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Abstract. In this paper, two types of fixed point theorems are employed to study the solvability of nonlocal
problem for implicit fuzzy fractional differential systems under Caputo gH-fractional differentiability in the
framework of generalized metric spaces. First of all, we extend Krasnoselskii’s fixed point theorem to the
vector version in the generalized metric space of fuzzy numbers. Under the Lipschitz conditions, we use
Perov’s fixed point theorem to prove the global existence of the unique mild fuzzy solution in both types
(i) and (ii). When the nonlinearity terms are not Lipschitz, we combine Perov’s fixed point theorem with
vector version of Krasnoselskii’s fixed point theorem to prove the existence of mild fuzzy solutions. Based
on the advantage of vector-valued metrics and convergent matrix, we attain some properties of mild fuzzy
solutions such as the boundedness, the attractivity and the Ulam - Hyers stability. Finally, a computational
example is presented to demonstrate the effectivity of our main results.

1. Introduction

In many real world problems, there is often a need to interpret and solve the problems operating in
the environment inherent uncertainties and vagueness. When engineers want to handle these disadvan-
tages, they may use either stochastic and statistical models or fuzzy models, but stochastic and statistical
uncertainty occur due to the natural randomness in the process. It is generally expressed by a probability
density or frequency distribution function. For the estimation of the distribution, it requires sufficient
information about the variables and parameters involved in it. On the other hand, fuzzy set theory refers to
the uncertainty when we may have lack of knowledge or incomplete information about the variables and
parameters. In general, science and engineering systems are governed by ordinary and partial differential
equations [10, 13], but the type of differential equation (DEs) depends upon the applications, domains,
complicated environments, the effect of coupling, and so on. As such, the complicacy needs to be handled
by recently developed differential equations contained uncertainty or fuzziness [15, 17, 27].
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Since Agarwal et al. [1] introduced the concept of solutions for fuzzy fractional differential equations, this
subject has become an important area of research due to its wide range of applications in various disciplines,
namely physics, chemistry, biology, economics, chaotic theory and in engineering systems such as fluid
mechanics, viscoelasticity, civil, mechanical, aerospace, and chemical and so forth, see [4, 5, 15, 19, 34].
Hence, this topic has been paid more and more attention from many scientists and mathematicians (see
[2, 16, 18, 28, 35, 36] for therein). In the flow of development, scientists have proposed many techniques
to solve the analysis as well as numerical solutions of fractional fuzzy differential equations, see [6–
8, 20, 25, 26, 29]. In the differential equations subject, much attentions have been given to different types
of problems with nonlocal conditions. These conditions were used to describe of motion phenomena with
better effect than the classical conditions, see [14, 21, 25, 30].

Motivation by aforesaid, in this paper we study the global existence and some properties of solutions
to the following nonlocal problem for implicit fuzzy fractional differential systemsC

1HD
q
j x(t) = 11(t, x(t), y(t)) + h1(t, C

1HD
q
j x(t), C

1HD
q
j y(t))

C
1HD

q
j y(t) = 12(t, x(t), y(t)) + h2(t, C

1HD
q
j x(t), C

1HD
q
j y(t))

t ∈ J∞ = [0,∞) (1)

subject to nonlocal conditions

x(0) +
∑

k∈J1

akx(tk) =
∑

k∈J2

akx(tk)

y(0) +
∑

k∈Q1

ãky(tk) =
∑

k∈Q2

ãky(tk)

J1 ∪ J2 = Q1 ∪Q2 = {1, 2, ...,m}
J1 ∩ J2 = Q1 ∩Q2 = ∅

(2)

where C
1HD

q
j ( j = 1, 2) are the Caputo gH-differentiability of order q ∈ [0, 1] defined in Definition 3.2 in [23],

1i, hi ∈ C(J∞ × Ec × Ec,Ec) are fuzzy-valued continuous mappings.

The main contributions in this paper are three folds:

1. Our considered model is more general since it is a combination of three types of differential equations:
implicit DEs, fractional DEs and set-valued DEs. Boundary conditions are divided to a vast of form,
not restricted to periodic behavior or local conditions.

2. A standard technique for solving nonlocal problems bases on the transformation of the problem into
a fixed point problem with suitable integral type operator. Then, a fixed point theorem will guarantee
the existence of solutions. In our model, by applying suitable setting, nonlocal problem (1) − (2)
is transformed into a fixed point problem of an operator T, which can be written as a sum of two
operators G and H. Next, we consider fixed point problem in proportion to different hypotheses of
forcing functions.

2.a In the first case with the assumption that 1i, hi all satisfy global Lipschitz conditions, thank
to some auxiliary lemmas and approximation method, operator T is brought into Lipschitz-like
form with a respective convergent to zero matrix. Then, by applying Perov’s fixed point theorem,
the unique global existence of the problem is attained.

2.b However, for weaker hypotheses of forcing functions, that only requires Lipschitz condition
of one part of nonlinearities and another part is considered under linearity assumptions, this
becomes a complex problem since topological fixed point theorems, which essentially base on
compactness, can not be applied for this case. This situation can be relaxed by using Krasnosel-
skii’s fixed point theorem to analyze operator T into a sum of a generalized contraction and a
completely continuous mapping. Krasnoselskii’s theorem (see [31]), which is considered as a
combination of generalized contraction principle and Schauder’s fixed point theorem in Banach
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space, has become an important result for nonlinear analysis with a large number of applica-
tions. In our paper, we extend Krasnoselskii’s fixed point theorem to fuzzy-valued functions
metric space without linearity in structure and then we apply to study the solvability of nonlocal
problem (1) − (2).

3. Some quantities properties of mild fuzzy solutions of nonlocal problem (1) − (2) are attained such as
bounded fuzzy solutions, decay fuzzy solutions, attractivity set. These help us describe the asymptotic
behavior of fuzzy solutions on infinite time. Moreover, this paper initiates Ulam - Hyers stability
notions for implicit fractional fuzzy differential system with nonlocal conditions, which have not been
studied before.

The paper is organized as follows: In Section 2, an extension of Krasnoselskii’s fixed point theorem is
stated and proved. In addition, we review some notions of fuzzy numbers and fuzzy metric space. After
revisiting some fundamentals of Caputo gH-derivatives of fuzzy-valued functions, Section 3 focuses on
stating the nonlocal problem for implicit fuzzy fractional differential system, constructing the hypotheses
for the problem and presenting our main results about the solvability and some qualitative properties of
solutions. For more clarity, in Section 4, an application example is given to demonstrate these results.
Finally, conclusion with some helps of Appendix are in two last Sections 5 and 6.

2. Krasnoselskii’s fixed point theorem in generalized metric space

2.1. Generalized metric space of fuzzy numbers
We will introduce some notions and necessary preliminaries used throughout the paper. For more

details, see in previous works [21–25].
Let (X,.X) be an ordered set and X2 be the 2−time Cartesian product of X. Consider x = (x1, x2), y =

(y1, y2) ∈ X2, denote .X2 by an order relation in X2. Here, x .X2 y if and only if x1 .X y1 and x2 .X y2.
The inverse order relation &X2 is defined similarly. For r = (r1, r2), s = (s1, s2) ∈ X2, we define max{r, s} :=
{max{r1, s1},max{r2, s2}}.

We call X is a generalized metric space (in the sense of Perov) if there exists a vector-valued mapping
d : X × X→ R2

+ such that
(i) d(u, v) &R2 0R2 for all u, v ∈ X and d(u, v) = 0R2 ⇒ u = v, where 0R2 = (0, 0);
(ii) d(u, v) = d(v,u) for all u, v ∈ X;
(iii) d(u,w) .R2 d(u, v) + d(v,w) for all u, v,w ∈ X.
Let E be the space of fuzzy numbers, which are certain functions u : R→ [0, 1], satisfying normal, fuzzy

convex, upper semi-continuous and compact supported. The α−level sets of fuzzy number u are defined
by

[u]α =

{x ∈ R : u(x) ≥ α} if 0 < α ≤ 1
cl(supp u) if α = 0.

Fuzzy number u has a nice property that its α−level sets can be represented in intervals. Namely,
parametric form [u]α = [u−α ,u+

α ], where u−α , u+
α denote the left-hand endpoint and the right-hand endpoint,

respectively. Denote

d∞(u, v) = sup
0≤α≤1

dH

([
u
]α
,
[
v
]α)
, u, v ∈ E

by the supremum metric in E. It is obvious that (E, d∞) is a complete metric space (see [11]).
The sum and scalar multiplication of fuzzy numbers in E are defined via their level sets. If there exists

w ∈ E such that u = v + w, we call w = u	v the Hukuhara difference of u and v. For u, v ∈ E, the generalized
Hukuhara difference (gH-difference for short) of u and v, denoted by u 	1H v, is defined by the element
w ∈ E such that

u 	1H v⇔ u = v + w or v = u + (−1)w.
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Denote Ec by the space of fuzzy numbers u ∈ E such that mapping α 7→ [u]α is continuous with respect
to Hausdorff metric on [0, 1]. In addition, for J∞ = [0,∞), we denote C(J∞,Ec) by the set of all continuous
functions f : J∞ → Ec with metric

D(u,u) = max{Dτ(u,u); D̃τ(u,u)}, τ ∈ (0, 1),

where Dτ(u,u) = sup
[0,τ]

d∞(u(t),u(t)) and D̃τ(u,u) = sup
[τ,∞)
{d∞(u(t),u(t))e−θ(t−η)

}, η and θ are given positive real

numbers satisfying 0 < η < τ < 1, θ > 0.
Define vector-valued metric on C(J∞,Ec) × C(J∞,Ec)

ρ(w, w̃) =

[
D(x, x̃)
D(y, ỹ)

]
, w = (x, y), w̃ = (x̃, ỹ) ∈ C(J∞,Ec) × C(J∞,Ec).

Similar to Lemma 2.3 in [25], (C(J∞,Ec) × C(J∞,Ec), ρ) is a generalized semi-linear Banach space having
cancelation property, i.e., ρ(cu + w, cv + w) = |c|ρ(u, v) for all u, v,w ∈ C(J∞,Ec) × C(J∞,Ec).

