E-Eigenvalue Inclusion Theorems for Tensors

Caili Sang ${ }^{\text {a,b }}$, Jianxing Zhao ${ }^{\text {a }}$
${ }^{a}$ College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China
${ }^{b}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, P.R. China

Abstract

Two Z-eigenvalue inclusion theorems for tensors presented by Wang et al. (Discrete Cont. Dyn.-B, 2017, 22(1): 187-198) are first generalized to E-eigenvalue inclusion theorems. And then a tighter E-eigenvalue inclusion theorem for tensors is established. Based on the new set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

1. Introduction

For a positive integer $n, n \geq 2, N$ denotes the set $\{1,2, \cdots, n\} . \mathbb{C}(\mathbb{R})$ denotes the set of all complex (real) numbers. We call $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ a real tensor of order m dimension n, denoted by $\mathcal{A} \in \mathbb{R}^{[m, n]}$, if

$$
a_{i_{1} i_{2} \cdots i_{m}} \in \mathbb{R}
$$

where $i_{j} \in N$ for $j=1,2, \cdots, m$. \mathcal{A} is called nonnegative if $a_{i_{1} i_{2} \cdots i_{m}} \geq 0 . \mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ is called symmetric [1] if

$$
a_{i_{1} \cdots i_{m}}=a_{i_{\pi(1)} \cdots i_{\pi(m)}}, \forall \pi \in \Pi_{m},
$$

where Π_{m} is the permutation group of m indices. $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ is called weakly symmetric [2] if the associated homogeneous polynomial

$$
\mathcal{A} x^{m}=\sum_{i_{1}, \cdots, i_{m} \in N} a_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}
$$

satisfies $\nabla \mathcal{A} x^{m}=m \mathcal{A} x^{m-1}$, where $x=\left(x_{1}, x_{2} \cdots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, and $\mathcal{A} x^{m-1}$ is an n dimension vector whose i th component is

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{m} \in N} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} .
$$

[^0]It is shown in [2] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in general.

Given a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$, if there are $\lambda \in \mathbb{C}$ and $x=\left(x_{1}, x_{2} \cdots, x_{n}\right)^{T} \in \mathbb{C}^{n} \backslash\{0\}$ such that

$$
\mathcal{A} x^{m-1}=\lambda x \text { and } x^{T} x=1
$$

then λ is called an E-eigenvalue of \mathcal{A} and x an E-eigenvector of \mathcal{A} associated with λ. Particularly, if λ and x are all real, then λ is called a Z-eigenvalue of \mathcal{A} and x a Z-eigenvector of \mathcal{A} associated with λ; for details, see [1, 3]. Denote by $\sigma(\mathcal{A})$ (respectively, $E(\mathcal{A})$) the set of all Z-eigenvalues (respectively, E-eigenvalues) of \mathcal{A}. Assume $\sigma(\mathcal{A}) \neq 0$, then the Z-spectral radius [2] of \mathcal{A}, denoted $\varrho(\mathcal{A})$, is defined as

$$
\varrho(\mathcal{A}):=\max \{|\lambda|: \lambda \in \sigma(\mathcal{A})\} .
$$

Note here that, Chang et al. in [2] demonstrated by an example that the Z-spectral radius $\varrho(\mathcal{F})$ of a nonnegative tensor \mathcal{A} may not be itself a positive Z-eigenvalue of \mathcal{A}, and proved that if \mathcal{A} is a weakly symmetric nonnegative tensor, then $\varrho(\mathcal{A})$ is a Z-eigenvalue of \mathcal{A}; see [2], for details.

The Z-eigenvalue problem plays a fundamental role in best rank-one approximation, which has numerous applications in engineering and higher order statistics [1, 4], and neural networks [5]. Recently, much literature has focused on locating all Z-eigenvalues of tensors and bounding the Z-spectral radius of nonnegative tensors in [6-20]. In 2017, Wang et al. [6] generalized Geršgorin eigenvalue inclusion theorem from matrices to tensors and established the following Geršgorin-type Z-eigenvalue inclusion theorem.

