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Abstract. In this paper, we introduce and study a class of generalized implicit operator equilibrium
problems (In short, GIOEP) and derive some propositions for this class of problems. We also prove some
new existence results for the solution of this problem by using Fan KKM theorems in Hausdorff topological
vector spaces. The results presented in this paper generalize and unify the corresponding results of several
authors which are extensions of previously known results.

1. Introduction

Equilibrium problem is being intensively studied, beginning with Blum and Oettli [1] where they
proposed it as a generalization of optimization and variational inequality problem. In 2005, Kazmi and
Raouf[5] studied a class of operator equilibrium problems and established some existence results for the
solution of this problem.
Let Y be a Hausdorff topological vector space. Then we define the ordering relationships on Y with respect
to cone P in Y as follows : For A,B ⊆ Y,

B − A ⊆ P ⇔ A ≤ B⇔ a ≤ b,∀a ∈ A, b ∈ B,

B − A * P⇔ A � B⇔ a � b,∀a ∈ A, b ∈ B.

If the intP , φ, then the weak ordering in Y is defined as follows:

B − A ⊆ intP ⇔ A < B ⇔ a < b,∀a ∈ A, b ∈ B,

B − A * intP ⇔ A ≮ B ⇔ a ≮ b,∀a ∈ A, b ∈ B.

Now we will work under the following setting:

Let X and Y be Hausdorff topological vector spaces and let L(X,Y) be the space of all continuous linear
operators from X to Y. Let K ⊆ L(X,Y) be a non-empty convex set. Let C : K→ 2Y be a set-valued mapping
such that for each f ∈ K, C( f ) is a closed and convex cone in Y with non-empty interior, 2Y denotes the set
of all non-empty subsets of Y.
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In this paper, we consider the following generalized implicit operator equilibrium problem (In short,
GIOEP): Find f ∗ ∈ K such that

F(h( f ∗), 1) * −intC( f ∗), ∀1 ∈ K (1.1)

where F : K × K→ 2Y be a set- valued map and h : K→ K be a map from K into K itself.

Some special cases of GIOEP

(i) If F : K × K → 2Y, h : K → K is the identity map on K, and C : K → 2Y be a set valued map such that
C( f ) is open, ∀ f ∈ K , then (1.1) reduces to the problem of finding f ∗ ∈ K such that

F( f ∗, 1) * −C( f ∗), ∀1 ∈ K (1.2)

which is called the generalized operator equilibrium problem studied by Raouf and Kim [10].

(ii) If F is single valued map, then (1.2) reduces to the problem of finding f ∗ ∈ K such that

F( f ∗, 1) < −C( f ∗), ∀1 ∈ K,

which is called the operator equilibrium problem studied by Kazmi and Raouf [5].

(iii) If F is single valued map and F( f ∗, 1) =
〈
η( f ∗, 1),T( f ∗)

〉
, ∀1 ∈ K, where T : K→ X and η : K × K→ K,

then (1.2) reduces to the problem of finding f ∗ ∈ K such that〈
η( f ∗, 1),T( f ∗)

〉
< −C( f ∗), ∀1 ∈ K,

which is called the operator variational-like inequality problem.

(iv) If F is single valued map and F( f ∗, 1) = 〈 f ∗ − 1,T( f ∗)〉, ∀1 ∈ K, where T : K→ X, then (1.2) reduces to
the operator variational inequality problem considered by Domokos and Kolumban [2].

(v) If F is single valued map and F( f ∗, 1) = φ( f ∗)−φ(1), where φ : K→ Y, then (1.1) reduces to the problem
of finding f ∗ ∈ K such that

φ( f ∗) − φ(1) < −C( f ∗), ∀1 ∈ K,

which appears to be new. We call it operator minimization problem.

(vi) If K ⊆ X, then (1.2) reduces to generalized vector equilibrium problem studied by Konnov and Yao
[6].

(vii) If F is single valued map and If K ⊆ X, then (1.2) reduces to vector equilibrium problem studied by
Kazmi [4].

