Filomat 33:12 (2019), 3877–3881 https://doi.org/10.2298/FIL1912877Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Approximation of the Block Numerical Range of Block Operator Matrices

Jiahui Yu^a, Alatancang Chen^{b,*}, Junjie Huang^a, Jiaojiao Wu^c

^aSchool of Mathematical Science, Inner Mongolia University, Hohhot, 010021, P.R. China ^bDepartment of Mathematics, Hohhot minzu college, Hohhot, 010051, P.R. China ^cSchool of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot, 010070, P.R. China

Abstract. In this paper we obtain an approximation of the block numerical range of bounded and unbounded block operator matrices by projection methods.

1. Introduction

Let \mathcal{H} be a Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the space of all bounded linear operators from \mathcal{H} to \mathcal{H} . The spectra of linear operators play quite a relevant role in many branches of mathematics and in numerous applications. The classical tool to enclosed the spectrum of a linear operator $\mathcal{A} \in \mathcal{B}(\mathcal{H})$ is the numerical range (see [1, 2]). In [4, 7], the notion of quadratic numerical range was introduced and it may give a better localization of the spectrum than the usual numerical range. In [5], the quadratic numerical range of a (finite) block matrix was approximated by projection methods.

This concept was generalized to block numerical range in [8]. Using the refinement of the decomposition of the space, it was shown that there exists a decreasing sequence of compact sets $\{\overline{W^k}(\mathcal{A})\}_{k=1}^{\infty}$, such that $\sigma(\mathcal{A}) \subseteq \bigcap_{k=1}^{\infty} \overline{W^k}(\mathcal{A})$ (see [8]). A total decomposition of \mathcal{H} and an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$ were introduced in [6]. By an estimable decomposition, one can approximate the spectrum of \mathcal{A} by block numerical ranges of \mathcal{A} , i.e., there exist a decreasing sequence $\{\overline{W^k}(\mathcal{A})\}_{k=1}^{\infty}$, such that $\sigma(\mathcal{A}) = \bigcap_{k=1}^{\infty} \overline{W^k}(\mathcal{A})$. But, the existence on the estimable decomposition is, in general, hard to obtain and numerical approximations for the spectra may not be reliable, in particular, if the operator is not self-adjoint or normal. This paper arose from an attempt to gain a better understanding of the block numerical range. In contrast with the quadratic numerical range, we consider how to compute $W^n(\mathcal{A})$ by projection methods, which reduce the problem to that of computing the block numerical range of a (finite) block matrix. When \mathcal{A} is unbounded, we do assume either that \mathcal{A} is diagonally dominant or off-diagonally dominant.

The organization of this paper is as follows: In section 2 we are going to introduce the related definition and lemma. In section 3 we will give an approximation of the block numerical range of bounded block

Received: 22 March 2018; Revised: 16 July 2018; Accepted: 30 august 2018

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10, 47A12, 47A75; Secondary 15A60

Keywords. Block operator matrix, block numerical range, projection method

Communicated by Vladimir Müller

Research supported by the National Nature Science Foundation of China (grant number 11371185, 11761029, 11362011). *Corresponding author: Alatancang Chen

Email addresses: imuyjh@163.com (Jiahui Yu), alatanca@imu.edu.cn (Alatancang Chen), huangjunjie@imu.edu.cn (Junjie Huang), imuwjj@163.com (Jiaojiao Wu)

operator matrices. In section 4 we obtain the approximations of the block numerical range of unbounded block operator matrices which are diagonally (off-diagonally) dominant.

2. Preliminaries

The following notion of block numerical range for the bounded block operator matrix is due to Tretter and Wagenhofer [8].

Let $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$, where $\mathcal{H}_1, \ldots, \mathcal{H}_n$ are Hilbert spaces. With respect to this decomposition, the bounded linear operator \mathcal{A} on \mathcal{H} has a block operator matrix representation:

$$\mathcal{A} := \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{bmatrix}, \tag{1}$$

where $A_{ij} \in \mathcal{B}(\mathcal{H}_j, \mathcal{H}_i), i, j = 1, ..., n$.

Definition 2.1. Let $S^n := \{(x_1, \ldots, x_n)^t \in \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n : ||x_1|| = \cdots = ||x_n|| = 1\}$. For $x = (x_1, \ldots, x_n)^t \in S^n$, define the $n \times n$ matrix \mathcal{A}_x as follows:

$$\mathcal{A}_{x} := \begin{bmatrix} (A_{11}x_{1}, x_{1}) & \cdots & (A_{1n}x_{n}, x_{1}) \\ \vdots & \ddots & \vdots \\ (A_{n1}x_{1}, x_{n}) & \cdots & (A_{nn}x_{n}, x_{n}) \end{bmatrix}.$$
(2)

Let

$$W^{n}(\mathcal{A}) := \{ \lambda \in \mathbb{C} : \lambda \in \sigma(\mathcal{A}_{x}), x \in S^{n} \}$$

be block numerical range of the block operator matrix \mathcal{A} , which is defined by (1).