2.2. Krasnoselskii’s fixed point Theorem in fuzzy-valued functions metric space
A square matrix M with non-negative elements is said to be convergent to zero if Mk

→ 0 as k→∞. The
property of converging to zero of matrix M is equivalent to each of the following conditions (see Lemma 2
in [32])

(i) The eigenvalues of M are located inside the unit disc of the complex plane;

(ii) I −M is nonsingular and (I −M)−1 has non-negative elements.

Lemma 2.1. Suppose that f : C(J∞,Ec) × C(J∞,Ec) → C(J∞,Ec) × C(J∞,Ec) is a generalized contraction, i.e there
exists a convergent to zero matrix M such that

ρ( f (u), f (v)) ≤Mρ(u, v), ∀u, v ∈ C(J∞,Ec) × C(J∞,Ec).

Then for each w ∈ C(J∞,Ec) × C(J∞,Ec), equation z = f (z) + w has unique solution. Moreover, mapping ϕ f :
C(J∞,Ec) × C(J∞,Ec)→ C(J∞,Ec) × C(J∞,Ec), defined by ϕ f (w) = z, is continuous.

Proof. For each w ∈ C(J∞,Ec) × C(J∞,Ec), consider mapping

h : C(J∞,Ec) × C(J∞,Ec)→ C(J∞,Ec) × C(J∞,Ec)

defined by h(ν) = w + f (ν) for all ν ∈ C(J∞,Ec) × C(J∞,Ec). The inequality

ρ(h(ν), h(ν)) ≤ ρ( f (ν), f (ν)) ≤Mρ(ν, ν)

implies that h is a generalized contraction. From Perov’s theorem (Theorem 1, [32]), h has a unique fixed
point z∗, i.e for each w ∈ C(J∞,Ec) × C(J∞,Ec), there always exists a unique point z∗ ∈ C(J∞,Ec) × C(J∞,Ec)
such that w + f (z∗) = z∗, that follows equation z = f (z) + w has unique solution. Thus, mapping ϕ f , given
by ϕ f (w) = z, is well-defined.

For w,w′ ∈ C(J∞,Ec) × C(J∞,Ec) and ν = ϕ f (w), ν′ = ϕ f (w′), we have

ρ(ϕ f (w), ϕ f (w′)) = ρ(w + f (ν),w′ + f (ν′))
≤ ρ(w,w′) + ρ( f (ν), f (ν′))
≤ ρ(w,w′) + Mρ(ν, ν′).

Thus, (I −M)ρ(ϕ f (w), ϕ f (w′)) ≤ ρ(w,w′). Since M is a convergent to zero matrix, we have

ρ(h(ν), h(ν)) ≤ ρ( f (ν), f (ν)) ≤Mρ(ν, ν)

Consequently, for all ε =

[
ε1
ε2

]
, we can choose δ = (I −M)ε. Thus for all w, w′ ∈ C(J∞,Ec) × C(J∞,Ec)

satisfying ρ(w,w′) < δ, we have ρ(ϕ f (w), ϕ f (w′)) < ε. It implies that ϕ f is continuous.
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Traditional Krasnoselskii’s fixed point theorem operates in Banach space. This base space has linearity
property. In the next step, we will extend Krasnoselskii’s fixed point theorem to the semi-linear Banach
space C(J∞,Ec) × C(J∞,Ec), that is lack of linearity, as follows.

Theorem 2.2 (Krasnoselskii’s fixed point theorem in semi-linear Banach space). Let B be a nonempty closed,
bounded, convex subset of C(J∞,Ec) × C(J∞,Ec) and operator T : B→ C(J∞,Ec) × C(J∞,Ec) satisfying

(i) T = G + H with G is a completely continuous operator and H is a generalized contraction with a convergent to
zero matrix M.

(ii) G(B) + H(B) ⊂ B.

Then T has at least one fixed point in B.

Proof. Firstly, for arbitrary ν ∈ B, we consider an operator hν : B→ B defined by hν(w) = H(w) + G(ν). From
(ii), hν is well-defined. In another hand, for w,w′ ∈ B

ρ(hν(w), hν(w′)) ≤ ρ(H(w),H(w′)) ≤Mρ(w,w′).

Thus hν is a generalized contraction. By using Perov’s theorem, we imply that there exists a unique
wν ∈ B such that hν(wν) = wν, or equivalently wν = H(wν) + G(ν).

Consider an operator c : B→ B such that c(ν) = wν. Then c(.) satisfies equation c(ν) = H(c(ν)) + G(ν) for
all ν ∈ B. From Lemma 2.1, the mappingϕH : C(J∞,Ec)×C(J∞,Ec)→ C(J∞,Ec)×C(J∞,Ec) given byϕH(w) = z,
with ν = H(z) + w, is well-defined and continuous. We can rewrite c(B) = ϕH(G(B)). Since G(B) is relatively
compact, c(B) is relatively compact, too. By using Theorem 3.4 in [3], there exists ν ∈ B such that c(ν) = ν,
i.e H(ν) + G(ν) = ν. The proof is complete.

3. Main results

3.1. Caputo gH-derivatives of fuzzy-valued functions

Let f : J∞ −→ E, t0 ∈ J∞ and h be a number such that t0 + h ∈ J∞. If there exists an element D f (t0) ∈ E
such that

D f (t0) = lim
h→0

1
h

[
f (t0 + h) 	1H f (t0)

]
then f is called generalized Hukuhara differentiable (gH-differentiable) at t0. Denote C1(J∞,E) by the space
of all fuzzy-valued continuously gH-differentiable functions defined on J∞.

Definition 3.1 ([12], Definition 26). Assume that f : J∞ → E is gH-differentiable at t0 ∈ J∞ and [ f (t)]α =
[ f−α (t), f +

α (t)] for all α ∈ [0, 1], t ∈ J∞. We say that

(i) f is (i)-gH-differentiable at t0 if [D f (t0)]α = [( f−α )′(t0), ( f +
α )′(t0)] for all α ∈ [0, 1]. Denote by D1 f (t0) the

(i)-gH-derivative of f at t0.

(ii) f is (ii)-gH-differentiable at t0 if [D f (t0)]α = [( f +
α )′(t0), ( f−α )′(t0)] for all α ∈ [0, 1]. Denote by D2 f (t0) the

(ii)-gH-derivative of f at t0.

We recall the left-side mixed Riemann-Liouville fractional integral of order q ∈ (0, 1] for real valued
function f : J∞ → R by

RLIq
0+ f (t) =

1
Γ(q)

∫ t

0
(t − s)q−1 f (s)ds, t ∈ J∞. (3)
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Definition 3.2. Let q ∈ (0, 1] and u ∈ C1(J∞,E), [u(t)]α = [u−α (t),u+
α (t)] for all t ∈ J∞ and α ∈ [0, 1]. The mixed

Riemann - Liouville fractional integral of order q for fuzzy-valued function u, denoted by

RL
F I

q
0+ u(t) =

1
Γ(q)

∫ t

0
(t − s)q−1u(s)ds, (4)

is defined by level sets as follows

[RL
F I

q
0+ u(t)]α = [RLIq

0+ u−α (t), RLIq
0+ u+

α (t)], t ∈ J∞, α ∈ [0, 1],

provided that RLIq
0+ u+

α (t), RLIq
0+ u−α (t) are defined by (3).

Definition 3.3. The Caputo gH-derivative of order q ∈ [0, 1) of u ∈ C1(J∞,E) in type j ( j = 1, 2) is defined by

C
1HD

q
j u(t) = RL

F I
1−q
0+ D ju(t), t ∈ J∞,

provided that the expression on the right-hand side is defined.
Denote C

q
j (J∞,Ec) = {u : J∞ → Ec |

C
1HD

q
j u(·) exists and it is continuous}.

3.2. The nonlocal problem for implicit fuzzy fractional differential systems under Caputo gH derivatives

In this paper, we consider the nonlocal problem for implicit fuzzy fractional differential system (1) - (2)
where x, y ∈ C

q
j (J∞,Ec), ak, ãk are positive numbers satisfying inequalities

0 <
∑
k∈J2

ak −
∑
k∈J1

ak < 1; 0 <
∑
k∈Q2

ãk −
∑
k∈Q1

ãk < 1. (5)

Denote a = (1 +
∑

k∈J1

ak −
∑

k∈J2

ak)−1, ã = (1 +
∑

k∈Q1

ãk −
∑

k∈Q2

ãk)−1. By changing of variables

u(t) = C
1HD

q
j x(t), v(t) = C

1HD
q
j y(t), (6)

we have following lemma.

Lemma 3.4. By setting

A1(u) = a
[∑

k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk)

]
A2(u) = −a

[∑
k∈J1

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J2

ak
RL
F I

q
0+ u(tk)

]
Ã1(v) = ã

[ ∑
k∈Q2

ãk
RL
F I

q
0+ v(tk) 	

∑
k∈Q1

ãk
RL
F I

q
0+ v(tk)

]
Ã2(v) = −ã

[ ∑
k∈Q1

ãk
RL
F I

q
0+ v(tk) 	

∑
k∈Q2

ãk
RL
F I

q
0+ v(tk)

]
,

we have following assertions

1. Assume that x, y ∈ C
q
1 (J∞,Ec) satisfy nonlocal conditions (2). Then we can present x(t), y(t) in the following

forms x(t) := F1[u](t) = A1(u) + RL
F I

q
0+ u(t)

y(t) := F̃1[v](t) = Ã1(v) + RL
F I

q
0+ v(t)

t ∈ J∞. (7)
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2. Assume that x, y ∈ C
q
2 (J∞,Ec) satisfy nonlocal conditions (2). Then we can present x(t), y(t) in the following

forms x(t) := F2[u](t) = A2(u) 	 (−1)RL
F I

q
0+ u(t)

y(t) := F̃2[v](t) = Ã2(v) 	 (−1)RL
F I

q
0+ v(t)

t ∈ J∞. (8)

Proof. We will prove the first equation of (7) and (8), the second equation is proved similarly. Indeed, by
taking integral both side of C

1HD
q
j x(t) = u(t), we have

RL
F I

q
0+

(
RL
F I

1−q
0+ D jx(t)

)
= RL

F I
q
0+ u(t)

⇒

∫ t

0
D jx(s)ds = RL

F I
q
0+ u(t)

⇒x(t) 	1H x(0) = RL
F I

q
0+ u(t)

Case 1: If x, y ∈ C
q
1 (J∞,Ec) then we have

x(t) = x(0) + RL
F I

q
0+ u(t). (9)

Thus x(tk) = x(0) + RL
F I

q
0+ u(tk). Substitute this equation into (2), we obtain

x(0) +
∑
k∈J1

ak

[
x(0) + RL

F I
q
0+ u(tk)

]
=

∑
k∈J2

ak

[
x(0) + RL

F I
q
0+ u(tk)

]
. (10)

From definition of Hukuhara difference, inequalities (5) and equality (10), one can see that the differ-
ences

∑
k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk) and

[
1 +

∑
k∈J1

ak

]
x(0) 	

∑
k∈J2

akx(0) exist and
[
1 +

∑
k∈J1

ak −
∑
k∈J2

ak

]
x(0) =∑

k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk). Thus, we obtain

x(0) = a
[∑

k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk)

]
.

