

z2(2 − z)
(1 − z)2

)
+

(1 − c
2

) (
z −M

z2

1 − z

)
,

G0(z) = −
(1 + c

2

)
M

z2(2 − z)
(1 − z)2 +

(1 − c
2

)
M

z2

1 − z
.

Then with a direct computation we have

H′0(r) =
−(M + 1)r3 + 3(M + 1)r2

− (3 + (c + 3)M)r + 1
(1 − r)3 and G′0(r) =

−rM((r2
− 3r + 3)c + 1)

(1 − r)3 .

Considering equation (15), for r = ru, we have

H′0(ru) + G′0(ru) = 0.

Hence,

JLc[ f0,10](ru) = [H′0(ru) + G′0(ru)][H′0(ru) − G′0(ru)] = 0.

Therefore, in view of Lewy,s Theorem, the function Lc[ f0, 10] is not univalent in |z| < r if r > ru. This shows
that ru is sharp.
Furthermore,

∂
∂θ

(ar1(Lc[ f0, 10](reiθ))) =
rH′0(r) − rG′0(r)
H0(r) + G0(r)

=
−(1 + (c + 1)M)r3 + 3((c + 1)M + 1)r2

− (3 + 4(c + 1)M)r + 1
(1 − r)2(1 − (1 + (1 − c)M)r)

(16)
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At the same time, we have

α =
−(1 + (c + 1)M)r3 + 3((c + 1)M + 1)r2

− (3 + 4(c + 1)M)r + 1
(1 − r)2(1 − (1 + (1 − c)M)r)

(17)

Thus it follows from (16) and (17) and for r = rs(α, c,M)

∂
∂θ

(ar1(Lc[ f0, 10](reiθ))) = α.

This shows that bound rs is the best possible.

Theorem 3.2. Under the hypothesis of Theorem 3.1, Lc[ f , 1] is fully convex of order α in |z| ≤ rc, where rc is the
unique root of the equation

M(1 + c)(1 + 4r + r2) −M(1 − c)α(1 − r)2 = [(M + 1)(1 − α) + Mc(1 + α)](1 − r)4 (18)

in the interval (0, 1). Moreover, the result is sharp.

Proof. The proof of equation (18) is the same as proof of Theorem 3.1 and so we omit the details. Now to
prove sharpness, we take

f0(z) = z −M
z2

1 − z
and 10(z) = −M

z2

1 − z
.

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
z −M

z2(2 − z)
(1 − z)2

)
+

(1 − c
2

) (
z −M

z2

1 − z

)
and

G0(z) = −
(1 + c

2

)
M

z2(2 − z)
(1 − z)2 +

(1 − c
2

)
M

z2

1 − z
.

Direct computation, yields

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](reiθ)
))

=
H′0(r) + G′0(r) + r(H′′0 (r) + G′′0 (r))

H′0(r) − G′0(r)

=
1 + M(1 + c) −M(1 + c) 1+4z+z2

(1−z)4

1 + M(1 − c) 1
(1−z)2

. (19)

At the same time from equation (18), we have

α =
[1 + M(1 + c)](1 − z)4

−M(1 + c)(1 + 4z + z2)
[1 + M(1 − c)](1 − z)4 −M(1 − c)(1 − z)2 . (20)

Thus, from (19) and (20), we have

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](rceiθ)
))

= α.

This shows that the bound rc given by equation (18) is sharp.
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Corollary 3.3. Let f0 = 10 + h0 ∈ K
0
H and 1, h ∈ K . Then for F = 10 ∗ 1 + h0 ∗ h,

(1) the radius of full starlikeness of order α is rs, where rs = rs(α) is the unique real root of the equation

(1 + r) − α(1 − r)2 = 2(1 − α)(1 − r)3

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

2r3
− 6r2 + 7r − 1 = 0

in the interval (0, 1).
(3) The radius of full convexity of order α is rc, where rc = rc(α) is the unique root of the equation

(1 + 4r + r2) − α(1 − r)2 = 2(1 − α)(1 − r)4

in the interval (0, 1).