Remark 2.2. For n = 1, the block numerical range is just the usual numerical range, for n = 2, it is the quadratic numerical range.

In the following Lemma we state some properties for block numerical range of the bounded block operator matrix. (For details see [7, 8].)

Lemma 2.3. Let \mathcal{A} as in (1) be a block operator matrix on \mathcal{H} . Then

(1) $\sigma_p(\mathcal{A}) \subseteq W^n(\mathcal{A})$, where $\sigma_p(\mathcal{A})$ is the point spectrum of \mathcal{A} . (2) $\sigma(\mathcal{A}) \subseteq \overline{W^n(\mathcal{A})}$, where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A} . (3) $W^n(\mathcal{A}) \subseteq W(\mathcal{A})$. (4) $W^n(\mathcal{A}^*) := \{\lambda : \overline{\lambda} \in W^n(\mathcal{A})\}$. (5) $W^{\hat{n}}(\mathcal{A}) \subseteq W^n(\mathcal{A})$, where $\widehat{\mathcal{H}}_1 \oplus \cdots \oplus \widehat{\mathcal{H}}_{\hat{n}}$ is a refinement (see [7], Definition 1.11.12) of $\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$.

3. Convergence Theorems for Bounded Operator

Theorem 3.1 (For bounded operator). Let

$$\mathcal{A} := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{array} \right],$$

be a bounded operator in $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$. For i = 1, ..., n, let $(U_{k_i}^i)_{k_i=1}^{\infty}$ be nested families of space in \mathcal{H}_i , given by $U_{k_i}^i := span\{\alpha_1^i, ..., \alpha_{k_i}^i\}$, where $(\alpha_k^i)_{k=1}^{\infty}$ is orthnormal. Let $\mathbb{N}_+ := \{1, 2, 3, \cdots\}$, and multi-index $k := (k_1, ..., k_n) \in \mathbb{N}_+^n$. Consider

$$\mathbb{A}_{k} := \begin{bmatrix} A_{k_{1} \times k_{1}} & \cdots & A_{k_{1} \times k_{n}} \\ \vdots & \ddots & \vdots \\ A_{k_{n} \times k_{1}} & \cdots & A_{k_{n} \times k_{n}} \end{bmatrix},$$
(3)

where $(A_{k_p \times k_q})_{st} = (A_{pq}\alpha_t^q, \alpha_s^p), s = 1, \dots, k_p; t = 1, \dots, k_q; p, q = 1, \dots, n.$ Then $W^n(\mathbb{A}_k) \subseteq W^n(\mathcal{A})$.

Proof. Let $\lambda \in W^n(\mathbb{A}_k)$, there then exists $\beta := (\beta_1, \dots, \beta_n)^t$, where $\beta_i \in \mathbb{C}^{k_i}$, with $\|\beta_i\| = 1, i = 1, \dots, n$, such that λ is an eignvalue of

$$(\mathbb{A}_{k})_{\beta} := \begin{bmatrix} (A_{k_{1} \times k_{1}}\beta_{1}, \beta_{1}) & \cdots & (A_{k_{1} \times k_{n}}\beta_{n}, \beta_{1}) \\ \vdots & \ddots & \vdots \\ (A_{k_{n} \times k_{1}}\beta_{1}, \beta_{n}) & \cdots & (A_{k_{n} \times k_{n}}\beta_{n}, \beta_{n}) \end{bmatrix}.$$

$$(4)$$

Define isometries $\pi_{k_i}^i : U_{k_i}^i \to \mathbb{C}^{k_i}$, by $\pi_{k_i}^i(\beta_1^i\alpha_1^i + \dots + \beta_{k_i}^i\alpha_{k_i}^i) := (\beta_1^i, \dots, \beta_{k_i}^i)^t := \beta_i$, for $i = 1, \dots, n$.