Then, substituting x(0) into equation (9), the first equation of (7) is attained.

Case 2: If x, y ∈ C
q
2 (J∞,Ec) then we have

x(t) = x(0) 	 (−1)RL
F I

q
0+ u(t). (11)

Substitute x(tk) = x(0) 	 (−1)RL
F I

q
0+ u(tk) into (2), we obtain

x(0) +
∑
k∈J1

ak

[
x(0) 	 (−1)RL

F I
q
0+ u(tk)

]
=

∑
k∈J2

ak

[
x(0) 	 (−1)RL

F I
q
0+ u(tk)

]
.

By using analogous arguments as in Case 1 associated with the property (−1)(u	 v) = (−1)u	 (−1)v (see
Lemma 2.3 in [22]), we obtain[

1 +
∑
k∈J1

ak −
∑
k∈J2

ak

]
x(0) = (−1)

[∑
k∈J1

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J2

ak
RL
F I

q
0+ u(tk)

]
.

It implies that x(0) = −a
[∑

k∈J1

ak
RL
F I

q
0+ u(tk)	

∑
k∈J2

ak
RL
F I

q
0+ u(tk)

]
= A2(u).Therefore, by substituting the expression

of x(0) into (11), we obtain the first equation of (8).
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Now we can rewrite equations (1) in following formsu(t) = 11(t,F1[u](t), F̃1[v](t)) + h1(t,u(t), v(t))
v(t) = 12(t,F1[u](t), F̃1[v](t)) + h2(t,u(t), v(t))

for j = 1 (12)

and u(t) = 11(t,F2[u](t), F̃2[v](t)) + h1(t,u(t), v(t))
v(t) = 12(t,F2[u](t), F̃2[v](t)) + h2(t,u(t), v(t))

for j = 2. (13)

Remark 3.5. When x, y ∈ C
q
j (J∞,Ec), j = 1, 2, then u, v belong to C(J∞,Ec). Moreover, for each fuzzy solution

(u, v) ∈ C(J∞,Ec) × C(J∞,Ec) of system (12) (or (13)), from formula (7) (or (8)), we can determine x, y ∈ C(J∞,Ec)
through u, v. We have following definition

Definition 3.6. A pair of functions (x, y) ∈ C(J∞,Ec) × C(J∞,Ec) is called

(i) A mild fuzzy solution in type (i) of nonlocal problem (1) - (2) if it satisfies the integral system (7) and (u, v)
satisfies the system (12);

(ii) A mild fuzzy solution in type (ii) of nonlocal problem (1) - (2) if it satisfies the integral system (8) and (u, v)
satisfies the system (13).

3.3. Hypotheses
Following hypotheses will be used throughout this paper.

Hypothesis 1 (hi satisfy global Lipschitz conditions). Assume that there exist non-negative real numbers bi, ci
(i = 1, 2) such that

d∞(hi(t,u, v), hi(t,u, v)) ≤ bid∞(u,u) + cid∞(v, v), (14)

for all (u, v), (u, v) ∈ Ec × Ec and t ∈ J∞.

Hypothesis 2 (1i satisfy global Lipschitz conditions). Assume that there exist non-negative real numbers σi1, σi2
(i = 1, 2) such that

d∞(1i(t, ϕ, ψ), 1i(t, ϕ, ψ)) ≤ σi1d∞(ϕ,ϕ) + σi2d∞(ψ,ψ), (15)

for (ϕ,ψ), (ϕ,ψ) ∈ Ec × Ec and t ∈ J∞.

Hypothesis 3 (the growth of 1i are at most linear). Assume that the growth of 1i(t, ϕ, ψ) (i = 1, 2) with respect
to ϕ and ψ is at most linear on each of the two subintervals [0, tm] and [tm,∞), that is there exists non-negative real
numbers bi, ci, ei,Bi,Ci,Ei such that

d∞(1i(t, ϕ, ψ), 0̂) ≤

bid∞(ϕ, 0̂) + cid∞(ψ, 0̂) + ei t ∈ [0, tm];(
Bid∞(ϕ, 0̂) + Cid∞(ψ, 0̂) + Ei

)
e−2θ(t−η) t ∈ [tm,∞),

(16)

for all (ϕ,ψ), (ϕ,ψ) ∈ Ec × Ec and 0̂ is zero fuzzy number.

Denote Ĉ(J∞,Ec) by the space of all (u, v) ∈ C(J∞,Ec) × C(J∞,Ec) such that for all t ∈ J∞, the following
Hukuhara differences existX(u)(t) := A2(u) 	 (−1)RL

F I
q
0+ u(t)

Y(v)(t) := Ã2(v) 	 (−1)RL
F I

q
0+ v(t)

(17)

where A2, Ã2 are defined in Lemma 3.4.
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Hypothesis 4. Assume that Ĉ(J∞,Ec) , ∅ and if (u, v) ∈ Ĉ(J∞,Ec) then there exist Hukuhara differencesA2(X(u)) 	 (−1)RL
F I

q
0+ X(u)(t)

Ã2(Y(v)) 	 (−1)RL
F I

q
0+ Y(v)(t)

for all t ∈ J∞. (18)

Remark 3.7. For simplicity in presentation, these notations are introduced

β1 =
tq
m

Γ(q + 1)

(
1 + a

m∑
k=1

ak

)
and β2 =

tq
m

Γ(q + 1)

(
1 + ã

m∑
k=1

ãk

)
M0 =

[
b1β1 c1β2
b2β1 c2β2

]
, M1 =

[
b1 c1

b2 c2

]
, M2 =

[
σ11β1 σ12β2
σ21β1 σ22β2

]
and Mσ =

[
σ11 σ12
σ21 σ22

]
Mk =

[
aak 0
0 ããk

]
(k = 1,m), RL

I
q
0+

(
ξ(t)
ν(t)

)
=

1
Γ(q)

∫ t

0 (t − s)q−1ξ(s)ds∫ t

0 (t − s)q−1ν(s)ds


On the other hand, if x(u(t), v(t)), y(u(t), v(t)) are defined by (7) or (8) then they can be rewritten in following

compact form

G1(u, v)(t) = 11
(
t, x(u(t), v(t)), y(u(t), v(t))

)
and H1(u, v)(t) = h1 (t,u(t), v(t))

G2(u, v)(t) = 12
(
t, x(u(t), v(t)), y(u(t), v(t))

)
and H2(u, v)(t) = h2 (t,u(t), v(t))

Therefore, system (12) and (13) can be rewritten as followsu(t) = G1(u, v)(t) + H1(u, v)(t)
v(t) = G2(u, v)(t) + H2(u, v)(t).

(19)

We will transfer system (19) into fixed point problem by consider operators

T1(u, v)(t) = G1(u, v)(t) + H1(u, v)(t), T2(u, v)(t) = G2(u, v)(t) + H2(u, v)(t). (20)

For j = 1, we consider operator

T(i)(u, v)(t) := (T1(u, v)(t),T2(u, v)(t)),

where x(u(t), v(t)), y(u(t), v(t)) are given in (7).
For j = 2, we consider operator

T(ii)(u, v)(t) := (T1(u, v)(t),T2(u, v)(t)),

where x(u(t), v(t)), y(u(t), v(t)) are given in (8).

3.4. Global existence of mild fuzzy solutions

Theorem 3.8. Assume that following assumptions hold

1. 1i (i = 1, 2) are continuous functions satisfying hypothesis (H2);

2. hi (i = 1, 2) satisfy hypothesis (H1) and hi(t, 0̂, 0̂) = 0̂, where 0̂ is zero fuzzy number;

3. The spectral radius of the matrix M1 + M2 is less than one.

Then the problem (1) − (2) has a unique mild fuzzy solution in type (i) in C(J∞,Ec) × C(J∞,Ec). In addition, if
hypothesis (H4) is satisfied, it ensures the global unique existence of mild fuzzy solution in type (ii) of the problem.
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Proof. For all t ∈ J∞ and (u, v), (u, v) ∈ C(J∞,Ec) × C(J∞,Ec) defined by (19), we have[
d∞(T1(u, v)(t),T1(u, v)(t))
d∞(T2(u, v)(t),T2(u, v)(t))

]
.R2

[
d∞(G1(u, v)(t),G1(u, v)(t))
d∞(G2(u, v)(t),G2(u, v)(t))

]
+

[
d∞(H1(u, v)(t),H1(u, v)(t))
d∞(H2(u, v)(t),H2(u, v)(t))

]
When j = 1, by applying Lemma 6.2 and Lemma 6.7, one receives[

D(T1(u, v),T1(u, v))
D(T1(u, v),T1(u, v))

]
.R2

[
σ11β1 σ12β2
σ21β1 σ22β2

] [
D(u,u)
D(v, v)

]
+

[
b1 c1

b1 c2

] [
D(u,u)
D(v, v)

]
=

[
σ11β1 + b1 σ12β2 + c1

σ21β1 + b2 σ22β2 + c2

] [
D(u,u)
D(v, v)

]
. (21)

Since the assumption matrix M1 + M2 has spectral radius less than 1, it implies that T(i) is a generalized
contraction. Therefore, by applying Perov’s theorem, the unique existence of fixed point of operator T(i) is
shown.