Theorem 1.1. [6, Theorem 3.1] Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$. Then

$$
\sigma(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A})=\bigcup_{i \in N} \mathcal{K}_{i}(\mathcal{A})
$$

where

$$
\mathcal{K}_{i}(\mathcal{A})=\left\{z \in \mathbb{C}:|z| \leq R_{i}(\mathcal{A})\right\} \text { and } R_{i}(\mathcal{A})=\sum_{i_{2}, \cdots, i_{m} \in N}\left|a_{i i_{2} \cdots i_{m}}\right| .
$$

Based on the set $\mathcal{K}(\mathcal{A})$, the following upper bound for $\rho(\mathcal{A})$ presented in [7] is obtained easily.
Theorem 1.2. [7, Corollary 4.5] Let $\mathcal{A} \in \mathbb{R}^{[m, n]}$ be nonnegative. Then

$$
\varrho(\mathcal{A}) \leq \max _{i \in N} R_{i}(\mathcal{A})
$$

To get a tighter Z-eigenvalue inclusion set than $\mathcal{K}(\mathcal{A})$, Wang et al. [6] obtained the following Brauer-type Z-eigenvalue inclusion theorem for tensors.

Theorem 1.3. [6, Theorem 3.3] Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$. Then

$$
\sigma(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})=\bigcup_{i, j \in N, i \neq j}\left(\mathcal{M}_{i, j}(\mathcal{A}) \cup \mathcal{H}_{i, j}(\mathcal{A})\right)
$$

where

$$
\begin{gathered}
\mathcal{M}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:\left(|z|-\left(R_{i}(\mathcal{A})-\left|a_{i j \ldots j}\right|\right)\right)\left(|z|-P_{j}^{i}(\mathcal{A})\right) \leq\left|a_{i j \ldots j}\right|\left(R_{j}(\mathcal{A})-P_{j}^{i}(\mathcal{A})\right)\right\}, \\
\mathcal{H}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:|z|<R_{i}(\mathcal{A})-\left|a_{i j \ldots j}\right|,|z|<P_{j}^{i}(\mathcal{A})\right\},
\end{gathered}
$$

and

$$
P_{j}^{i}(\mathcal{A})=\sum_{\substack{i_{2}, \ldots, i_{m} \in \in, i \neq i \neq i_{2}, \cdots, i_{m} \mid}}\left|a_{j i_{2} \cdots i_{m}}\right|
$$

Based on the set $\mathcal{M}(\mathcal{A})$, Wang et al. [6] obtained a better upper bound than that in Theorem 1.2.

Theorem 1.4. [6, Theorem 4.6] Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly symmetric nonnegative tensor. Then

$$
\varrho(\mathcal{A}) \leq \Psi(\mathcal{A})=\max _{i, j \in N, i \neq j}\left\{\frac{1}{2}\left(R_{i}(\mathcal{A})-a_{i j \ldots j}+P_{j}^{i}(\mathcal{A})+\Lambda_{i, j}^{\frac{1}{2}}(\mathcal{A})\right), R_{i}(\mathcal{A})-a_{i j \ldots j}, P_{j}^{i}(\mathcal{A})\right\},
$$

where

$$
\Lambda_{i, j}(\mathcal{A})=\left(R_{i}(\mathcal{A})-a_{i j \cdots j}-P_{j}^{i}(\mathcal{A})\right)^{2}+4 a_{i j \cdots j}\left(R_{j}(\mathcal{A})-P_{j}^{i}(\mathcal{A})\right) .
$$

Due to various new and important applications of E-eigenvalue problem in numerical multilinear algebra [21], image processing [22], higher order Markov chains [23], spectral hypergraph theory, the study of quantum entanglement, and so on, some properties of E-eigenvalues have been studied systematically; see [8] for details. However, characterizations of inclusion set for E-eigenvalue are still underdeveloped. This stimulates us to establish some inclusion theorems to identify the distribution of E-eigenvalues.

In the sequel, we research on the E-eigenvalue localization problems for tensors and their applications. First, Theorems 1.1 and 1.3 are extended to E-eigenvalue inclusion theorems. Second, a new E-eigenvalue inclusion set for tensors is presented and proved to be tighter than those in Theorems 1.1 and 1.3. Finally, as an application of the new set, a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is given and proved to be sharper than those in Theorems 1.2 and 1.4.

2. E-eigenvalue inclusion sets for tensors

In this section, we first generalized those sets in Theorems 1.1 and 1.3 to E-eigenvalue inclusion sets. And then we present a new E-eigenvalue inclusion set for tensors and establish the comparison among these three sets. Firstly, similar to the proof of Theorems 3.1 and 3.3 of [6], the following theorem is obtained easily.