Choose $x = (x_1, \ldots, x_n)^t$, where $x_i \in U_{k_i}^i$, such that $\pi_{k_i}^i(x_i) = \beta_i$, $||x_i|| = 1$, for $i = 1, \ldots, n$. By a simple calculation, it then follows that $(A_k)_{\beta} = \mathcal{A}_x$. Hence $\lambda \in W^n(\mathcal{A})$. \Box

Lemma 3.2. Let $(U_{k_i}^i)_{k_i=1}^{\infty}$ and \mathbb{A}_k be as in Theorem 3.1. Suppose that $\widehat{k}, k \in \mathbb{N}^n_+$ and $\widehat{k} \ge k$, in the sense that, $\widehat{k_i} \ge k_i$, for all i = 1, ..., n. Then $W^n(\mathbb{A}_k) \subseteq W^n(\mathbb{A}_{\widehat{k}})$.

Proof. This result is an immediate consequence of the fact that \mathbb{C}^{k_i} is a subspace of $\widehat{\mathbb{C}^{k_i}}$ for $\widehat{k_i} \ge k_i$, i = 1, ..., n. In detail: suppose $\widehat{k_i} \ge k_i$, for i = 1, ..., n, and also $\lambda \in W^n(\mathbb{A}_k)$. There then exists $\beta := (\beta_1, ..., \beta_n)^t$, where $\beta_i \in \mathbb{C}^{k_i}$, with $\|\beta_i\| = 1$, i = 1, ..., n, such that in the notation of (4), λ is an eigenvalue of $(\mathbb{A}_k)_{\beta}$. For all i = 1, ..., n, choose $\widehat{\beta_i} \in \mathbb{C}^{\widehat{k_i}}$ by setting $\widehat{\beta_i} := (\beta_1^i, ..., \beta_{k_i}^i, 0, ..., 0)^t$. By a simple calculation, it then follows that $W^n(\mathbb{A}_k)_{\beta} = W^n(\mathbb{A}_{\widehat{k}})_{\widehat{\beta}}$, where $\widehat{\beta} = (\widehat{\beta_1}, ..., \widehat{\beta_n})^t$, and hence $\lambda \in W^n(\mathbb{A}_{\widehat{k}})$. \Box

Remark 3.3. In the proof of Theorem 3.1 and Lemma 3.2, the boundedness of operators is less important than one might expect. In fact, the same results also hold, if \mathcal{A} is an unbounded operator in $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$, and let $(U_{k_i}^i)_{k_i=1}^{\infty}$ be nested families of space in $\mathcal{D}_i := \bigcap_{j=1}^n \mathcal{D}_{ji}$, where \mathcal{D}_{ji} is the domain of A_{ji} , for i, j = 1, ..., n. Roughly speaking, the proof of Theorem 3.1 and Lemma 3.2 also yield for unbounded operators.

Theorem 3.4. Let \mathcal{A} , \mathbb{A}_k and $(U_{k_i}^i)_{k_i=1}^{\infty}$ be as in Theorem 3.1. Suppose that $(\alpha_k^i)_{k=1}^{\infty}$ is orthnormal basis of \mathcal{H}_i , for i = 1, ..., n. Then

$$\overline{\bigcup_{k\in\mathbb{N}^n_+}W^n(\mathbb{A}_k)}=\overline{\bigcup_{m^n\in\mathbb{N}^n_+}W^n(\mathbb{A}_{m^n})}=\overline{W^n(\mathcal{A})},$$

where $m^n := (m, ..., m) \in \mathbb{N}_+^n$.

Proof. By Lemma 3.2, it is immediate that

$$\bigcup_{k\in\mathbb{N}^n_+}W^n(\mathbb{A}_k)\subseteq\bigcup_{m^n\in\mathbb{N}^n_+}W^n(\mathbb{A}_{m^n}),$$

where $m := \max\{k_1, \ldots, k_n\}$. To see the other inclusion, consider $m := \min\{k_1, \ldots, k_n\}$. And hence proves that

$$\overline{\bigcup_{k\in\mathbb{N}_+^n}W^n(\mathbb{A}_k)}=\overline{\bigcup_{m^n\in\mathbb{N}_+^n}W^n(\mathbb{A}_{m^n})}.$$

To complete this proof, it therefore now remains to prove that $W^n(\mathcal{A}) \subseteq \bigcup_{k \in \mathbb{N}_+^n} W^n(\mathbb{A}_k)$.