(viii) If F is single valued map and If K ⊆ X, Y = R, then (1.2) reduces to equilibrium problem of finding
f ∈ K such that F( f , 1) ≥ 0, ∀1 ∈ K, considered and studied by Blum and Oettli [1].

The main objective of this paper is to study the existence of solution of implicit operator equilibrium
problem in Hausdorff topological vector spaces. In section- 2, we recall some necessary definitions and
results which are needed in the latter section. We prove some new existence results for the solution of
implicit operator equilibrium problems in section-3. Our results extend and unify corresponding results of
Konnov and Yao [6], Raouf and Kim [10], Ram [8], Ram and Khanna [9], Kazmi [4], Kazmi and Raouf [5]
and Li, Huang and Kim [7].
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2. Preliminaries

Now we give some definitions and preliminary results needed in the latter sections.

Definition 2.1. A set-valued map T : K → 2Y is called a KKM-Map if for every finite subset {x1, x2, ....., xn} of K,

co {x1, x2, .....xn} ⊆

n⋃
i=1

T(xi), where co denotes the convex hull.

Definition 2.2. Let F : K × K→ 2Y be a set valued map and h : K→ K

(i) F( f , 1) is a Q-function with respect to g, if for any given f ∈ K,

F( f , t11 + (1 − t)12) ⊆ tF( f , 11) + (1 − t)F( f , 12) + Q, ∀11, 12 ∈ K and t ∈ [0, 1],

where Q is a closed and convex cone of Y such that intQ , φ.

(ii) h is a affine mapping, if for any 11, 12 ∈ K and t ∈ R,

h(t11 + (1 − t)12) = t h(11) + (1 − t)h(12)

Remark Let F : K × K → 2Y be a set valued map. F( f , 1) is a Q-function with respect to g, if for any

given f ∈ K, F( f ,
n∑

i=1

ti1i) ⊆
∑n

i=1 tiF( f , 1i) + Q, ∀ 1i ∈ K and ti ∈ [0, 1] (i = 1, 2, ....,n) with
∑n

i=1 ti = 1.

Definition 2.3. A set-valued map T : X → 2Y is called upper-semicontinuous (for short, u.s.c) at x0 ∈ X if for
any net {xλ} in X such that xλ → x0 and for any net

{
yλ

}
in Y with yλ ∈ T(xλ) such that yλ → y0 in Y, we have

y0 ∈ T(x0). T is called upper semicontinuous on X if it is upper semicontinuous at each point of X.

Definition 2.4. Let F : K × K → 2Y be a set-valued. Then we say that F( f , 1) is hemi-continuous with respect to g,
if for any given f ∈ K,

limt→0+ F( f , t11 + (1 − t)12) = F( f , 12), ∀11, 12 ∈ K.

To prove the existence results for the solutions of problem (1.1), we shall use the following lemmas:

Lemma 2.5. [3] Let K be a non-empty convex subset of a Hausdorff topological vector space X. Let T : K→ 2X be a
KKM-map, such that for any y ∈ K, T(y) is closed and T(y∗) is contained in a compact set B ⊆ X for some y∗ ∈ K.
Then there exist x∗ ∈ B such that x∗ ∈ T(y), for all y ∈ K. That is,

⋂
y∈K

T(y) , φ.

Lemma 2.6. Let (Y,P) be an ordered topological vector space with a closed and convex cone P. Then for any
A,B,C ⊆ Y, we have

(i) A − B ⊆ −intP and A * −intP =⇒ B * −intP.

(ii) A + B ⊆ −P and A + C * −intP =⇒ C − B * −intP.

(iii) A + C − B * −intP and −B ⊆ −P =⇒ A + C * −intP.

(iv) A + B * −intP and B − C ⊆ −P =⇒ A + C * −intP.

Proof. (i) Suppose A − B ⊆ −intP and A * −intP. We have to show that B * −intP. Since A − B ⊆ −intP =⇒
−B ⊆ −intP − A =⇒ B ⊆ intP + A =⇒ B ⊆ intP + Y \ −intP =⇒ B ⊆ Y \ −intP =⇒ B * −intP.

