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Abstract. In this paper we obtain an approximation of the block numerical range of bounded and
unbounded block operator matrices by projection methods.

1. Introduction

Let H be a Hilbert space and let B(H) denote the space of all bounded linear operators from H to H .
The spectra of linear operators play quite a relevant role in many branches of mathematics and in numerous
applications. The classical tool to enclosed the spectrum of a linear operator A ∈ B(H) is the numerical
range (see [1, 2]). In [4, 7], the notion of quadratic numerical range was introduced and it may give a better
localization of the spectrum than the usual numerical range. In [5], the quadratic numerical range of a
(finite) block matrix was approximated by projection methods.

This concept was generalized to block numerical range in [8]. Using the refinement of the decomposition
of the space, it was shown that there exists a decreasing sequence of compact sets {Wk(A)}∞k=1, such that

σ(A) ⊆
⋂
∞

k=1 Wk(A) (see [8]). A total decomposition of H and an estimable decomposition of H for σ(A)
were introduced in [6]. By an estimable decomposition, one can approximate the spectrum of A by block
numerical ranges ofA, i.e., there exist a decreasing sequence {Wk(A)}∞k=1, such that σ(A) =

⋂
∞

k=1 Wk(A). But,
the existence on the estimable decomposition is, in general, hard to obtain and numerical approximations
for the spectra may not be reliable, in particular, if the operator is not self-adjoint or normal. This paper
arose from an attempt to gain a better understanding of the block numerical range. In contrast with the
quadratic numerical range, we consider how to compute Wn(A) by projection methods, which reduce the
problem to that of computing the block numerical range of a (finite) block matrix. WhenA is unbounded,
we do assume either thatA is diagonally dominant or off-diagonally dominant.

The organization of this paper is as follows: In section 2 we are going to introduce the related definition
and lemma. In section 3 we will give an approximation of the block numerical range of bounded block
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operator matrices. In section 4 we obtain the approximations of the block numerical range of unbounded
block operator matrices which are diagonally (off-diagonally) dominant.

2. Preliminaries

The following notion of block numerical range for the bounded block operator matrix is due to Tretter
and Wagenhofer [8].

Let H = H1 ⊕ · · · ⊕ Hn, where H1, . . . ,Hn are Hilbert spaces. With respect to this decomposition, the
bounded linear operatorA onH has a block operator matrix representation:

A :=


A11 · · · A1n
...

. . .
...

An1 · · · Ann

 , (1)

where Ai j ∈ B(H j,Hi), i, j = 1, . . . ,n.

Definition 2.1. Let Sn := {(x1, . . . , xn)t
∈ H1 ⊕ · · · ⊕Hn : ‖x1‖ = · · · = ‖xn‖ = 1}. For x = (x1, . . . , xn)t

∈ Sn, define
the n × n matrixAx as follows:

Ax :=


(A11x1, x1) · · · (A1nxn, x1)

...
. . .

...
(An1x1, xn) · · · (Annxn, xn)

 . (2)

Let
Wn(A) := {λ ∈ C : λ ∈ σ(Ax), x ∈ Sn

}

be block numerical range of the block operator matrixA, which is defined by (1).

Remark 2.2. For n = 1, the block numerical range is just the usual numerical range, for n = 2, it is the quadratic
numerical range.

In the following Lemma we state some properties for block numerical range of the bounded block
operator matrix. (For details see [7, 8].)

Lemma 2.3. LetA as in (1) be a block operator matrix onH . Then
(1) σp(A) ⊆Wn(A), where σp(A) is the point spectrum ofA.
(2) σ(A) ⊆Wn(A), where σ(A) is the spectrum ofA.
(3) Wn(A) ⊆W(A).
(4) Wn(A∗) := {λ : λ̄ ∈Wn(A)}.
(5) Wn̂(A) ⊆Wn(A), where Ĥ1 ⊕ · · · ⊕ Ĥn̂ is a refinement (see [7], Definition 1.11.12) ofH1 ⊕ · · · ⊕ Hn.

3. Convergence Theorems for Bounded Operator

Theorem 3.1 (For bounded operator). Let

A :=


A11 · · · A1n
...

. . .
...

An1 · · · Ann

 ,
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be a bounded operator inH = H1 ⊕ · · · ⊕Hn. For i = 1, . . . ,n, let (Ui
ki

)∞ki=1 be nested families of space inHi, given by
Ui

ki
:= span{αi

1, . . . , α
i
ki
}, where (αi

k)∞k=1 is orthnormal. LetN+ := {1, 2, 3, · · · }, and multi-index k := (k1, . . . , kn) ∈Nn
+.

Consider

Ak :=


Ak1×k1 · · · Ak1×kn

...
. . .

...
Akn×k1 · · · Akn×kn

 , (3)

where (Akp×kq )st = (Apqα
q
t , α

p
s ), s = 1, . . . , kp; t = 1, . . . , kq; p, q = 1, . . . ,n. Then Wn(Ak) ⊆Wn(A).