Let $\lambda \in W^n(\mathcal{A})$. There then exists $x \in S^n$, such that λ is an eigenvalue of \mathcal{A}_x as defined in (2). Since $(\alpha_k^i)_{k=1}^{\infty}$ is orthnormal basis of \mathcal{H}_i , i = 1, ..., n, there exists a sequence $(x_k^i)_{k=1}^{\infty}$, with each $x_k^i \in span\{\alpha_1^i, ..., \alpha_{k_i}^i\}$ for some $k_i > 0$, such that $||x^i - x_k^i|| \to 0$, and $||\mathcal{A}_{ji}x^i - \mathcal{A}_{ji}x_k^i|| \to 0$, as $k \to \infty$, where x^i denotes the *i*-th component of x and j = 1, ..., n. Let $x_k = (x_k^1, ..., x_k^n)^t$, by a simple calculation, we then obtain that $||\mathcal{A}_{x_k} - \mathcal{A}_x|| \to 0$, as $k \to \infty$.

Fix x_k as above. Let $\pi_{k_i}^i : U_{k_i}^i \to \mathbb{C}^{k_i}$ be the isometries in the proof of Theorem 3.1. Define $\beta_i \in \mathbb{C}^{k_i}$, i = 1, ..., n, by $\beta_i = \pi_{k_i}^i(x_k^i)/||\pi_{k_i}^i(x_k^i)||$. Consider the matrix

$$M_k := \begin{bmatrix} (A_{k_1 \times k_1} \beta_1, \beta_1) & \cdots & (A_{k_1 \times k_n} \beta_n, \beta_1) \\ \vdots & \ddots & \vdots \\ (A_{k_n \times k_1} \beta_1, \beta_n) & \cdots & (A_{k_n \times k_n} \beta_n, \beta_n) \end{bmatrix}.$$

A simple calculation yields that $M_k = \mathcal{A}_{x_k}$. Since $||\mathcal{A}_{x_k} - \mathcal{A}_x|| \to 0$ as $k \to \infty$, this entails that $||M_k - \mathcal{A}_x|| \to 0$, as $k \to \infty$. Obviously, the eigenvalues of M_k are elements of $W^n(\mathbb{A}_k)$, where $k := (k_1, \ldots, k_n) \in \mathbb{N}_+^n$. There hence exists $\lambda_k \in W^n(\mathbb{A}_k)$ such that $\lambda_k \to \lambda$, as $k \to \infty$. It then follows from Lemma 3.2 that $\lambda \in \bigcup_{k \in \mathbb{N}_+^n} W^n(\mathbb{A}_k)$. \Box

4. Convergence Theorems for Unbounded Operator

For a unbounded linear operator \mathcal{A} in \mathcal{H} which admits a so-called block operator matrix representation:

$$\mathcal{A} := \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{bmatrix},$$
(5)

where $A_{ij} : \mathcal{H}_j \to \mathcal{H}_i$, is closable operators with dense domains $\mathcal{D}_{ij} \in \mathcal{H}_j$, for i, j = 1, ..., n. We always suppose that \mathcal{A} with its natural domain $\mathcal{D}(\mathcal{A}) := \mathcal{D}_1 \oplus \cdots \oplus \mathcal{D}_n$, where $\mathcal{D}_j := \bigcap_{i=1}^n \mathcal{D}_{ij} \in \mathcal{H}_j$, is also densely defined for i, j = 1, ..., n.

Remark 4.1. It should be noted that, unlike bounded operators, unbounded linear operators, in general, do not admit a matrix representation (5), with respect to a given decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$.

Definition 4.2. The block operator matrix \mathcal{A} in (5) is called

- (1) diagonally dominant if A_{ij} is A_{jj} -bounded (see [7], Definition 2.1.2),
- (2) off-diagonally dominant if A_{ij} is $A_{n+1-i,j}$ -bounded, where i, j = 1, ..., n.

The definition of the block numerical range for bounded linear operators (see [7], Definition 1.11.12) generalizes as follows to unbounded block operator matrices \mathcal{A} of the form (1) with dense domain $\mathcal{D}(\mathcal{A})$.

Definition 4.3. Let $S^n := \{(x_1, \ldots, x_n)^t \in \mathcal{D}_1 \oplus \cdots \oplus \mathcal{D}_n : ||x_1|| = \cdots = ||x_n|| = 1\}$. For $x = (x_1, \ldots, x_n)^t \in S^n$, define the $n \times n$ matrix \mathcal{A}_x as follows:

$$\mathcal{A}_{x} := \begin{bmatrix} (A_{11}x_{1}, x_{1}) & \cdots & (A_{1n}x_{n}, x_{1}) \\ \vdots & \ddots & \vdots \\ (A_{n1}x_{1}, x_{n}) & \cdots & (A_{nn}x_{n}, x_{n}) \end{bmatrix}$$

Let

$$W^{n}(\mathcal{A}) := \{\lambda \in \mathbb{C} : \lambda \in \sigma(\mathcal{A}_{x}), x \in S^{n}\}$$

be block numerical range of the unbounded block operator matrix \mathcal{A} , which is defined by (5).