(ii) Suppose A + B ⊆ −P and A + C * −intP. We have to show that C − B * −intP. Suppose, if possible
C − B ⊆ −intP, then A + C = A + B + C − B ⊆ −P + {−intP} ⊆ −intP, which is a contradiction.

(iii) Suppose, if possible A + C ⊆ −intP, then A + C − B ⊆ −intP − P ⊆ −intP, which is a contradiction.

(iv) Suppose, if possible A + C ⊆ −intP, then A + B = A + C + B − C ⊆ −intP − P ⊆ −intP, which is a
contradiction.
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3. Existence results

In this section, we prove some new existence results for the solutions of generalized implicit operator
equilibrium problem (1.1) .

Theorem 3.1. Let K ⊆ L(X,Y) be a non-empty convex set, h : K→ K a mapping. Let F : K×K→ 2Y be a set-valued
mapping. Suppose that the following assumption holds:

(1) h is continuous,

(2) F( f , 1) is continuous w.r.t f ,

(3) the set-valued map W : K→ 2Y defined by W( f ) = Y \
{
−intC( f )

}
, ∀ f ∈ K, is upper semicontinuous on K,

(4) there exists a set-valued map G : K × K→ 2Y such that

(i) G(h( f ), f ) * −intC( f ), ∀ f ∈ K,

(ii) G(h( f ), 1) − F(h( f ), 1) ⊆ −intC( f ), ∀ f , 1 ∈ K,

(iii)
{
1 ∈ K : G( f , 1) ⊆ −intC( f )

}
is convex , ∀ f ∈ K.

(5) Furthermore, suppose that there exists a non empty compact and convex subset B of K such that for each
f ∈ K \ B there exists 1 ∈ B such that F(h( f ), 1) ⊆ −intC( f ).

Then there exists f ∗ ∈ K such that F(h( f ∗), 1) * −intC( f ∗), ∀1 ∈ K.

Proof. For each 1 ∈ K, define the set-valued map S : K→ 2Y as

S(1) =
{
f ∈ B : F(h( f ), 1) * −intC( f )

}
.

We first prove that S(1) is closed, ∀1 ∈ K. For this, let
{
fα
}

be a net in S(1) such that fα → f . Then f ∈ B (as B
is compact). It follows from fα ∈ S(1) that

F(h( fα), 1) * −intC( fα)

=⇒ F(h( fα), 1) ⊆W( fα) = Y \
{
−intC( fα)

}
.

Again, since F( f , 1) is continuous w.r.t f and h is also continuous, we have

F(h( fα), 1)→ F(h( f ), 1).

Therefore by the upper semi-continuity of W, we have

F(h( f ), 1) ⊆W( f ).

This implies F(h( f ), 1) * −intC( f )⇒ f ∈ S(1).

Hence S(1) is closed, ∀1 ∈ K.

Now we will show that ⋂
1∈K

S(1) , φ.

Since B is compact, it is sufficient to show that the family
{
S(1)

}
1∈K has the finite intersection property. For

this, let
{
11, 12, · · · , 1n

}
be a finite subset of K. Set D = conv[B ∪

{
11, 12, · · · , 1n

}
]. Clearly, D is compact and

convex subset of K. Next, for each 1 ∈ K, we define two set-valued mapping, T1,T2 : K→ 2D as follows:

T1(1) =
{
f ∈ D : F(h( f ), 1) * −intC( f )

}
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and
T2(1) =

{
f ∈ D : G(h( f ), 1) * −intC( f )

}
.

By assumption (i), (ii) of (4), we have
G(h(1), 1) * −intC(1)

and
G(h(1), 1) − F(h(1), 1) ⊆ −intC(1).