Theorem 2.1. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$. Then

$$
E(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A}), \text { and } E(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})
$$

Next, a new E-eigenvalue inclusion theorem for tensors is presented.
Theorem 2.2. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$. Then

$$
E(\mathcal{A}) \subseteq \Omega(\mathcal{A})=\bigcup_{i, j \in N, j \neq i}\left(\hat{\Omega}_{i, j}(\mathcal{A}) \cup\left(\tilde{\Omega}_{i, j}(\mathcal{A}) \cap \mathcal{K}_{i}(\mathcal{A})\right)\right)
$$

where

$$
\hat{\Omega}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:|z|<P_{i}^{j}(\mathcal{A}) \text { and }|z|<P_{j}^{i}(\mathcal{A})\right\}
$$

and

$$
\tilde{\Omega}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:\left(|z|-P_{i}^{j}(\mathcal{A})\right)\left(|z|-P_{j}^{i}(\mathcal{A})\right) \leq\left(R_{i}(\mathcal{A})-P_{i}^{j}(\mathcal{A})\right)\left(R_{j}(\mathcal{A})-P_{j}^{i}(\mathcal{A})\right)\right\} .
$$

Proof. Let λ be an E-eigenvalue of \mathcal{A} with corresponding E-eigenvector $x=\left(x_{1}, \cdots, x_{n}\right)^{T} \in \mathbb{C}^{n} \backslash\{0\}$, i.e.,

$$
\begin{equation*}
\mathcal{A} x^{m-1}=\lambda x, \text { and }\|x\|_{2}=1 \tag{1}
\end{equation*}
$$

Let $\left|x_{t}\right| \geq\left|x_{s}\right| \geq \max _{i \in N, i \neq t, s}\left|x_{i}\right|$. Obviously, $0<\left|x_{t}\right|^{m-1} \leq\left|x_{t}\right|^{m-2} \leq\left|x_{t}\right| \leq 1$. From (1), we have

$$
\lambda x_{t}=\sum_{\substack{i_{2}, \cdots, i_{m} \in N, s \in\left\{i_{2}, \cdots, i_{m}\right\}}} a_{t i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}+\sum_{\substack{\left.i_{2}, \ldots i_{m} \in N, s \notin i_{2}, \cdots, i_{m}\right\}}} a_{t i_{2} \cdots i_{i}} x_{i_{2}} \cdots x_{i_{m}} .
$$

Taking modulus in the above equation and using the triangle inequality give

$$
\begin{aligned}
& |\lambda|\left|x_{t}\right| \leq \sum_{\substack{\left.i_{2}, \cdots, i_{m} \in N, s \in i_{i}, \cdots, i_{m}\right\}}}\left|a_{t i_{2} \cdots i_{m}}\right|\left|x_{i_{2}}\right| \cdots\left|x_{i_{m}}\right|+\sum_{\substack{\left.i_{2}, \cdots, i_{m} \in N, s \neq i_{2}, \cdots, i_{m}\right\}}}\left|a_{t i_{2} \cdots i_{m}} \| x_{i_{2}}\right| \cdots\left|x_{i_{m}}\right| \\
& \leq \sum_{\substack{i_{2}, \ldots, i_{m} \in \mathbb{N}, s \in\left\{i_{2}, \cdots, i_{m}\right\}}}\left|a_{t i_{2} \cdots i_{m}}\left\|x_{s}\right\| x_{t}\right|^{m-2}+\sum_{\substack{\left.i_{2}, \ldots, i_{m} \in \mathbb{N}, s \neq i_{2}, \cdots, i_{m}\right\}}}\left|a_{t i_{2} \cdots i_{m}} \| x_{t}\right|^{m-1} \\
& \leq \sum_{\substack{\left.i_{2}, \ldots, i_{2} \in N, s \in i_{2}, \cdots, i_{m}\right\}}}\left|a_{t i_{2} \ldots i_{m}}\left\|x_{s}\left|+\sum_{\substack{\left.i_{2}, \cdots, i_{2} \in N \\
s \neq i_{2}, \ldots, i_{m}\right\rangle}}\right| a_{t i_{2} \cdots i_{m}}\right\| x_{t}\right| \\
& =\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left|x_{s}\right|+P_{t}^{s}(\mathcal{A})\left|x_{t}\right|,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(|\lambda|-P_{t}^{s}(\mathcal{A})\right)\left|x_{t}\right| \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left|x_{s}\right| . \tag{2}
\end{equation*}
$$