Remark 4.4. For n = 1, the block numerical range is just the usual numerical range, for n = 2, it is the quadratic numerical range, as the bounded case.

The following result shows some important properties of the block numerical range of the unbounded block operator matrix.

Proposition 4.5. For an unbounded block operator matrix *A*, we have

(1) $\sigma_p(\mathcal{A}) \subseteq W^n(\mathcal{A})$, where $\sigma_p(\mathcal{A})$ is the point spectrum of \mathcal{A} .

(2) $W^n(\mathcal{A}) \subseteq W(\mathcal{A}).$

(3) $W^{\hat{n}}(\mathcal{A}) \subseteq W^{n}(\mathcal{A})$, where $\widehat{\mathcal{D}}_{1} \oplus \cdots \oplus \widehat{\mathcal{D}}_{\hat{n}}$ is a refinement (see [7], Definition 1.11.12) of $\mathcal{D}_{1} \oplus \cdots \oplus \mathcal{D}_{n}$.

Proof. The proofs are completely analogous to the proofs of the bounded case (see [7]) if we take $x = (x_1, ..., x_n)^t \in S^n$. \Box

In the following result we describe a property of convergence for unbounded operator.

Theorem 4.6 (For unbounded operator). Let

$$\mathcal{A} := \left[\begin{array}{ccc} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{array} \right]$$

be an unbounded operator in $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$. For i = 1, ..., n, let $(U_{k_i}^i)_{k_i=1}^{\infty}$ be nested families of space in \mathcal{D}_i , given by $U_{k_i}^i := span\{\alpha_1^i, ..., \alpha_{k_i}^i\}$, where $(\alpha_k^i)_{k=1}^{\infty}$ is orthnormal. And \mathbb{A}_k denotes as in Theorem 3.1. Suppose that \mathcal{A} is diagonally dominant, and $(U_{k_i}^i)_{k_i=1}^{\infty}$ is a core (see [3],Section III.3) of A_{ii} , i = 1, ..., n. Then $\overline{\bigcup_{k \in \mathbb{N}_+^n} W^n(\mathbb{A}_k)} =$ $\overline{\bigcup_{m^n \in \mathbb{N}_+^n} W^n(\mathbb{A}_{m^n})} = \overline{W^n(\mathcal{A})}$, where $m^n := (m, ..., m) \in \mathbb{N}_+^n$.

Proof. Since $(U_{k_i}^i)_{k_i=1}^{\infty}$ is a core of A_{ii} , for i = 1, ..., n, there exists a sequence $(x_k^i)_{k=1}^{\infty}$, with each $x_k^i \in span\{\alpha_1^i, ..., \alpha_{k_i}^i\}$ for some $k_i > 0$, such that $||x^i - x_k^i|| \to 0$, and $||A_{ii}x^i - A_{ii}x_k^i|| \to 0$. Because A_{ji} is A_{ii} -bounded for j = 1, ..., n, we have $||A_{ji}x^i - A_{ji}x_k^i|| \to 0$, as $k \to \infty$. The rest of proof is completely analogous to the proof of Theorem 3.4. \Box

Remark 4.7. The same result holds if \mathcal{A} is off-diagonally dominant with $(U_{k_i}^i)_{k_i=1}^{\infty}$ being a core of $A_{n+1-i,i}$, for i = 1, ..., n.

Remark 4.8. Note that, the result of Theorem 2.3 in [5], is the n = 2 case of Theorem 4.6.

Acknowledgment

The authors are grateful to the referees for valuable comments on this paper.

References

- [1] K. Gustafson, K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
- [2] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- [3] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heideibeerg, New York, 1980.
- [4] H. Langer, C. Tretter, Spectral decomposition of some nonselfadjoint block operator matrices, J. Oper. Theory 39 (1998) 339–359.
- [5] A. Muhammad, M. Marletta, Approximation of the quadratic numerical range of block operator matrices, Integr. Equ. Oper. Theory 74 (2012) 151–162.
- [6] A. Salemi, Total decomposotion and block numerical range, Banach J. Math. Anal. 5 (2011) 51–55.
- [7] C. Tretter, Spectral Theory of Block Operators Matrices and Aapplications. Imperial College Press, 2008.
- [8] C. Tretter, M. Wagenhofer, The block numerical range of an $n \times n$ block operator matrix, SIAM J. Matrix Anal. Appl. 22 (2003) 1003–1017.