When j = 2, (x(t), y(t)) is defined by (8). From Hypothesis (H4), we have T(ii) is well-defined. Thanks
to Lemma 2.2 in [22] and analogous arguments in Lemma 6.2 and Lemma 6.7 (see Appendix), we receive
again the generalized contractive property of operator T(ii). This follows the unique global existence of mild
fuzzy solution in type (ii) of the problem. The proof is complete.

Remark 3.9. The proof of Theorem 3.8 is based on Perov’s fixed point theorem with Lipschitz property of mapping
hi and 1i, (i = 1, 2). If these conditions are released, in concretely if the hypothesis (H2) is not satisfied, mappings
1i (i = 1, 2) are only bounded at most linear, then the use of Perov’s theorem to prove the global existence of the problem
becomes useless. In this case, by using our extended result of Krasnoselskii theorem in Section 2, we receive a result
on the global existence of mild fuzzy solutions as follows.

Theorem 3.10. Assume that

1. 1i (i = 1, 2) are compact functions satisfying hypothesis (H3);

2. hi (i = 1, 2) are functions which satisfy hypothesis (H1) and hi(t, 0̂, 0̂) = 0̂;

3. The following inequality is fulfilled

b1β1 + b1 + c2β2 + c2 < min{2, 1 + (b1β1 + b1)(c2β2 + c2) − (b2β1 + b2)(c1β2 + c1)}.

Then the problem (1)-(2) has at least one mild fuzzy solution in type (i). Moreover, if hypothesis (H4) also holds for
all t ∈ J∞, this problem has at least one mild fuzzy solution in type (ii).

Proof. Denote G(u, v) =
[
G1(u, v) G2(u, v)

]T
, (u, v) ∈ C(J∞,Ec) × C(J∞,Ec). Firstly, when j = 1, we consider

the global existence of mild fuzzy solution in type (i). The proof will be given via three steps.
Step 1. G is completely continuous.

Let B be a bounded subset of C(J∞,Ec) × C(J∞,Ec), i.e there exist R1, R2 > 0 such that B ⊆ {(u, v) ∈
C(J∞,Ec) : D(u, 0̂) ≤ R1; D(v, 0̂) ≤ R2}. We will apply Theorem 4.1 in [33] to prove that G(B) is relatively
compact in C(J∞,Ec) × C(J∞,Ec), which is equivalent to

• G(B) = (G1(B),G2(B)) is equicontinuous on B,

• G(B)(t) is relatively compact in Ec × Ec for t ∈ J∞.

Since 1i (i = 1, 2) are continuous on J∞ × Ec × Ec for all ε > 0, there exists δ0 > 0 such that |t − t′| +
d∞(x(t), x(t′)) + d∞(y(t), y(t′)) < δ0 then

d∞(11(t, x(t), y(t)), 11(t′, x(t′), y(t′))) < ε. (22)



N.T.K. Son, N.P. Dong / Filomat 33:12 (2019), 3795–3822 3805

For all (u, v) ∈ B, let t, t′ ∈ J∞ (t < t′) such that |t − t′| < δ, then

d∞(x(t),x(t′)) = d∞(A1(u) + RL
F I

q
0+ u(t),A1(u) + RL

F I
q
0+ u(t′)) ≤ d∞(RL

F I
q
0+ u(t), RL

F I
q
0+ u(t′))

≤
1

Γ(q)

(
d∞

( ∫ t

0
(t − s)q−1u(s)ds,

∫ t

0
(t′ − s)q−1u(s)ds

)
+ d∞

( ∫ t′

t
(t′ − s)q−1u(s)ds, 0̂

))
≤

1
Γ(q)

d∞
( ∫ t

0
[(t′ − s)q−1

− (t − s)q−1]u(s)ds, 0̂
)

+

∫ t′

t
(t′ − s)q−1d∞(u(s), 0̂)ds. (23)

Case 1: For t, t′ ∈ [0, tm], (23) becomes

Γ(q)d∞(x(t), x(t′)) ≤ Dtm (u, 0̂)
[ ∫ t

0
[(t′ − s)q−1

− (t − s)q−1]ds +

∫ t′

t
(t′ − s)q−1ds

]
≤

R1

q
[t′q − tq

− (t′ − t)q] +
R1

q
(t′ − t)q =

R1

q
(t′q − tq).

Case 2: For t, t′ ∈ [tm,∞), (23) becomes

Γ(q)d∞(x(t), x(t′)) ≤ D̃tm (u, 0̂)
( ∫ t

0
[(t′ − s)q−1

− (t − s)q−1]eθ(s−η)ds +

∫ t′

t
(t′ − s)q−1eθ(s−η)ds

)
≤ R1

( ∫ t′

0
(t′ − s)q−1eθ(s−η)ds −

∫ t

0
(t − s)q−1eθ(s−η)ds

)
≤ R1e−θη

[
t′qE1,1+q(θt′) − tqE1,1+q(θt)

]
,

where E1,1+q(.) is the Mittag-Leffler function.
Case 3: For case t ∈ [0, tm] and t′ ∈ [tm,∞),

Γ(q)d∞(x(t), x(t′)) ≤
∫ t

0
[(t′ − s)q−1

− (t − s)q−1]d∞(u(s), 0̂)ds +

∫ tm

t
(t′ − s)q−1d∞(u(s), 0̂)ds

+

∫ t′

tm

(t′ − s)q−1d∞(u(s), 0̂)e−θ(s−η)eθ(s−η)ds

≤
Dtm (u, 0̂)

q
[t′q − tq

− (t′ − tm)q] + D̃tm (u, 0̂)
∫ t′

tm

(t′ − s)q−1eθ(s−η)ds

≤
R1

q
[t′q − tq

− (t′ − tm)q] + R1eθ(tm−η)(t′ − tm)qE1,q+1(θt′ − θtm)

≤ R1

( t′q − tq

q
+ eθ(tm−η)(t′ − t)qE1,q+1(θt′ − θt)

)
.

It follows from case 1 to 3 that if t, t′ are closed, then x(t), x(t′) are also closed. It means that there exists
δ1 > 0 such that if |t− t′| < δ1 then d∞(x(t), x(t′)) < δ0

3 . Similarly, there also exists δ2 > 0 such that if |t− t′| < δ2

then d∞(y(t), y(t′)) < δ0
3 .

Put δ = min{δ1, δ2,
δ0
3 }. Thanks to (22) for all ε > 0, there exists δ > 0 such that for all (x, y) ∈ B and t,

t′ ∈ J∞ satisfying |t − t′| < δ then

d∞(1i(t, x(t), y(t)), 1i(t′, x(t′), y(t′))) < ε.

Therefore, Gi(B) (i = 1, 2) are equicontinuous on B.
According to Lemma 4.1 in [33], G(B)(t) is relatively compact in Ec × Ec if G(B)(t) is compact-supported

subset of Ec × Ec and level-equicontinuous for all t ∈ J∞. Since differences
∑

k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk),
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k∈Q2

ãk
RL
F I

q
0+ v(tk) 	

∑
k∈Q1

ãk
RL
F I

q
0+ v(tk) exist, there are compact sets K1, K2 ⊂ R such that

[ ∑
k∈J2

ak
RL
F I

q
0+ u(tk) 	∑

k∈J1

ak
RL
F I

q
0+ u(tk)

]0
⊂ K1 and

[ ∑
k∈Q2

ãk
RL
F I

q
0+ v(tk) 	

∑
k∈Q1

ãk
RL
F I

q
0+ v(tk)

]0
⊂ K2. In addition, for each t ∈ J∞, there

exist compact sets Kt3, Kt4 satisfying [RL
F I

q
0+ u(t)]0

⊂ Kt3, [RL
F I

q
0+ v(t)]0

⊂ Kt4. Thus, we have

[x(t)]0 =
a

Γ(q)

[∑
k∈J2

ak
RL
F I

q
0+ u(tk) 	

∑
k∈J1

ak
RL
F I

q
0+ u(tk)

]0
+ [RL

F I
q
0+ u(t)]0

⊂
a

Γ(q)
K1 + Kt3.

[y(t)]0 =
ã

Γ(q)

[ ∑
k∈Q2

ãk
RL
F I

q
0+ v(tk) 	

∑
k∈Q1

ãk
RL
F I

q
0+ v(tk)

]0
+ [RL

F I
q
0+ v(t)]0

⊂
ã

Γ(q)
K2 + Kt4.

This follows
[
Gi(u, v)(t)

]0
⊂ 1i

(
J∞, λ1K1 + λ3Kt3, λ2K2 + λ4Kt4

)
(i = 1, 2), which are compact sets. Hence,

Gi(B)(t), i = 1, 2, are compact-supported subsets of Ec. The second condition can be inferred from hypotheses
1i (i = 1, 2) are compact functions.
Step 2. Let (u, v), (u, v) ∈ C(J∞,Ec) × C(J∞,Ec). According to Lemma 6.2, we have

D(H1(u, v),H1(u, v)) ≤ b1D(u,u) + c1D(v, v);

D(H2(u, v),H2(u, v)) ≤ b2D(u,u) + c2D(v, v).