By (2), it is not difficult to see $|\lambda| \leq R_{t}(\mathcal{F})$, that is, $\lambda \in \mathcal{K}_{t}(\mathcal{A})$. If $\left|x_{s}\right|=0$, then $|\lambda|-P_{t}^{s}(\mathcal{F}) \leq 0$ as $\left|x_{t}\right|>0$. When $|\lambda|-P_{t}^{s}(\mathcal{A})=0$, obviously, $\lambda \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right) \subseteq \Omega(\mathcal{A})$. And when $|\lambda|-P_{t}^{s}(\mathcal{A})<0$, if $|\lambda| \geq P_{s}^{t}(\mathcal{A})$, then we have

$$
\left(|\lambda|-P_{t}^{s}(\mathcal{A})\right)\left(|\lambda|-P_{s}^{t}(\mathcal{A})\right) \leq 0 \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)
$$

which implies $\lambda \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right) \subseteq \Omega(\mathcal{A})$; if $|\lambda|<P_{s}^{t}(\mathcal{A})$, then we have $\lambda \in \hat{\Omega}_{t, s}(\mathcal{A}) \subseteq \Omega(\mathcal{A})$.
Otherwise, $\left|x_{s}\right|>0$. By (1), we can get

$$
\begin{aligned}
& |\lambda|\left|x_{s}\right| \leq \sum_{\substack{i_{2}, \ldots, m_{m} \in N_{n} \\
t \in i_{2}, \cdots, i_{m} \mid}}\left|a_{s i_{2} \cdots i_{m} \mid}\right| x_{i_{2}}|\cdots| x_{i_{m}}\left|+\sum_{\substack{\left.i_{2}, \ldots, i_{m} \in N, t \not t \mid i_{2}, \cdots, i_{m}\right\}}}\right| a_{s i_{2} \cdots i_{m}}| | x_{i_{2}}|\cdots| x_{i_{m}} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\substack{i_{2}, \cdots, i_{m} \in N, \in \in \in i_{2}, \ldots, i_{m} \mid}}\left|a_{s i_{2} \cdots i_{n}}\right|\left|x_{t}\right|+\sum_{\substack{i_{2}, \ldots, i_{m} \in N_{N}, t \in i_{2}, 2, i_{m} \mid}}\left|a_{s i_{2} \cdots \cdots i_{m} \mid}\right| x_{s} \mid,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(|\lambda|-P_{s}^{t}(\mathcal{A})\right)\left|x_{s}\right| \leq\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)\left|x_{t}\right| . \tag{3}
\end{equation*}
$$

When $|\lambda| \geq P_{t}^{s}(\mathcal{A})$ or $|\lambda| \geq P_{s}^{t}(\mathcal{A})$ holds, multiplying (2) with (3) and noting that $\left|x_{t} \| x_{s}\right|>0$, we have

$$
\left(|\lambda|-P_{t}^{s}(\mathcal{A})\right)\left(|\lambda|-P_{s}^{t}(\mathcal{A})\right) \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)
$$

which implies $\lambda \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right) \subseteq \Omega(\mathcal{A})$. And when $|\lambda|<P_{t}^{s}(\mathcal{A})$ and $|\lambda|<P_{s}^{t}(\mathcal{A})$ hold, we have $\lambda \in \hat{\Omega}_{t, s}(\mathcal{A}) \subseteq \Omega(\mathcal{A})$. Hence, the conclusion $\sigma(\mathcal{A}) \subseteq \Omega(\mathcal{A})$ follows immediately from what we have proved.

Next, a comparison theorem is given for Theorems 2.1 and 2.2.
Theorem 2.3. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$. Then

Proof. By Corollary 3.2 in [6], $\mathcal{M}(\mathcal{F}) \subseteq \mathcal{K}(\mathcal{A})$ holds. Hence, we only prove $\Omega(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. Let $z \in \Omega(\mathcal{F})$. Then there are $t, s \in N$ and $t \neq s$ such that $z \in \hat{\Omega}_{t, s}(\mathcal{A})$ or $z \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{F})\right)$. We divide the proof into two parts.

Case I: If $z \in \hat{\Omega}_{t, s}(\mathcal{A})$, that is, $|z|<P_{t}^{s}(\mathcal{A})$ and $|z|<P_{s}^{t}(\mathcal{A})$. Then, it is easily to see that

$$
|z|<P_{t}^{s}(\mathcal{A}) \leq R_{t}(\mathcal{A})-\left|a_{t s} \ldots s\right|
$$

which implies that $z \in \mathcal{H}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$, consequently, $\Omega(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$.
Case II: If $z \notin \hat{\Omega}_{t, s}(\mathcal{F})$, that is,

$$
\begin{equation*}
|z| \geq P_{s}^{t}(\mathcal{A}) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
|z| \geq P_{t}^{s}(\mathcal{A}) \tag{5}
\end{equation*}
$$

then $z \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right)$, i.e.,

$$
\begin{equation*}
|z| \leq R_{t}(\mathcal{A}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(|z|-P_{t}^{s}(\mathcal{A})\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right) \tag{7}
\end{equation*}
$$