This implies by Lemma 2.6(i), F(h(1), 1) * −intC(1) and so T1(1) , φ.
Since T1(1) is a closed subset of a compact set D. Therefore T1(1) is compact. Now we will show that T2
is a KKM-Map. Suppose there exists a finite subset

{
f1, f2, · · · , fn

}
of D and λi ≥ 0, i = 1, 2, · · · ,n with∑n

i=1 λi = 1 such that

f̄ =

n∑
i=1

λi fi *
n⋃

j=1

T2( f j),

then G(h( f̄ ), f j) ⊆ −intC( f̄ ) , j = 1, 2, · · · ,n.
From assumption (4)(iii), we have

G(h( f̄ ), f̄ ) ⊆ −intC( f̄ ),

which is a contradiction to (4)(i). Hence T2 is a KKM-mapping.
From assumption (4)(ii) and Lemma 2.6(i), we have

T2(1) ⊆ T1(1) ,∀1 ∈ K.

Infact, f ∈ T2(1) =⇒ G(h( f ), 1) * −intC( f ), and by assumption (4)(ii), we have,

G(h( f ), 1) − F(h( f ), 1) ⊆ −intC( f ) =⇒ F(h( f ), 1) * −intC( f ) =⇒ f ∈ T1(1).

So, T1 is also a KKM -mapping.

From Lemma 2.5, there exists f ∗ ∈ D such that f ∗ ∈ T1(1) ,∀1 ∈ K.

This implies there exists f ∗ ∈ D such that

F(h( f ∗), 1) * −intC( f ∗), ∀1 ∈ K.

Therefore by assumption (5), we get f ∗ ∈ B and moreover, f ∗ ∈ S(1i) , i = 1, 2, · · · ,n. Hence
{
S(1)

}
1∈K has the

finite intersection property.

Theorem 3.2. Let K ⊆ L(X,Y) be a non-empty convex set and h : K→ K be a mapping. Let Fi : K×K→ 2Y(i = 1, 2)
be two set-valued mappings. Let Q =

⋂
f∈K

{
−C( f )

}
such that intQ , φ. Suppose that the following assumption holds:

(1) C(h( f )) ⊆ C( f ), ∀ f ∈ K,

(2) h is affine and continuous,

(3) (i) F1(h( f ), f ) = {0}, ∀ f ∈ K, (ii) F1( f , 1) + F2(1, f ) ⊆
{
−C( f )

}
∩

{
−C(1)

}
,∀ f , 1 ∈ K, (iii) F1(h( f ), 1) −

F1( f , h(1)) ⊆
{
−C( f )

}
∩

{
−C(1)

}
,∀ f , 1 ∈ K, (iv) F1( f , 1) is hemicontinuous with respect to f and continuous

with respect to g, (v) F1( f , 1) is Q-function with respect to g,

(4) (i) F2(h( f ), f ) = {0},∀ f ∈ K, (ii) F2( f , 1) is continuous with respect to f, (iii) F2( f , 1) is Q-function with respect
to g,

(5) the set-valued map W : K→ 2Y, defined by W( f ) = Y \
{
−intC( f )

}
, ∀ f ∈ K, is upper semicontinuous on K.
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(6) Furthermore, suppose that there exists a non-empty, compact and convex subset B of K, such that for each
f ∈ K \ B, there exists 1 ∈ B such that

F1(h( f ), 1) + F2(h( f ), 1) ⊆ −intC( f ).

Then there exists f ∗ ∈ K such that F1(h( f ∗), 1) + F2(h( f ∗), 1) * −intC( f ∗), ∀1 ∈ K.

For the proof of above theorem, we need the following two propositions for which the hypotheses
remain the same as in Theorem 3.2

Proposition 3.3. ∃ f ∗ ∈ B such that F2(h( f ∗), 1) − F1(1, h( f ∗)) * −intC( f ∗), ∀1 ∈ K.

Proof. Consider the set S(1) =
{
f ∈ B : F2(h( f ), 1) − F1(1, h( f )) * −intC( f )

}
, ∀1 ∈ K. Then for any 1 ∈ K, S(1)

is closed. Infact, let fα be a net in S(1) such that fα → f . Then f ∈ B (since B is compact) and

F2(h( fα), 1) − F1(1, h( fα)) * −intC( fα),

i.e
F2(h( fα), 1) − F1(1, h( fα)) ⊆ Y \

{
−intC( fα)

}
= W( fα).