It can be rewritten in following form[
D(H1(u, v),H1(u, v))
D(H2(u, v),H2(u, v))

]
.R2 M1

[
D(u,u)
D(v, v)

]
. (24)

From assumption (M0 + M1)k
→ 0 as k→∞, we deduce that Mk

1 → 0 as k→∞. Hence H is generalized
contractive in Perov’s sense.
Step 3. In this step, we will prove that there exists a nonempty, bounded, closed and convex subset B of
C(J∞,Ec)×C(J∞,Ec) such that G(B) + H(B) ⊂ B. From Lemma 6.6, on each of two intervals [0, tm] and [tm,∞),
we have

Dtm (G1(u, v), 0̂) ≤ b1β1Dtm (u, 0̂) + c1β2Dtm (v, 0̂) + e1, (25)

D̃tm (G1(u, v), 0̂) ≤
(
B1β1Dtm (u, 0̂) + C1β2Dtm (v, 0̂) + E1

)
e−3θ(t−η)

+
(
B1Q̃(θ, q)D̃tm (u, 0̂) + C1Q̃(θ, q)D̃tm (v, 0̂)

)
e−2θ(t−η)

≤

(
B1β1Dtm (u, 0̂) + C1β2Dtm (v, 0̂) + E1

)
e−3θ(tm−η)

+
(
B1Q̃(θ, q)D̃tm (u, 0̂) + C1Q̃(θ, q)D̃tm (v, 0̂)

)
e−2θ(tm−η) (26)

where Q̃(θ, q) =
Q(θ, q)
Γ(q + 1)

, Q(θ, q) is defined in Remark 6.8.

Now by taking advantage from the special choice of metric D̃tm , concretely from the choice of η < tm, we
can choose θ > 0 large enough such that

B1e−θ(tm−η)
≤ b1; C1e−θ(tm−η)

≤ c1; E1e−θ(t−η)
≤ e1. (27)

By combining (26) with (27), we get

D̃tm (G1(u, v), 0̂) ≤ b1β1Dtm (u, 0̂) + c1β2Dtm (v, 0̂) + e1

+
B1Q̃(θ, q)D̃tm (u, 0̂)

e2θ(tm−η)
+

C1Q̃(θ, q)D̃tm (v, 0̂)
e2θ(tm−η)

. (28)
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From (25) and (28), it implies that

D(G1(u, v), 0̂) ≤
(
b1β1 +

B1Q̃(θ, q)
e2θ(tm−η)

)
D(u, 0̂) +

(
c1β2 +

C1Q̃(θ, q)
e2θ(tm−η)

)
D(v, 0̂) + e1. (29)

By similar estimation, we also get

D(G2(u, v), 0̂) ≤
(
b2β1 +

B2Q̃(θ, q)
e2θ(tm−η)

)
D(u, 0̂) +

(
c2β2 +

C2Q̃(θ, q)
e2θ(tm−η)

)
D(v, 0̂) + e2. (30)

The inequalities (29), (30) can be put under the vectorial form[
D(G1(u, v), 0̂)
D(G2(u, v), 0̂)

]
.R2 Mθ

[
D(u, 0̂)
D(v, 0̂)

]
+

[
e1
e2

]
, (31)

where

Mθ = M0 + MQ =

[
b1β1 c1β2
b2β1 c2β2

]
+

B1Q̃(θ,q)
e2θ(tm−η)

C1Q̃(θ,q)
e2θ(tm−η)

B2Q̃(θ,q)
e2θ(tm−η)

C2Q̃(θ,q)
e2θ(tm−η)

 . (32)

On another hand, from (24) we deduce that[
D(H1(u, v), 0̂)
D(H2(u, v), 0̂)

]
.R2

[
D(H1(u, v),H1(0̂, 0̂))
D(H2(u, v),H2(0̂, 0̂))

]
+

[
D(H1(0̂, 0̂), 0̂)
D(H2(0̂, 0̂), 0̂)

]
.R2 M1

[
D(u, 0̂)
D(v, 0̂)

]
(33)

for each (u, v) ∈ C(J∞,Ec) × C(J∞,Ec).

Put B = {(u, v) ∈ C(J∞,Ec) × C(J∞,Ec) | D(u, 0̂) ≤ R1; D(v, 0̂) ≤ R2}, with R1 > 0, R2 > 0. According to
estimations (31) and (33), the condition G(B) + H(B) ⊂ B is guaranteed by inequality

(
Mθ + M1

)
R + E ≤

R, R = [R1 R2]T, which is equivalent to

E ≤
(
I −Mθ −M1

)
R. (34)

Since Mθ+M1 = M0+MQ+M1, ρ(M0+M1) < 1 and the entries of MQ are small as desired for large enough
θ > 0, we can choose θ such that ρ(Mθ + M1) < 1. According to property of matrix with spectral radius

less than 1, the inequality (34) is equivalent to R ≥
(
I −Mθ −M1

)−1
E. This leads to there exist R1,R2 > 0 for

which the inwardness condition G(B) + H(B) ⊂ B is satisfied. Applying Krasnoselskii’s fixed point theorem
in Section 2, we receive the existence of at least one fixed point of operator T(i) in B, i.e nonlocal problem (1)
- (2) has at least one (i) - mild fuzzy solution.

In addition, based on analogous arguments used in the proof of Lemma 5.2 in [22], we can check
that (Ĉ(J∞,Ec), ρ) is a generalized semi-linear Banach space. Thus, if hypothesis (H4) holds, the operator
T(ii) : Ĉ(J∞,Ec) × Ĉ(J∞,Ec) → Ĉ(J∞,Ec) × Ĉ(J∞,Ec) is well-defined, where X, Y : Ĉ(J∞,Ec) → Ĉ(J∞,Ec) are
defined in (17). By applying analogous argument, the existence of (ii) - mild fuzzy solution of nonlocal
problem is also attained.

3.5. The behavior of fuzzy solutions
In this subsection, assume that all hypotheses of Theorem 3.10 are fulfilled, that guarantees the global

existence of at least one mild fuzzy solution in type (i) (or type (ii)).

Let 0R2 =
[
0 0

]T
and ρ0 be a vector-valued metric defined by

ρ0(w(t),w(t)) =

[
d∞(x(t), x(t))
d∞(y(t), y(t))

]
,
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where w(t) =
[
x(t) y(t)

]T
, w(t) =

[
x(t) y(t)

]T
∈ Ec×Ec. Our main aim is about the boundedness, attractivity

and stability of mild fuzzy solutions in the sense of type (i) and (ii) on J∞ = [0,∞).

Indeed, let us assume that z(t) =
[
u(t) v(t)

]T
, z(t) =

[
u(t) v(t)

]T
satisfying system (12) (or (13)). Then,

we have the following results

Theorem 3.11. If z and z are fuzzy solutions of the system (12) (or (13)) then the following limit holds

lim
t→∞

ρ0(z(t), z(t)) = 0R2 .

Proof. Assume that z(t) =
[
u(t) v(t)

]T
, z(t) =

[
u(t) v(t)

]T
are fuzzy solutions of system (12) (or (13)). Then,

for each t ∈ [tm,∞), from the formula (19) and Hypothesis (H1), we have[
d∞(u(t),u(t))
d∞(v(t), v(t))

]
.R2 (I −M1)−1

[
d∞(G1(u, v)(t),G1(u, v)(t))
d∞(G2(u, v)(t),G2(u, v)(t))

]
. (35)

In addition, since x(u(t), v(t)) and y(u(t), v(t)) are defined by (7) (or (8)) and 1i (i = 1, 2) satisfy linearity
assumptions (H3), the following inequality holds

d∞(G1(u, v)(t),G1(u, v)(t)) ≤ d∞(G1(u, v)(t), 0̂) + d∞(G1(u, v)(t), 0̂)

≤

(
B1(d∞(x(t), 0̂) + d∞(x(t), 0̂)) + C1(d∞(y(t), 0̂) + d∞(y(t), 0̂)) + 2E1

)
e−2θ(t−η)

≤ 2B1R1

(
β1tq

tq
me2θ(t−η)

+
Q̃(θ, q)
eθ(t−η)

)
+ 2C1R2

(
β̃1tq

e2θ(t−η)tq
m

+
Q̃(θ, q)
eθ(t−η)

)
+

2E1

e2θ(t−η)
.

Since e−2θ(t−η) can be as small as desired as t tends to +∞, it follows that

lim
t→∞

d∞(G1(u, v)(t),G1(u, v)(t)) = 0.

Similarly, we also obtain lim
t→∞

d∞(G2(u, v)(t),G2(u, v)(t)) = 0. Thus, lim
t→∞

ρ0(z(t), z(t)) = 0R2 . The proof is

complete.

For simplicity, we can denote zero fuzzy-valued function 0̃ : R→ E, t 7→ 0̃(t) = 0̂, where 0̂ is zero fuzzy
number and denote Θ = (0̂, 0̂) ∈ Ec × Ec. Then, we have

Theorem 3.12. The fuzzy solutions of system (12) (or (13)) converge to Θ. Moreover, the behaviors of mild fuzzy
solutions in type (i) (or (ii)) of the nonlocal problem (1) - (2) are asymptotic to a set E0 as t→ +∞.

Proof. Assume that z(t) =
[
u(t) v(t)

]T
is a fuzzy solution of the system (12) (or (13)), i.e., u(t), v(t) satisfy

system (19), we have[
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
.R2

[
d∞(G1(u, v)(t), 0̂)
d∞(G2(u, v)(t), 0̂)

]
+

[
d∞(H1(u, v)(t), 0̂)
d∞(H2(u, v)(t), 0̂)

]
For each t ∈ [tm,∞), from (27), (60) we can choose θ large enough such that

d∞(G1(u, v)(t), 0̂) ≤
(
B1β1Dtm (u, 0̂) + C1β2Dtm (v, 0̂) + E1

)
e−2θ(t−η)

+
(
B1Q̃(θ, q)D̃tm (u, 0̂) + C1Q̃(θ, q)D̃tm (v, 0̂)

)
e−θ(t−η)

≤ b1β1d∞(u(t), 0̂) + c1β1d∞(v(t), 0̂) + E1e−2θ(t−η)

+
B1Q(θ, q)

Γ(q + 1)eθ(t−η)
d∞(u(t), 0̂) +

C1Q(θ, q)
Γ(q + 1)eθ(t−η)

d∞(v(t), 0̂)

≤

(
b1β1 +

B1Q(θ, q)
Γ(q + 1)eθ(tm−η)

)
d∞(u(t), 0̂)

+
(
c1β1 +

C1Q(θ, q)
Γ(q + 1)eθ(tm−η)

)
d∞(v(t), 0̂) + E1e−2θ(t−η).
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By using similar arguments and applying Corollary 6.3, the following estimation holds for all t ≥ tm[
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
.R2

b1β1 +
B1Q(θ,q)

Γ(q+1)eθ(t−η) c1β2 +
C1Q(θ,q)

Γ(q+1)eθ(t−η)

b2β1 +
B2Q(θ,q)

Γ(q+1)eθ(t−η) c2β2 +
C2Q(θ,q)

Γ(q+1)eθ(t−η)

 [d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
+

[
b1 c1
b2 c2

] [
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
+

[
E1
E2

]
e−2θ(t−η)

.R2

b1β1 +
B1Q(θ,q)

Γ(q+1)eθ(tm−η) c1β2 +
C1Q(θ,q)

Γ(q+1)eθ(tm−η)

b2β1 +
B2Q(θ,q)

Γ(q+1)eθ(tm−η) c2β2 +
C2Q(θ,q)

Γ(q+1)eθ(tm−η)

 [d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
+

[
b1 c1
b2 c2

] [
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
+

[
E1
E2

]
e−2θ(t−η)

=
(
M̃θ + M1

) [d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
+

[
E1
E2

]
e−2θ(t−η)

where M̃θ =

b1β1 +
B1Q̃(θ,q)
eθ(tm−η) c1β2 +

C1Q̃(θ,q)
eθ(tm−η)

b2β1 +
B2Q̃(θ,q)
eθ(tm−η) c2β2 +

C2Q̃(θ,q)
eθ(tm−η)

, Q̃(θ, q) =
Q(θ, q)
Γ(q + 1)

and M1 =

[
b1 c1
b2 c2

]
.