(i) Assume $\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)=0$. When (4) holds, by (7), we have

$$
\begin{aligned}
\left(|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) & \leq\left(|z|-P_{t}^{s}(\mathcal{A})\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) \\
& \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right) \\
& =0 \\
& \leq\left|a_{t s \cdots s}\right|\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)
\end{aligned}
$$

which implies that $z \in \mathcal{M}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. On the other hand, when (5) holds, we only prove $z \in \mathcal{M}(\mathcal{A})$ under the case that $|z|<P_{s}^{t}(\mathcal{A})$. When

$$
\begin{equation*}
P_{t}^{s}(\mathcal{A}) \leq|z|<R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right| \tag{8}
\end{equation*}
$$

we have $z \in \mathcal{H}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. And when

$$
\begin{equation*}
R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right| \leq|z| \leq R_{t}(\mathcal{A}) \tag{9}
\end{equation*}
$$

from

$$
\begin{equation*}
\left(|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) \leq 0 \leq\left|a_{t s \cdots s}\right|\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right) \tag{10}
\end{equation*}
$$

we have $z \in \mathcal{M}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$.
(ii) Assume $\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)>0$. Then dividing both sides by $\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-\right.$ $\left.P_{s}^{t}(\mathcal{A})\right)$ in (7), we have

$$
\begin{equation*}
\frac{|z|-P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})} \frac{|z|-P_{s}^{t}(\mathcal{A})}{R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})} \leq 1 \tag{11}
\end{equation*}
$$

If $\left|a_{t s \cdots s}\right|>0$, let $a=|z|, b=P_{t}^{s}(\mathcal{A}), c=R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|-P_{t}^{s}(\mathcal{A})$ and $d=\left|a_{t s \cdots s}\right|$, by (6) and Lemma 2.2 in [24], we have

$$
\begin{equation*}
\frac{|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)}{\left|a_{t s \cdots s}\right|}=\frac{a-(b+c)}{d} \leq \frac{a-b}{c+d}=\frac{|z|-P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})} \tag{12}
\end{equation*}
$$

When (4) holds, by (11) and (12), we have

$$
\frac{|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)}{\left|a_{t s \cdots s}\right|} \frac{|z|-P_{s}^{t}(\mathcal{A})}{R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})} \leq \frac{|z|-P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})} \frac{|z|-P_{s}^{t}(\mathcal{A})}{R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})} \leq 1
$$

equivalently,

$$
\left(|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) \leq\left|a_{t s \cdots s}\right|\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)
$$

which implies that $z \in \mathcal{M}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. On the other hand, when (5) holds, we only prove $z \in \mathcal{M}(\mathcal{A})$ under the case that $|z|<P_{s}^{t}(\mathcal{A})$. If (8) holds, then $z \in \mathcal{H}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. And if (9) holds, by (10), we have $z \in \mathcal{M}_{t, s}(\mathcal{F}) \subseteq \mathcal{M}(\mathcal{A})$.

If $\left|a_{t s \cdots s}\right|=0$, by $|z| \leq R_{t}(\mathcal{A})$, we have $|z|-\left(R_{t}(\mathcal{F})-\left|a_{t s \cdots s}\right|\right) \leq 0=\left|a_{t s \cdots s}\right|$. When (4) holds, we can obtain

$$
\begin{equation*}
\left(|z|-\left(R_{t}(\mathcal{A})-\left|a_{t s \cdots s}\right|\right)\right)\left(|z|-P_{s}^{t}(\mathcal{A})\right) \leq 0=\left|a_{t s \cdots s}\right|\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right), \tag{13}
\end{equation*}
$$

which implies that $z \in \mathcal{M}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. On the other hand, when (5) holds, we only prove $z \in \mathcal{M}(\mathcal{A})$ under the case that $|z|<P_{s}^{t}(\mathcal{A})$. If (8) holds, then $z \in \mathcal{H}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. And if (9) holds, by (13), we have $z \in \mathcal{M}_{t, s}(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{A})$. The conclusion follows from Case I and Case II.

Remark 2.4. Theorem 2.3 shows that the set $\Omega(\mathcal{A})$ in Theorem 2.2 is tighter than $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$ in Theorem 2.1, that is, $\Omega(\mathcal{A})$ can capture all E-eigenvalues of \mathcal{A} more precisely than $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$.