Since h is continuous, F1( f , 1) is continuous with respect to g and F2( f , 1) is continuous with respect to f, we
have

F2(h( fα), 1) − F1(1, h( fα))→ F2(h( f ), 1) − F1(1, h( f )).

The upper semicontinuity of set valued mapping W implies that F2(h( f ), 1) − F1(1, h( f )) ⊆ W( f ) and so
F2(h( f ), 1) − F1(1, h( f )) * −intC( f ). Thus f ∈ S(1) and so S(1) is closed.
Now we prove that S is a KKM-map. Suppose that there exists a finite subset

{
f1, f2, · · · , fn

}
of B and

λi ≥ 0, i = 1, 2, · · · ,n, with
∑n

i=1 λi = 1, such that

f̄ =

n∑
i=1

λi fi *
n⋃

j=1

S( f j).

Then

F2(h( f̄ ), f j) − F1( f j, h( f̄ )) ⊆ −intC( f̄ ), j = 1, 2, · · · ,n. (3.1)

It follows from assumptions(1) and (3)(ii) that

F1( f j, h( f̄ )) + F1(h( f̄ ), f j) ⊆
{
−C( f j)

}
∩

{
−C(h( f̄ ))

}
⊆ −C( f̄ ). (3.2)

By adding (3.1)and (3.2), we have

F2(h( f̄ ), f j) + F1(h( f̄ ), f j) ⊆ −intC( f̄ ) − C( f̄ ) ⊆ −intC( f̄ ), j = 1, 2, · · · ,n.

Since C( f̄ ) is the convex cone, we have

n∑
j=1

F2(h( f̄ ), f j) +

n∑
j=1

F1(h( f̄ ), f j) ⊆ −intC( f̄ ). (3.3)

Since F1( f , 1) and F2( f , 1) are Q-function with respect to g, then F1( f , 1) + F2( f , 1) is also Q-function with
respect to g and hence

F1(h( f̄ ), f̄ ) −
n∑

j=1

F1(h( f̄ ), f j) + F2(h( f̄ ), f̄ ) −
n∑

j=1

F2(h( f̄ ), f j) ⊆ Q ⊆ −C( f̄ ). (3.4)
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From (3.3) and (3.4), we have

F1(h( f̄ ), f̄ ) + F2(h( f̄ ), f̄ ) ⊆ −intC( f̄ ) − C( f̄ ) ⊆ −intC( f̄ ),

a contradiction with
F1(h( f̄ ), f̄ ) = F2(h( f̄ ), f̄ ) = 0.

Thus S is a KKM-map. Since S(1) is contained in a compact set B, by Lemma 2.5, there exists f ∗ ∈ B such
that

F2(h( f ∗), 1) − F1(1, h( f ∗)) * −intC( f ∗), ∀1 ∈ K.

Proposition 3.4. The following statements are equivalent:

(1) ∃ f ∗ ∈ B : F2(h( f ∗), 1) − F2(1, h( f ∗)) * −intC( f ∗),∀1 ∈ K,

(2) ∃ f ∗ ∈ B : F1(h( f ∗), 1) + F2(h( f ∗), 1) * −intC( f ∗), ∀1 ∈ K.

Proof. (2) =⇒ (1): Let (2) holds. Then there exists f ∗ ∈ B such that

F1(h( f ∗), 1) + F2(h( f ∗), 1)) * −intC( f ∗),∀1 ∈ K

From assumptions (1) and (3)(ii), we have

F1(h( f ∗), 1) + F1(1, h( f ∗)) ⊆
{
−C(1)

}
∩

{
−C(h( f ∗)

}
⊆ −C( f ∗)

By Lemma (2.6)(ii), there exists f ∗ ∈ B such that

F2(h( f ∗), 1) − F1(1, h( f ∗)) * −intC( f ∗),∀1 ∈ K.

(1) =⇒ (2): Let (1) holds. Then there exists f ∗ ∈ B such that

F2(h( f ∗), 1) − F1(1, h( f ∗)) * −intC( f ∗),∀1 ∈ K.