Proof. Let λ ∈Wn(Ak), there then exists β := (β1, . . . , βn)t, where βi ∈ Cki , with ‖βi‖ = 1, i = 1, . . . ,n, such that
λ is an eignvalue of

(Ak)β :=


(Ak1×k1β1, β1) · · · (Ak1×knβn, β1)

...
. . .

...
(Akn×k1β1, βn) · · · (Akn×knβn, βn)

 . (4)

Define isometries πi
ki

: Ui
ki
→ Cki , by πi

ki
(βi

1α
i
1 + · · · + βi

ki
αi

ki
) := (βi

1, . . . , β
i
ki

)t := βi, for i = 1, . . . ,n.
Choose x = (x1, . . . , xn)t, where xi ∈ Ui

ki
, such that πi

ki
(xi) = βi, ‖xi‖ = 1, for i = 1, . . . ,n. By a simple

calculation, it then follows that (Ak)β = Ax. Hence λ ∈Wn(A).

Lemma 3.2. Let (Ui
ki

)∞ki=1 andAk be as in Theorem 3.1. Suppose that k̂, k ∈Nn
+ and k̂ ≥ k, in the sense that, k̂i ≥ ki,

for all i = 1, . . . ,n. Then Wn(Ak) ⊆Wn(Ak̂).

Proof. This result is an immediate consequence of the fact that Cki is a subspace of Ck̂i for k̂i ≥ ki, i = 1, . . . ,n.
In detail: suppose k̂i ≥ ki, for i = 1, . . . ,n, and also λ ∈ Wn(Ak). There then exists β := (β1, . . . , βn)t, where
βi ∈ Cki , with ‖βi‖ = 1, i = 1, . . . ,n, such that in the notation of (4), λ is an eigenvalue of (Ak)β. For all

i = 1, . . . ,n, choose β̂i ∈ Ck̂i by setting β̂i := (βi
1, . . . , β

i
ki
, 0, . . . , 0)t. By a simple calculation, it then follows that

Wn(Ak)β = Wn(Ak̂)β̂, where β̂ = (β̂1, . . . , β̂n)t, and hence λ ∈Wn(Ak̂).

Remark 3.3. In the proof of Theorem 3.1 and Lemma 3.2, the boundedness of operators is less important than one
might expect. In fact, the same results also hold, if A is an unbounded operator in H = H1 ⊕ · · · ⊕ Hn, and let
(Ui

ki
)∞ki=1 be nested families of space inDi :=

⋂n
j=1D ji, whereD ji is the domain of A ji, for i, j = 1, . . . ,n.

Roughly speaking, the proof of Theorem 3.1 and Lemma 3.2 also yield for unbounded operators.

Theorem 3.4. Let A, Ak and (Ui
ki

)∞ki=1 be as in Theorem 3.1. Suppose that (αi
k)∞k=1 is orthnormal basis of Hi, for

i = 1, . . . ,n. Then ⋃
k∈Nn

+

Wn(Ak) =
⋃

mn∈Nn
+

Wn(Amn ) = Wn(A),

where mn := (m, . . . ,m) ∈Nn
+.

Proof. By Lemma 3.2, it is immediate that⋃
k∈Nn

+

Wn(Ak) ⊆
⋃

mn∈Nn
+

Wn(Amn ),

where m := max{k1, . . . , kn}. To see the other inclusion, consider m := min{k1, . . . , kn}. And hence proves that⋃
k∈Nn

+

Wn(Ak) =
⋃

mn∈Nn
+

Wn(Amn ).
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To complete this proof, it therefore now remains to prove that Wn(A) ⊆
⋃

k∈Nn
+

Wn(Ak).
Let λ ∈Wn(A). There then exists x ∈ Sn, such that λ is an eigenvalue ofAx as defined in (2). Since (αi

k)∞k=1
is orthnormal basis ofHi, i = 1, . . . ,n, there exists a sequence (xi

k)∞k=1, with each xi
k ∈ span{αi

1, . . . , α
i
ki
} for some

ki > 0, such that ‖xi
− xi

k‖ → 0, and ‖A jixi
− A jixi

k‖ → 0, as k → ∞, where xi denotes the i-th component of
x and j = 1, . . . ,n. Let xk = (x1

k , . . . , x
n
k )t, by a simple calculation, we then obtain that ‖Axk − Ax‖ → 0, as

k→∞.
Fix xk as above. Let πi

ki
: Ui

ki
→ Cki be the isometries in the proof of Theorem 3.1. Define βi ∈ Cki , i =

1, . . . ,n, by βi = πi
ki

(xi
k)/‖πi

ki
(xi

k)‖. Consider the matrix

Mk :=


(Ak1×k1β1, β1) · · · (Ak1×knβn, β1)

...
. . .