This inequality is equivalent to[
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
.R2

(
I −M1 − M̃θ

)−1
[
E1
E2

]
e−2θ(t−η) := M̃1,θ e−2θ(t−η). (36)

Since 0 < η < tm and θ > 0 can be chosen big enough, e−2θ(tm−η) can be as small as we desired as t tends to
+∞, that implies lim

t→∞
ρ0(z(t),Θ) = 0R2 .

On the other hand, since u(t), v(t) are continuous in closed interval [0, tm], there exist positive real
numbers P1, P2 such that

d∞(u(t), 0̂) ≤ P1, d∞(v(t), 0̂) ≤ P2 for all t ∈ [0, tm]. (37)

Let w(t) =
[
x(t) y(t)

]T
be a mild fuzzy solution in type (i) (or (ii)) of the nonlocal problem (1) - (2). Then,

from Lemma 3.4, we have

[
d∞(x(t), 0̂)
d∞(y(t), 0̂)

]
.R2


a

m∑
k=1

akd∞
(

RL
F I

q
0+

u(tk), 0̂
)

ã
m∑

k=1
ãkd∞

(
RL
F I

q
0+

v(tk), 0̂
)
 +

d∞
(

RL
F I

q
0+

u(t), 0̂
)

d∞
(

RL
F I

q
0+

v(t), 0̂
)

.R2


a

m∑
k=1

ak

Γ(q)

∫ tk

0
(tk − s)q−1d∞(u(s), 0̂)ds

ã
m∑

k=1

ãk

Γ(q)

∫ tk

0
(tk − s)q−1d∞(v(s), 0̂)ds

 +
1

Γ(q)


∫ t

0
(t − s)q−1d∞(u(s), 0̂)ds∫ t

0
(t − s)q−1d∞(v(s), 0̂)ds


=


a

m∑
k=1

aktq
k

Γ(q + 1)
P1

ã
m∑

k=1

ãktq
k

Γ(q + 1)
P2

 +
1

Γ(q)


θ1

∫ t

0
(t − s)q−1e−2θ(s−η)ds

θ2

∫ t

0
(t − s)q−1e−2θ(s−η)ds


≤

m∑
k=1

tq
m

Γ(q + 1)

[
P1aak
P2ããk

]
+

1
Γ(q)

[
θ1
θ2

] ∫ t

0
(t − s)q−1e−2θ(s−η)ds

where P1, P2 are real numbers defined in (37) and M̃1,θ =

[
θ1
θ2

]
defined in (36).
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In Lemma 6.10, if λ = 2θ is a big enough number such that 2θtm > 1 then we immediately obtain[
d∞(x(t), 0̂)
d∞(y(t), 0̂)

]
.R2

m∑
k=1

tq
m

Γ(q + 1)
Mk

[
P1
P2

]
+

M̃1,θ

Γ(q)

[
e−2θ(t−η)

2θ
+ e−2θ(t−η−1)

(
1
q
−

1
2θ

)]

.R2

m∑
k=1

tq
m

Γ(q + 1)
Mk

[
P1
P2

]
+

M̃1,θ

Γ(q)

[
e2θη

2θ
+ e−2θ(t−η−1)

(
1
q
−

1
2θ

)]

.R2

 m∑
k=1

tq
m

Γ(q + 1)
Mk

[
P1
P2

]
+

e2θη

2θ
M̃1,θ

Γ(q)

 +

(
1
q
−

1
2θ

)
M̃1,θ

Γ(q)
e−2θ(t−η−1). (38)

Because the first term in the right hand side of (38) is a constant vector while the second term tends
to zero vector when t → ∞, we imply that there exists a set E0 ⊂ E × E such that mild fuzzy solution

w(t) =
[
x(t) y(t)

]T
of nonlocal problem (1) - (2) is asymptotic to E0 as t→∞. The proof is complete.

Theorem 3.13. All mild fuzzy solutions of nonlocal problem (1) - (2) are bounded.

Proof. When j = 1, suppose that (x, y) ∈ C(J∞,Ec) × C(J∞,Ec) is a mild fuzzy solution in type (i) of nonlocal
problem (1) - (2). Then,

[
d∞(x(t), 0̂)
d∞(y(t), 0̂)

]
.R2


a

m∑
k=1

akd∞
(

RL
F I

q
0+

u(tk), 0̂
)

ã
m∑

k=1
ãkd∞

(
RL
F I

q
0+

v(tk), 0̂
)
 +

d∞
(

RL
F I

q
0+

u(t), 0̂
)

d∞
(

RL
F I

q
0+

v(t), 0̂
)

.R2

m∑
k=1

Mk
RL
I

q
0+

(
d∞(u(tk), 0̂)
d∞(v(tk), 0̂)

)
+ RL
I

q
0+

(
d∞(u(t), 0̂)
d∞(v(t), 0̂)

)
, (39)

where Mk (k = 1,m) are defined in Remark 3.7. Then, inequality (39) is equivalent to[
d∞(x(t), 0̂)
d∞(y(t), 0̂)

]
.R2

m∑
k=1

Mk
RL
I

q
0+

(
P1
P2

)
+ RL
I

q
0+

(
P1
P2

)

.R2

 m∑
k=1

Mk

[
P1
P2

]
+

[
P1
P2

] tq
m

Γ(q + 1)
:= S1.

where P1, P2 are real numbers defined in (37). It follows[
Dtm (x, 0̂)
Dtm (y, 0̂)

]
.R2 S1.

For t ∈ [tm,∞), from the proof of Theorem 3.12, we have[
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
.R2 M

[
E1
E2

]
e−2θ(tm−η) := J1.

Thus, inequality (39) becomes[
d∞(x(t), 0̂)
d∞(y(t), 0̂)

]
.R2

m∑
k=1

Mk
tq
k

Γ(q + 1)

[
P1
P2

]
+

tq

Γ(q + 1)
J1.

Dividing both sides by eθ(t−η) and taking supremum w.r.t t ∈ [tm,∞), we obtain[
D̃tm (x, 0̂)
D̃tm (y, 0̂)

]
.R2

m∑
k=1

Mk

[
P1
P2

]
tq
m

eθ(tm−η)Γ(q + 1)
+

qq

θeqe−θηΓ(q + 1)
J1 := S2.
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Therefore, we have ρ0((x, y), (0̂, 0̂)) .R2 max{S1,S2},which implies the boundedness of mild fuzzy solu-
tions in type (i) of nonlocal problem (1) - (2).

When j = 2, (x(t), y(t)) is defined by (8). Thanks to Lemma 2.2 in [22], the inequality (39) still holds.
Therefore, by repeating arguments of the case when j = 1, we also receive the boundedness of mild fuzzy
solution in type (ii). Hence, the proof is complete.

3.6. Ulam-Hyers stability of nonlocal problem
In this subsection, we will develop the Ulam - Hyers stable for differential systems in [9] to the problem

(1) − (2).

Theorem 3.14. Assume that following hypotheses hold

1. 1i (i = 1, 2) are continuous functions satisfying hypothesis (H2);

2. hi (i = 1, 2) satisfy hypothesis (H1) and hi(t, 0̂, 0̂) = 0̂, where 0̂ is zero fuzzy number;

3. The spectral radius of the matrix M1 + M2 is less than 1.

Then nonlocal problem (1) − (2) is Ulam - Hyers stable in type (i), i.e there exists a matrixM ∈ Mat2×2(R+) such
that for each ε1, ε2 > 0 and (x̃, ỹ) ∈ C

q
1 (J∞,Ec) × C

q
1 (J∞,Ec), for which

d∞
(

C
1HD

q
j x̃(t), 11(t, x̃(t), ỹ(t)) + h1(t, C

1HD
q
j x̃(t), C

1HD
q
j ỹ(t))

)
≤ ε1

d∞
(

C
1HD

q
j ỹ(t), 12(t, x̃(t), ỹ(t)) + h2(t, C

1HD
q
j x̃(t), C

1HD
q
j ỹ(t))

)
≤ ε2

x(0) +
∑

k∈J1

akx(tk) =
∑

k∈J2

akx(tk)

y(0) +
∑

k∈Q1

ãky(tk) =
∑

k∈Q2

ãky(tk)

(40)

there exists a mild fuzzy solution in type (i) (x, y) of nonlocal problem (1)-(2) satisfying[
D(x, x̃)
D(y, ỹ)

]
.R2 M

[
ε1
ε2

]
.

In addition, if hypotheses (17) - (18) are fulfilled then the Ulam - Hyers stable in type (ii) of nonlocal problem (1)-(2)
are also attained.

Proof. For simplicity in presentation, denote M∗1 = (I −M1)−1 and M∗1,σ = (I −M1)−1Mσ.