4. Radius constants concerning |an| ≤
M
n , |bn| ≤

M
n

Theorem 4.1. Let f (z) = z +
∑
∞

n=2 anzn, 1(z) =
∑
∞

n=2 bnzn, with

|an| ≤
M
n
, |bn| ≤

M
n

(21)

for n ≥ 2. Then for Lc[ f , 1], α ∈ [0, 1), c ∈ [0, 1), M > 0,

(1) the radius of full starlikeness of order α is rs, where rs = rs(α, c,M) is the unique real root of the equation

M(1 + c) + M(1 − c)α
log(1 − r)

r
(1 − r)2 = [(M + 1)(1 − α) + Mc(1 + α)](1 − r)2. (22)

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

((c + 1)M + 1)r2
− 2((c + 1)M + 1)r + 1 = 0 (23)

in the interval (0, 1).
Furthermore, all the results are sharp.

Proof. For r ∈ (0, 1) with r ≤ rs, it is sufficient to show that Lc[ fr, 1r] ∈ FS
∗

H(α) inD, where

Lc[ fr, 1r](z) =
Lc[ f (rz), 1(rz)]

r
= z +

∞∑
n=2

(
(1 + c)n + (1 − c)

2

)
anrn−1zn

+

∞∑
n=2

(
(1 + c)n − (1 − c)

2

)
bnrn−1zn.

Consider the sum

S =

∞∑
n=2

n − α
1 − α

|An|rn−1 +

∞∑
n=2

n + α
1 − α

|Bn|rn−1.

According to Lemma 1.1, it is enough to show that S ≤ 1. Putting the coefficients |An| and |Bn| in the last
equation, we have

∞∑
n=2

n − α
1 − α

(
(1 + c)n + (1 − c)

2

)
M
n

rn−1 +

∞∑
n=2

n + α
1 − α

(
(1 + c)n − (1 − c)

2

)
M
n

rn−1
≤ 1.
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Using the identities (4), the last inequality reduces to

M(1 + c) + M(1 − c)α
log(1 − r)

r
(1 − r)2

− [(M + 1)(1 − α) + Mc(1 + α)](1 − r)2
≤ 0.

Set

q(r) = M(1 + c) + M(1 − c)α
log(1 − r)

r
(1 − r)2

− [(M + 1)(1 − α) + Mc(1 + α)](1 − r)2

We note that q(0) = −(1 − α) < 0 and q(1) = M(1 + c) > 0, and so intermediate value theorem shows that the
equation (22) has a root in the interval (0, 1). Also is easy to verify that q(r) is increasing as a function of r.
Hence the equation (22) has exactly one root in the (0, 1).
Thus, Lc[ fr, 1r] ∈ FS

∗

H(α) for r ≤ rs, where rs is the unique real root of (22). Also, taking α = 0, equation
(14) reduces to (23). Then by Lemma 1.1, we know that Lc[ f , 1] is harmonic univalent in |z| ≤ ru, where
ru = rs(0, c,M). To prove sharpness, we take

f0(z) = (1 + M)z + Mlo1(1 − z) and 10(z) = M(z + lo1(1 − z))

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
(1 + M)z −

Mz
1 − z

)
+

(1 − c
2

)
((1 + M)z + Mlo1(1 − z)),

G0(z) =
(1 + c

2

)
M

(
z −

z
1 − z

)
−

(1 − c
2

)
M(z + lo1(1 − z))

Direct computation, implies

H′0(r) =
2(M + 1)r2

− (4 + (c + 3)M)r + 2
2(1 − r)2 and G′0(r) =

Mr(2cr − 3c − 1)
2(1 − r)2 .

According to equation (23), for r = ru, we have

H′0(ru) + G′0(ru) = 0.