...
(Akn×k1β1, βn) · · · (Akn×knβn, βn)

 .
A simple calculation yields that Mk = Axk . Since ‖Axk−Ax‖ → 0 as k→∞, this entails that ‖Mk−Ax‖ → 0, as
k→∞. Obviously, the eigenvalues of Mk are elements of Wn(Ak), where k := (k1, . . . , kn) ∈Nn

+. There hence
exists λk ∈Wn(Ak) such that λk → λ, as k→∞. It then follows from Lemma 3.2 that λ ∈

⋃
k∈Nn

+
Wn(Ak).

4. Convergence Theorems for Unbounded Operator

For a unbounded linear operatorA inH which admits a so-called block operator matrix representation:

A :=


A11 · · · A1n
...

. . .
...

An1 · · · Ann

 , (5)

where Ai j : H j → Hi, is closable operators with dense domains Di j ∈ H j, for i, j = 1, . . . ,n. We always
suppose thatA with its natural domainD(A) := D1 ⊕ · · · ⊕ Dn, whereD j :=

⋂n
i=1Di j ∈ H j, is also densely

defined for i, j = 1, . . . ,n.

Remark 4.1. It should be noted that, unlike bounded operators, unbounded linear operators, in general, do not admit
a matrix representation (5), with respect to a given decompositionH = H1 ⊕ · · · ⊕ Hn.

Definition 4.2. The block operator matrixA in (5) is called
(1) diagonally dominant if Ai j is A j j-bounded (see [7], Definition 2.1.2),
(2) off-diagonally dominant if Ai j is An+1− j, j-bounded, where i, j = 1, . . . ,n.

The definition of the block numerical range for bounded linear operators (see [7], Definition 1.11.12 )
generalizes as follows to unbounded block operator matricesA of the form (1) with dense domainD(A).

Definition 4.3. Let Sn := {(x1, . . . , xn)t
∈ D1 ⊕ · · · ⊕Dn : ‖x1‖ = · · · = ‖xn‖ = 1}. For x = (x1, . . . , xn)t

∈ Sn, define
the n × n matrixAx as follows:

Ax :=


(A11x1, x1) · · · (A1nxn, x1)

...
. . .

...
(An1x1, xn) · · · (Annxn, xn)

 .
Let

Wn(A) := {λ ∈ C : λ ∈ σ(Ax), x ∈ Sn
}

be block numerical range of the unbounded block operator matrixA, which is defined by (5).
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Remark 4.4. For n = 1, the block numerical range is just the usual numerical range, for n = 2, it is the quadratic
numerical range, as the bounded case.

The following result shows some important properties of the block numerical range of the unbounded
block operator matrix.

Proposition 4.5. For an unbounded block operator matrixA, we have
(1) σp(A) ⊆Wn(A), where σp(A) is the point spectrum ofA.
(2) Wn(A) ⊆W(A).
(3) Wn̂(A) ⊆Wn(A), where D̂1 ⊕ · · · ⊕ D̂n̂ is a refinement (see [7], Definition 1.11.12) ofD1 ⊕ · · · ⊕ Dn.

Proof. The proofs are completely analogous to the proofs of the bounded case (see [7]) if we take x =
(x1, ..., xn)t

∈ Sn.

In the following result we describe a property of convergence for unbounded operator.

Theorem 4.6 (For unbounded operator). Let

A :=


A11 · · · A1n
...

. . .
...

An1 · · · Ann


be an unbounded operator in H = H1 ⊕ · · · ⊕ Hn. For i = 1, . . . ,n, let (Ui

ki
)∞ki=1 be nested families of space in Di,

given by Ui
ki

:= span{αi
1, . . . , α

i
ki
}, where (αi

k)∞k=1 is orthnormal. And Ak denotes as in Theorem 3.1. Suppose that

A is diagonally dominant, and (Ui
ki

)∞ki=1 is a core (see [3],Section III.3) of Aii, i = 1, . . . ,n. Then
⋃

k∈Nn
+

Wn(Ak) =⋃
mn∈Nn

+
Wn(Amn ) = Wn(A), where mn := (m, . . . ,m) ∈Nn

+.

Proof. Since (Ui
ki

)∞ki=1 is a core of Aii, for i = 1, . . . ,n, there exists a sequence (xi
k)∞k=1, with each xi

k ∈

span{αi
1, . . . , α

i
ki
} for some ki > 0, such that ‖xi

− xi
k‖ → 0, and ‖Aiixi

− Aiixi
k‖ → 0. Because A ji is Aii-

bounded for j = 1, . . . ,n, we have ‖A jixi
− A jixi

k‖ → 0, as k→ ∞. The rest of proof is completely analogous
to the proof of Theorem 3.4.

Remark 4.7. The same result holds if A is off-diagonally dominant with (Ui
ki

)∞ki=1 being a core of An+1−i,i, for
i = 1, . . . ,n.

Remark 4.8. Note that, the result of Theorem 2.3 in [5], is the n = 2 case of Theorem 4.6.
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