We recall that (x̃, ỹ) ∈ C
q
j (J∞,Ec)×C

q
j (J∞,Ec) ( j = 1, 2) is a mild fuzzy solution of differential inequations

system (40) (see Definition 4.4 in [24]) if for each t ∈ J∞, there exist Φ1(t), Φ2(t) ∈ C(J∞,Ec) such that

(i)
[
d∞(Φ1(t), 0̂)
d∞(Φ2(t), 0̂)

]
.R2

[
ε1
ε2

]
(ii) andC

1HD
q
j x̃(t) = 11(t, x̃(t), ỹ(t)) + h1(t, C

1HD
q
j x̃(t), C

1HD
q
j ỹ(t)) + Φ1(t)

C
1HD

q
j ỹ(t) = 12(t, x̃(t), ỹ(t)) + h2(t, C

1HD
q
j x̃(t), C

1HD
q
j ỹ(t)) + Φ2(t)

j = 1, 2. (41)

For j = 1, applying transformation ũ(t) = C
1HD

q
1x̃(t), ṽ(t) = C

1HD
q
1 ỹ(t) and using analogous arguments in

the proof of Lemma 3.4, we obtain that if the pair (x̃(t), ỹ(t)) satisfies nonlocal conditions (2), then it is a
solution of the following fuzzy integral systemx̃(t) = A1(ũ) + RL

F I
q
0+ ũ(t) = F1[ũ](t)

ỹ(t) = Ã1(ṽ) + RL
F I

q
0+ ṽ(t) = F̃1[ṽ](t)

for t ∈ J∞. (42)
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Thus, we can transform (41) into the following formũ(t) = 11(t,F1[ũ](t), F̃1[ṽ](t)) + h1(t, ũ(t), ṽ(t)) + Φ1(t)
ṽ(t) = 12(t,F1[ũ](t), F̃1[ṽ](t)) + h2(t, ũ(t), ṽ(t)) + Φ2(t)

(43)

In addition, when (ũ, ṽ) ∈ C(J∞,Ec) × C(J∞,Ec) is a fuzzy solution of system (43), we can find out
(x̃, ỹ) ∈ C(J∞,Ec) × C(J∞,Ec) from the formula (42). It leads to the definition of mild fuzzy solution in type
(i) of differential inequations system (40).

Indeed, assume that (x̃, ỹ) ∈ C(J∞,Ec) × C(J∞,Ec) is a mild fuzzy solution in type (i) of differential
inequations system (40). Since ũ(t), ṽ(t) satisfy system (43) and 1i, hi (i = 1, 2) satisfy the global Lipschitz
assumptions (H1), (H2), one gets[

d∞(u(t), ũ(t))
d∞(v(t), ṽ(t))

]
.R2 Mσ

[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
+ M1

[
d∞(u(t), ũ(t))
d∞(v(t), ṽ(t))

]
+

[
ε1
ε2

]
.

It follows[
d∞(u(t), ũ(t))
d∞(v(t), ṽ(t))

]
.R2 M∗1,σ

[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
+ M∗1

[
ε1
ε2

]
.

If (x, y) and (x̃, ỹ) are mild fuzzy solutions in type (i) of nonlocal problems (1) - (2) and (40) - (2) then we
have [

d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
.R2

[
d∞(x(t),F1[ũ])
d∞(y(t), F̃1[ṽ])

]
+

[
d (x̃(t),F1[ũ])

d∞(ỹ(t), F̃1[ṽ])

]
.R2

[
d∞(F1[u],F1[ũ])
d∞(F̃1[v], F̃1[ṽ])

]
.R2

[
d∞(A1(u),A1(ũ))
d∞(Ã1(v), Ã1(ṽ))

]
+

[
d∞(RL

F I
q
0+ u(t), RL

F I
q
0+ ũ(t))

d∞(RL
F I

q
0+ v(t), RL

F I
q
0+ ṽ(t))

]
.R2

m∑
k=1

Mk
RL
I

q
0+

[
d∞(u(tk), ũ(tk))
d∞(v(tk), ṽ(tk))

]
+ RL
I

q
0+

[
d∞(u(t), ũ(t))
d∞(v(t), ṽ(t))

]
(44)

Case 1: For t ∈ [0, tm], the estimation (44) becomes[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
.R2

m∑
k=1

Mk
RL
I

q
0+

(
M∗1,σ

[
d∞(x(tk), x̃(tk))
d∞(y(tk), ỹ(tk))

]
+ M∗1

[
ε1
ε2

])
+ RL
I

q
0+

(
M∗1,σ

[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
+ M∗1

[
ε1
ε2

])
.R2

m∑
k=1

Mk

M∗1

 ε1tq
m

Γ(q+1)
ε2tq

m
Γ(q+1)

 + M∗1,σ
RL
I

q
0+

(
Dtm (x, x̃)
Dtm (y, ỹ)

)
+ M∗1

 ε1tq
m

Γ(q+1)
ε2tq

m
Γ(q+1)

 + M∗1,σ
RL
I

q
0+

(
Dtm (x, x̃)
Dtm (y, ỹ)

)
Taking supremum the left side when t ∈ [0, tm], we obtain[

Dtm (x, x̃)
Dtm (y, ỹ)

]
.R2

M∗1,σ +

m∑
k=1

MkM∗1,σ


 Dtm (x,x̃)tq

m
Γ(q+1)

Dtm (y,ỹ)tq
m

Γ(q+1)

 +

M∗1 +

m∑
k=1

MkM∗1


 ε1tq

m
Γ(q+1)
ε2tq

m
Γ(q+1)

 .
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Put

L1 =
tq
m

Γ(q + 1)

M∗1 +

m∑
k=1

MkM∗1

 ; N1 =

I −
tq
m

Γ(q + 1)
M∗1,σ −

tq
m

Γ(q + 1)

m∑
k=1

MkM∗1,σ


−1

.

Then, we obtain
[
Dtm (x, x̃)
Dtm (y, ỹ)

]
.R2 N1L1

[
ε1
ε2

]
.

Case 2. For t ∈ [tm,+∞), by applying analogous estimations as Case 1, (44) becomes[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
.R2

m∑
k=1

Mk

M∗1

 ε1tq
m

Γ(q+1)
ε2tq

m
Γ(q+1)

 + M∗1,σ

 Dtm (x,x̃)tq
m

Γ(q+1)
Dtm (y,ỹ)tq

m
Γ(q+1)




+ M∗1

 ε1tq

Γ(q+1)
ε2tq

Γ(q+1)

 + M∗1,σ
RL
I

q
0+

([
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
e−θ(t−η)eθ(t−η)

)
.

In addition, for θ ≥ q, we have max
[tm,∞)

tq

eθt =
qq

θeq . Thus, dividing both sides by eθ(t−η), we get

[
d∞(x(t), x̃(t))
d∞(y(t), ỹ(t))

]
e−θ(t−η) .R2

 m∑
k=1

MkM∗1
tq
me−θ(t−η)

Γ(q + 1)
+ M∗1

eθη−qqq

θΓ(q + 1)

 [ε1
ε2

]

+

M∗1,σ +

m∑
k=1

MkM∗1,σ


 Dtm (x,x̃)tq

m
Γ(q+1)

Dtm (y,ỹ)tq
m

Γ(q+1)

 e−θ(t−η) + M∗1,σ

[
Q̃(θ, q)D̃tm (x, x̃)
Q̃(θ, q)D̃tm (y, ỹ)

]
.

Then, we have[
D̃tm (x, x̃)
D̃tm (y, ỹ)

]
.R2

 m∑
k=1

MkM∗1
tq
me−θ(tm−η)

Γ(q + 1)
+ M∗1

eθη−qqq

θΓ(q + 1)

 [ε1
ε2

]
+ Q̃(θ, q)M∗1,σ

[
D̃tm (x, x̃)
D̃tm (y, ỹ)

]

+
tq
me−θ(tm−η)

Γ(q + 1)

M∗1,σ +

m∑
k=1

MkM∗1,σ

 L1N1

[
ε1
ε2

]
.

Put

L2 =
m∑

k=1
MkM∗1

tq
me−θ(tm−η)

Γ(q+1) + M∗1
eθη−qqq

θΓ(q+1) +
tq
me−θ(tm−η)

Γ(q+1)

(
M∗1,σ +

m∑
k=1

MkM∗1,σ

)
L1N1.

N2 =
(
I − Q̃(θ, q)M∗1,σ

)−1
.

Then it follows[
D̃tm (x, x̃)
D̃tm (y, ỹ)

]
.R2 N2L2

[
ε1
ε2

]
.

LetM = max{N1L1,N2L2}. Then,
[
D(x, x̃)
D(y, ỹ)

]
.R2 M

[
ε1
ε2

]
,which implies that nonlocal problem (1) - (2) is Ulam

- Hyers stable in type (i).

Moreover, if all hypotheses (H1), (H2) and (H4) are satisfied, then by the setting ũ(t) = C
1HD

q
2x̃(t),

ṽ(t) = C
1HD

q
2 ỹ(t) and by analogous arguments in the proof of Lemma 3.4, we have (x̃(t), ỹ(t)), satisfying
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nonlocal conditions (2), is a fuzzy solution of following integral systemx̃(t) = A2(ũ) 	 (−1)RL
F I

q
0+ ũ(t) = F2[ũ](t)

ỹ(t) = Ã2(ṽ) 	 (−1)RL
F I

q
0+ ṽ(t) = F̃2[ṽ](t)

for t ∈ J∞. (45)

Then, system (41) can be transformed into following formũ(t) = 11(t,F2[ũ](t), F̃2[ṽ](t)) + h1(t, ũ(t), ṽ(t)) + Φ1(t)
ṽ(t) = 12(t,F2[ũ](t), F̃2[ṽ](t)) + h2(t, ũ(t), ṽ(t)) + Φ2(t)

(46)

Therefore, to find (x̃, ỹ), we only need to find out fuzzy solution (ũ, ṽ) of system (46). As a corollary, we
have (x̃, ỹ) ∈ C(J∞,Ec)×C(J∞,Ec), that implies the definition of mild fuzzy solution in type (ii) of differential
inequations system (40). Then, by repeating analogous arguments as in Case j = 1, Ulam - Hyers stability
in type (ii) of nonlocal problem (1) - (2) is attained.