Let ft = t1 + (1 − t) f ∗ ⊆ K, 0 < t ≤ 1.

Since C( f ∗) is the convex cone, then

tF1(h( ft), 1) − (1 − t)F1( ft, h( f ∗)) − tF1(h( ft), 1)) + (1 − t)F2(h( f ∗), ft) * −intC( f ∗). (3.5)

Since F1( f , 1) is Q-function with respect to g and F1(h( ft), ft)) = {0}, we have

−tF1(h( ft), 1) − (1 − t)F1(h( ft), f ∗) ⊆ Q =
⋂
1∈K

{
−C(1)

}
⊆ −C( f ∗). (3.6)

By assumption(3)(iii), we have

F1(h( ft), f ∗) − F1( ft, h( f ∗)) ⊆
{
−C( f ∗)

}
∩

{
−C( ft)

}
⊆ −C( f ∗).

Since C( f ∗) is the convex cone, it follows that

(1 − t)F1(h( ft), f ∗) − (1 − t)F1( ft, h( f ∗)) ⊆ −C( f ∗) (3.7)

By adding (3.6) and (3.7),we have

−tF1(h( ft), 1) − (1 − t)F1( ft, h( f ∗)) ⊆ −C( f ∗) − C( f ∗) ⊆ −C( f ∗). (3.8)
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Then (3.5),(3.8), and Lemma 2.6(iii) imply that

tF1(h( ft), 1) + (1 − t)F2(h( f ∗), ft) * −intC( f ∗). (3.9)

Since F2( f , 1) is Q-function with respect to g and F2(h( f ∗), f ∗) = {0}, we have

F2(h( f ∗), ft) − tF2(h( f ∗), 1) ⊆ Q = ∩1∈K
{
−C(1)

}
⊆ −C( f ∗).

Since C( f ∗) is the convex cone, we have

(1 − t)F2(h( f ∗), ft) − t(1 − t)F2(h( f ∗), 1) ⊆ −C( f ∗). (3.10)

Now (3.9), (3.10) and Lemma (2.6)(iv) imply that

tF1(h( ft), 1) + t(1 − t)F2(h( f ∗), 1) * −intC( f ∗).

Dividing by t, we have
F1(h( ft), 1) + (1 − t)F2(h( f ∗), 1) * −intC( f ∗).

that is F1(h( ft), 1) + (1 − t)F2(h( f ∗), 1) ⊆W( f ∗).

Letting t→ 0 and hence ft → f ∗. Since W( f ∗) is closed, h is affine and F1( f , 1) is hemicontinuous with respect
to f, we have

F1(h( f ∗), 1) + F2(h( f ∗), 1) ⊆W( f ∗)

and thus F1(h( f ∗), 1) + F2(h( f ∗), 1) * −intC( f ∗).

Proof of theorem Let
{
11, 12, · · · , 1n

}
be a finite subset of K and D = conv[B∪

{
11, 12, · · · , 1n

}
]. Then D is a

compact and convex subset of K. Then by Proposition 3.3, there exists f ∗ ∈ D such that

F2(h( f ∗), 1) − F1(1, h( f ∗)) * −intC( f ∗), ∀1 ∈ K.

In particular,
F2(h( f ∗), 1i) − F1(1i, h( f ∗) * −intC( f ∗), i = 1, 2, · · · ,n.

Hence every finite subfamily of the family of closed sets

T(1) =
{
f ∈ D : F2(h( f ), 1) − F1(1, h( f )) * −intC( f )

}
,∀1 ∈ K.

has non empty intersection. Since D is compact, we have⋂
1∈K

T(1) , φ.

From Proposition 3.4, we have ⋂
1∈K

S(1) , φ.

Thus there exists f ∗ ∈ D such that

F1(h( f ∗), 1) + F2(h( f ∗), 1) * −intC( f ∗),∀1 ∈ K.

From assumption (6), we have f ∗ ∈ B such that

F1(h( f ∗), 1) + F2(h( f ∗), 1) * −intC( f ∗),∀1 ∈ K.
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