In the following, an example is given to verify Remark 2.4.
Example 2.5. Let $\mathcal{A}=\left(a_{i j k}\right) \in \mathbb{R}^{[3,3]}$ with entries defined as follows:

$$
A(:,:, 1)=\left(\begin{array}{lll}
0 & 3 & 3 \\
2 & 1 & 1 \\
3 & 1 & 0
\end{array}\right), A(:,:, 2)=\left(\begin{array}{ccc}
2 & 0.5 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right), A(:,:, 3)=\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) .
$$

We now locate all E-eigenvalues of \mathcal{A}. By Theorem 2.1, we have

$$
\mathcal{K}(\mathcal{A})=\{z \in \mathbb{C}:|z| \leq 14.5000\} \text { and } \mathcal{M}(\mathcal{A})=\{z \in \mathbb{C}:|z| \leq 14.2228\} .
$$

By Theorem 2.2, we have

$$
\Omega(\mathcal{A})=\{z \in \mathbb{C}:|z| \leq 11.5000\} .
$$

The E-eigenvalue inclusion sets $\mathcal{K}(\mathcal{F}), \mathcal{M}(\mathcal{A}), \Omega(\mathcal{A})$ and all E-eigenvalues $-6.3796,-3.2536,-1.8154,-0.8351$, $-0.7011-0.8430 i,-0.7011+0.8430 i,-0.4608,0.4608,0.7011-0.8430 i, 0.7011+0.8430 i, 0.8351,1.8154,3.2536$, 6.3796 are drawn in Figure 1, where $\mathcal{K}(\mathcal{F}), \mathcal{M}(\mathcal{F}), \Omega(\mathcal{F})$ and the exact E-eigenvalues are represented by black solid boundary, blue dashed boundary, red solid boundary and black " + ", respectively. It is easy to see that

$$
\sigma(\mathcal{A}) \subseteq \Omega(\mathcal{A}) \subset \mathcal{M}(\mathcal{A}) \subset \mathcal{K}(\mathcal{A})
$$

that is, $\Omega(\mathcal{A})$ can capture all E-eigenvalues of \mathcal{A} more precisely than $\mathcal{M}(\mathcal{A})$ and $\mathcal{K}(\mathcal{A})$.

3. A sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the set $\Omega(\mathcal{A})$ in Theorem 2.2, a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is given.

Theorem 3.1. Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly symmetric nonnegative tensor. Then

$$
\varrho(\mathcal{A}) \leq \Omega_{\max }=\max \left\{\hat{\Omega}_{\max }, \tilde{\Omega}_{\max }\right\},
$$

Figure 1: Comparisons of $\mathcal{K}(\mathcal{F}), \mathcal{M}(\mathcal{A})$ and $\Omega(\mathcal{A})$.
where

$$
\begin{aligned}
\hat{\Omega}_{\text {max }} & =\max _{i, j \in N, j \neq i} \min \left\{P_{i}^{j}(\mathcal{A}), P_{j}^{i}(\mathcal{A})\right\}, \\
\tilde{\Omega}_{\text {max }} & =\max _{i, j \in N, j \neq i} \min \left\{R_{i}(\mathcal{A}), \Delta_{i, j}(\mathcal{A})\right\},
\end{aligned}
$$

and

$$
\Delta_{i, j}(\mathcal{A})=\frac{1}{2}\left\{P_{i}^{j}(\mathcal{A})+P_{j}^{i}(\mathcal{A})+\sqrt{\left(P_{i}^{j}(\mathcal{A})-P_{j}^{i}(\mathcal{A})\right)^{2}+4\left(R_{i}(\mathcal{A})-P_{i}^{j}(\mathcal{A})\right)\left(R_{j}(\mathcal{A})-P_{j}^{i}(\mathcal{A})\right)}\right\} .
$$

Proof. As stated in Section 1, if \mathcal{A} is weakly symmetric and nonnegative, then $\varrho(\mathcal{A})$ is the largest Z-eigenvalue of \mathcal{A}. Hence, by Theorem 2.2, we have

$$
\varrho(\mathcal{A}) \in \bigcup_{i, j \in N, j \neq i}\left(\hat{\Omega}_{i, j}(\mathcal{A}) \cup\left(\tilde{\Omega}_{i, j}(\mathcal{A}) \cap \mathcal{K}_{i}(\mathcal{A})\right)\right)
$$