Hence,

JLc[ f0,10](ru) = [H′0(ru) + G′0(ru)][H′0(ru) − G′0(ru)] = 0.

Therefore, in view of Lewy,s Theorem, the function Lc[ f0, 10] is not univalent in |z| < r if r > ru. This shows
that ru is sharp.
Furthermore,

∂
∂θ

(ar1(Lc[ f0, 10](reiθ))) =
rH′0(r) + rG′0(r)
H0(r) − G0(r)

=
r(1 + (1 + (1 + c)M)r2 + (−2 + (−2c − 2)M)r)

(1 − r)2(−M(−1 + c)lo1(1 − r) − r(−1 + M(−1 + c)))
. (24)

At the same time, we have

α =
r(1 + (1 + (1 + c)M)r2 + (−2 + (−2c − 2)M)r)

(1 − r)2(−M(−1 + c)lo1(1 − r) − r(−1 + M(−1 + c)))
. (25)

Thus it follows from (24) and (25) and for r = rs(α, c,M)

∂
∂θ

(ar1(Lc[ f0, 10](reiθ))) = α.

This shows that bound rs is the best possible.
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Theorem 4.2. Under the hypothesis of Theorem 4.1, Lc[ f , 1] is fully convex of order α in |z| ≤ rc, where rc is the
unique root of the equation

M(1 + c)(1 + r) −M(1 − c)α(1 − r)2 = [(M + 1)(1 − α) + Mc(1 + α)](1 − r)3 (26)

in the interval (0, 1). Moreover, the result is sharp.

Proof. The proof of (26) is the same as proof of Theorem 4.1 and so we omit details. To prove sharpness, we
take

f0(z) = (1 + M)z + Mlo1(1 − z) and 10(z) = M(z + lo1(1 − z)).

Then Lc[ f0, 10](z) = H0(z) + G0(z), where

H0(z) =
(1 + c

2

) (
(1 + M)z −

Mz
1 − z

)
+

(1 − c
2

)
((1 + M)z + Mlo1(1 − z)),

G0(z) =
(1 + c

2

)
M

(
z −

z
1 − z

)
−

(1 − c
2

)
M(z + lo1(1 − z))

By direct computation, we have

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](reiθ)
))

=
H′0(r) + G′0(r) + r(H′′0 (r) + G′′0 (r))

H′0(r) − G′0(r)

=
(−1 + (−1 − c)M)r3 + (3 + (3c + 3)M)r2 + (−3 + (−4c − 4)M)r + 1

(1 − r)2((c − 1)M − 1)r + 1)
. (27)

Also from equation (26), we obtain

α =
(−1 + (−1 − c)M)r3 + (3 + (3c + 3)M)r2 + (−3 + (−4c − 4)M)r + 1

(1 − r)2((c − 1)M − 1)r + 1)
. (28)

Thus, relations (27) and (28), yields

∂
∂θ

(
ar1

(
∂
∂θ

Lc[ f0, 10](rceiθ)
))

= α.

This shows that the bound rc given by equation (26) is sharp.

Corollary 4.3. Let f0 = 10+h0 ∈ K
0
H and the normalized functions1, h satisfy the condition Re1′(z) > 0, Reh′(z) > 0.

Then for F = 10 ∗ 1 + h0 ∗ h,
(1) the radius of full starlikeness of order α is rs, where rs = rs(α) is the unique real root of the equation

2 + 2α
log(1 − r)

r
(1 − r)2 = 3(1 − α)(1 − r)2.

in the interval (0, 1).
(2) The radius of univalence is ru, where ru is the unique real root of the equation

3r2
− 6r + 1 = 0

in the interval (0, 1).
(3) The radius of full convexity of order α is rc, where rc = rc(α) is the unique root of the equation

2(1 + r) − 2α(1 − r)2 = 3(1 − α)(1 − r)3

in the interval (0, 1).
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