that is, there are $t, s \in N, t \neq s$ such that $\varrho(\mathcal{A}) \in \hat{\Omega}_{t, s}(\mathcal{A})$ or $\varrho(\mathcal{A}) \in\left(\tilde{\Omega}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right)$. If $\varrho(\mathcal{A}) \in \hat{\Omega}_{t, s}(\mathcal{A})$, i.e., $\varrho(\mathcal{A})<P_{t}^{s}(\mathcal{A})$ and $\varrho(\mathcal{A})<P_{s}^{t}(\mathcal{A})$, we have $\varrho(\mathcal{A})<\min \left\{P_{t}^{s}(\mathcal{A}), P_{s}^{t}(\mathcal{A})\right\}$. Furthermore, we have

$$
\begin{equation*}
\varrho(\mathcal{A}) \leq \max _{i, j \in N, j \neq i} \min \left\{P_{i}^{j}(\mathcal{A}), P_{j}^{i}(\mathcal{A})\right\} . \tag{14}
\end{equation*}
$$

If $\varrho(\mathcal{A}) \in\left(\tilde{\Psi}_{t, s}(\mathcal{A}) \cap \mathcal{K}_{t}(\mathcal{A})\right)$, i.e., $\varrho(\mathcal{A}) \leq R_{t}(\mathcal{A})$ and

$$
\begin{equation*}
\left(\varrho(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(\varrho(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right) \leq\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right), \tag{15}
\end{equation*}
$$

then solving $\varrho(\mathcal{A})$ in (15) gives

$$
\varrho(\mathcal{A}) \leq \frac{1}{2}\left\{P_{t}^{s}(\mathcal{A})+P_{s}^{t}(\mathcal{A})+\sqrt{\left(P_{t}^{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)^{2}+4\left(R_{t}(\mathcal{A})-P_{t}^{s}(\mathcal{A})\right)\left(R_{s}(\mathcal{A})-P_{s}^{t}(\mathcal{A})\right)}\right\}=\Delta_{t, s}(\mathcal{A})
$$

and furthermore

$$
\begin{equation*}
\varrho(\mathcal{A}) \leq \min \left\{R_{t}(\mathcal{A}), \Delta_{t, s}(\mathcal{A})\right\} \leq \max _{i, j \in N, j \neq i} \min \left\{R_{i}(\mathcal{A}), \Delta_{i, j}(\mathcal{A})\right\} \tag{16}
\end{equation*}
$$

The conclusion follows from (14) and (16).
By Theorem 2.3 and Corollary 4.2 in [6], the following comparison theorem can be derived easily.
Theorem 3.2. Let $\mathcal{A}=\left(a_{i_{1} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly symmetric nonnegative tensor. Then the upper bound in Theorem 3.1 is sharper than those in Theorems 1.2 and 1.4, that is,

$$
\varrho(\mathcal{A}) \leq \Omega_{\max } \leq \Psi(\mathcal{A}) \leq \max _{i \in N} R_{i}(\mathcal{A})
$$

Finally, we show that in some cases the upper bound in Theorem 3.1 is sharper than those in [6, 7, 9-15] by an example.

Example 3.3. Let $\mathcal{A}=\left(a_{i j k l}\right) \in \mathbb{R}^{[4,2]}$ be a symmetric tensor defined by

$$
a_{1111}=\frac{1}{2}, a_{2222}=3, a_{i j k l}=\frac{1}{3} \text { elsewhere. }
$$

By computation, we obtain $(\rho(\mathcal{A}), x)=(3.1092,(0.1632,0.9866))$. By Corollary 4.5 of [7], we have

$$
\varrho(\mathcal{A}) \leq 5.3333 .
$$

By Theorem 2.7 of [15], we have

$$
\varrho(\mathcal{A}) \leq 5.2846 .
$$

By Theorem 3.3 of [11], we have

$$
\varrho(\mathcal{A}) \leq 5.1935 .
$$

By Theorem 4.5, Theorem 4.6 and Theorem 4.7 of [6], we all have

$$
\varrho(\mathcal{A}) \leq 5.1822
$$

By Theorem 3.5 of [12] and Theorem 6 of [13], we both have

$$
\varrho(\mathcal{A}) \leq 5.1667
$$

By Theorem 7 of [9], we have

$$
\varrho(\mathcal{A}) \leq 5.0437
$$

By Theorem 2.9 of [14], we have

$$
\varrho(\mathcal{A}) \leq 4.5147
$$

By Theorem 5 of [10], we have

$$
\varrho(\mathcal{A}) \leq 4.4768
$$

By Theorem 3.1, we obtain

$$
\varrho(\mathcal{A}) \leq 4.3971
$$

which shows that this upper bound is better.

4. Conclusion

In this paper, we first generalize two Z-eigenvalue inclusion sets $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$ presented by Wang et al. in [6] to E-eigenvalue localization sets. And then we establish a new E-eigenvalue localization set $\Omega(\mathcal{F})$ and prove that it is tighter than $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$. Based on the set $\Omega(\mathcal{A})$, we obtain a new upper bound $\Omega_{\max }$ for the Z -spectral radius of weakly symmetric nonnegative tensors and show that it is better than those in $[6,7,9-15]$ in some cases by a numerical example.

References

[1] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 40 (2005) 1302-1324.
[2] K.C. Chang, K.J. Pearson, T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra and its Applications 438 (2013) 4166-4182.
[3] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), 13-15 Dec. 2005, pp. 129-132.
[4] E. Kofidis, P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications 23(3) (2002) 863-884.
[5] M.L. Che, A. Cichocki, Y.M. Wei, Neural networks for computing best rank-one approximations of tensors and its applications, Neurocomputing 267 (2017) 114-133.
[6] G. Wang, G. Zhou, L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems Series B 22 (1) (2017) 187-198.
[7] Y. Song, L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications 34(4) (2013) 1581-1595.
[8] K.C. Chang, L. Qi, T. Zhang, A survey on the spectral theory of nonnegative tensors, Numerical Linear Algebra with Applications 20 (2013) 891-912.
[9] C.L. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numerical Algorithms 80 (2019) 781-794.
[10] J. Zhao, A new Z-eigenvalue localization set for tensors, Journal of Inequalities and Applications 2017 (2017) 85.
[11] W. Li, D. Liu, S.W. Vong, Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra and its Applications 483 (2015) 182-199.
[12] J. He, Bounds for the largest eigenvalue of nonnegative tensors, Journal of Computational Analysis and Applications 20(7) (2016) 1290-1301.
[13] J. He, Y.M. Liu, H. Ke, J.K. Tian, X. Li, Bounds for the Z-spectral radius of nonnegative tensors, Springerplus 5 (2016) 1727.
[14] Q. Liu, Y. Li, Bounds for the Z-eigenpair of general nonnegative tensors, Open Mathematics 14(1) (2016) 181-194.
[15] J. He, T.Z. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Applied Mathematics Letters 38 (2014) $110-114$.
[16] Y. Wang, G. Wang, Two S-type Z-eigenvalue inclusion sets for tensors. Journal of Inequalities and Applications 2017 (2017) 152.
[17] J. Zhao, C. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Mathematics 15 (2017) $1267-1276$.
[18] C. Sang, Z. Chen, E-eigenvalue localization sets for tensors, Journal of Industrial and Management Optimization (2019). Doi: 10.3934/jimo. 2019042.
[19] J. Zhao, E-eigenvalue localization sets for fourth order tensors, Bulletin of the Malaysian Mathematical Sciences Society (2019). https://doi.org/10.1007/s40840-019-00768-y.
[20] J. He, Y. Liu, G. Xu, Z-eigenvalues-based sufficient conditions for the positive definiteness of fourth-Order tensors. Bulletin of the Malaysian Mathematical Sciences Society (2019). https://doi.org/10.1007/s40840-019-00727-7.
[21] L.B. Cui, M.H. Li, Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters 96 (2019) 89-94.
[22] L.B. Cui, C. Chen, W.Li, M.K. Ng, An eigenvalue problem for even order tensors with its applications, Linear and Multilinear Algebra 64 (2016) 602-621.
[23] L.B. Cui, Y. Song, On the uniqueness of the positive Z-eigenvector for nonnegative tensors, Journal of Computational and Applied Mathematics 352 (2019) 72-78.
[24] C. Li, Y. Li, An eigenvalue localizatiom set for tensor with applications to determine the positive (semi-)definitenss of tensors, Linear and Multilinear Algebra 64(4) (2016) 587-601.

[^0]: 2010 Mathematics Subject Classification. Primary 15A42; Secondary 15A18, 15A69
 Keywords. E-eigenvalues; Z-eigenvalues; Localization sets; Nonnegative tensors; Spectral radius
 Received: 01 April 2018; Accepted: 19 August 2019
 Communicated by Yimin Wei
 Research supported by Natural Science Foundation of Guizhou Minzu University; Postgraduate Education Innovation Project of Guizhou Province (Grant No.YJSCXJH[2019]052); Science and Technology Top-notch Talents Support Project of Education Department of Guizhou Province (Grant No. QJHKYZ [2016]066)

 Email addresses: sangcl@126.com;sangcaili@gzmu.edu.cn (Caili Sang), zjx810204@163.com; zhaojianxing@gzmu.edu.cn (Jianxing Zhao)