4. Example

To illustrate obtained results, consider following implicit fuzzy fractional differential system
C
1HD

1
2
j x(t) =

√
π

4
√

4t + 1
K

C
1HD

1
2
j y(t) =

√
t

π
√

4t + 1
C
1HD

1
2
j x(t)

j = 1, 2, (47)

t ∈ J∞ = [0,∞), with nonlocal conditionsx(0) + x
(

1
12

)
=
√
π+1
2 x

(
1

4π

)
y(0) + (2 +

√
3) y

(
1
12

)
= π+1+

√

π2+π
2 y

(
1

4π

) (48)

where K is a triangular fuzzy number with its level sets [K]α = [α, 2 − α], α ∈ [0, 1].

By the transformation C
1HD

1
2
j x(t) = u(t), C

1HD
1
2
j y(t) = v(t), where x, y ∈ C

q
j (J∞,Ec) combined with nonlocal

conditions (48), we can represent x(t), y(t) in the form (49) w.r.t j = 1 and the form (50) w.r.t j = 2

x(t) = a


√
π + 1

2
√
π

∫ 1
4π

0

u(s)√
1

4π − s
ds 	

1
√
π

∫ 1
12

0

u(s)√
1
12 − s

ds

 +
1
√
π

∫ t

0

u(s)
√

t − s
ds,

y(t) = ã

 (
√
π + 1)

√
π + 1

2
√
π

∫ 1
4π

0

v(s)√
1

4π − s
ds 	

2 +
√

3
√
π

∫ 1
12

0

v(s)√
1
12 − s

ds

 +
1
√
π

∫ t

0

v(s)
√

t − s
ds.

(49)



x(t) = −a

 1
√
π

∫ 1
12

0

u(s)√
1

12 − s
ds 	

√
π + 1

2
√
π

∫ 1
4π

0

u(s)√
1

4π − s
ds

 	 −1
√
π

∫ t

0

u(s)
√

t − s
ds,

y(t) = −ã

2 +
√

3
√
π

∫ 1
12

0

v(s)√
1

12 − s
ds 	

(
√
π + 1)

√
π + 1

2
√
π

∫ 1
4π

0

v(s)√
1

4π − s
ds

 	 −1
√
π

∫ t

0

v(s)
√

t − s
ds.

(50)
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where a =
2

4 −
√
π + 1

, ã =
2

5 + 2
√

3 − π −
√

π2 + π
.

In this example, we have 11(t, x(t), y(t)) =
√
π

4
√

4t+1
K and 12(t, x(t), y(t)) = 0 are well-defined and continuous

functions on [0,+∞), which satisfy hypothesis (H2) with σ11 = σ21 = σ22 = 1
4π , σ12 =

√
π

4 , and h1(t,u(t), v(t)) =

0; h2(t,u(t), v(t)) =
√

t
π
√

4t+1
u(t) are functions satisfying hypothesis (H1) with respective coefficients b1 = c1 =

c2 = 1
12 , b2 = 1

π .
In addition, we obtain

β1 =

√
1
12

Γ
(

3
2

) [
1 + a

(
1 +

√
π + 1
2

)]
; β2 =

√
1

12

Γ
(

3
2

) 1 + ã

2 +
√

3 +
π + 1 +

√

π2 + π
2

 .
Then, the inequality

σ11β1 + b1 + σ22β2 + c2 < min{2, 1 + (σ11β1 + b1)(σ22β2 + c2) − (σ12β1 + b2)(σ21β2 + c1)}

holds, which follows the spectral radius of the matrix M1 + M2 is less than 1. Therefore, applying Theorem
3.8 guarantees the unique global existence of mild fuzzy solution in type (i) of the problem (47) - (48).

Assume that x(t), y(t), u(t), v(t) can be written in the following parameter forms

[x(t)]α = [x1α(t), x2α(t)]; [y(t)]α = [y1α(t), y2α(t)];
[u(t)]α = [u1α(t),u2α(t)]; [v(t)]α = [v1α(t), v2α(t)]. α ∈ [0; 1]

Then, system (47) can be rewritten as following interval FDEs[u1α(t),u2α(t)] =
√
π

4
√

4t+1
[α, 2 − α],

[v1α(t), v2α(t)] =
√

t
π
√

4t+1
[u1α(t),u2α(t)]

α ∈ [0; 1] (51)

We now make this result precisely by giving concretely formulas of (i) - mild fuzzy solution of the problem.
Indeed, from the first equation of (49) and (51), we have

x1α(t) = αa
4

[
√
π+1
2

∫ 1
4π

0
ds

√
4s+1
√

1
4π−s
−

∫ 1
12

0
ds

√
4s+1
√

1
12−s

]
+

∫ t

0
αds

4
√

4s+1
√

t−s

= αa
4

[ √
π+1
2

(
π
2 − arcsin

√
π
π+1

)
−

π
6

]
+ α

√
t

2
√

4t+1
= C1α + α

√
t

2
√

4t+1

x2α(t) =
(2−α)a

4

[
√
π+1
2

∫ 1
4π

0
ds

√
4s+1
√

1
4π−s
−

∫ 1
12

0
ds

√
4s+1
√

1
12−s

]
+

∫ t

0
(2−α)ds

4
√

4s+1
√

t−s

=
(2−α)a

4

[ √
π+1
2

(
π
2 − arcsin

√
π
π+1

)
−

π
6

]
+

(2−α)
√

t
2
√

4t+1
= C2α +

(2−α)
√

t
2
√

4t+1

Since v1α(t) =
√

t u1α(t)
π
√

4t+1
= 4α

√
t

4t+1 ; v2α(t) =
√

t u2α(t)
π
√

4t+1
=

4(2−α)
√

t
4t+1 , then we receive

y1α(t) = ã
[
π+1+

√

π2+π
2
√
π

∫ 1
4π

0
v1α(s)ds
√

1
4π−s
−

2+
√

3
√
π

∫ 1
12

0
v1α(s)ds
√

1
12−s

]
+ 1
√
π

∫ t

0
v1α(s)ds
√

t−s

= 4αã
[ √

π+1
4 −

√
π

8

]
+ 4αt

4t+1+
√

4t+1
= Ĉ1α + 4αt

4t+1+
√

4t+1

y2α(t) = ã
[
π+1+

√

π2+π
2
√
π

∫ 1
4π

0
v2α(s)ds
√

1
4π−s
−

2+
√

3
√
π

∫ 1
12

0
v2α(s)ds
√

1
12−s

]
+ 1
√
π

∫ t

0
v2α(s)ds
√

t−s

= 4(2 − α)ã
[ √

π+1
4 −

√
π

8

]
+

4(2−α)t
4t+1+

√
4t+1

= Ĉ2α +
4(2−α)t

4t+1+
√

4t+1
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Consider two fuzzy numbers U1, U2 given by their level sets as follows[U1]α = [C1α,C2α] = a
4

[ √
π+1
2

(
π
2 − arcsin

√
π
π+1

)
−

π
6

]
[K]α,

[U2]α = [Ĉ1α, Ĉ2α] = 4ã
[ √

π+1
4 −

√
π

8

]
[K]α

Then, by applying Stacking Theorem, mild solution in type (i) of the problem is given byx(t) = U1 +
√

t
2
√

4t+1
K

y(t) = U2 + 4t
4t+1+

√
4t+1

K
t ∈ J∞. (52)

From (51), we have lim
t→∞

ρ0(z(t),Θ) = 0, z(t) =
[
u(t) v(t)

]T
. Moreover, it follows from (52) that w(t) =[

x(t) y(t)
]T

is asymptotic to set F0 =
[
U1 U2

]T
as t tends to +∞, and the unique (i) - mild fuzzy solution

w(t) =
[
x(t) y(t)

]T
of the problem (47) - (48) is bounded.

In addition, the assumption about matrix having non-negative elements in Theorem 3.14 can be checked
by using computer algebra programs. The obtained matrix is shown below

M ≈

[
0.14159 0.04922
0.05786 0.14158

]
,

in which η = 10−4, θ = 105 and Q(θ, 1
2 ) ≈ 0.48. Now, consider the following differential inequations system d∞

(
C
1HD

1
2
j x̃(t), K

√
π

4
√

4t+1

)
d∞

(
C
1HD

1
2
j ỹ(t),

√
t

π
√

4t+1
C
1HD

1
2
j x̃(t)

)  ≤
[
ε1
ε2

]
, (53)

we have that there exist fuzzy-valued functions Φ1(t) = 1
4 K1ε1, Φ2(t) = 1

4 K1ε2, in which K1 is a triangular
fuzzy number with level sets [K1]α = [2α, 4 − 2α] and ε1, ε2 > 0, such that

(i)
[
d∞(Φ1(t), 0̂)
d∞(Φ2(t), 0̂)

]
≤

[
ε1
ε2

]

(ii)


C
1HD

1
2
j x̃(t) =

√
π

4
√

4t+1
K + 1

4 K1ε1

C
1HD

1
2
j ỹ(t) =

√
t

π
√

4t+1
C
1HD

1
2
j x̃(t) + 1

4 K1ε2

(54)

By using analogous arguments, we imply thatx(t) = U1 +
√

t
2
√

4t+1
K + ε1

√
t

2
√
π

K1

y(t) = U2 + 4t
4t+1+

√
4t+1

K + ε2
√

t
2
√
π

K1
t ∈ J∞

is a mild fuzzy solution in type (i) of system (54) with nonlocal conditions (2) and it’s easy to check that[
D 1

12
(x, x̃)

D 1
12

(y, ỹ)

]
≤

 1
√

3π
0

0 1
√

3π

 [ε1
ε2

]
, for t ∈ [0,

1
12

],

[
D̃ 1

12
(x, x̃)

D̃ 1
12

(y, ỹ)

]
≤

 e−1010−2
√

5πe
0

0 e−1010−2
√

5πe

 [ε1
ε2

]
, for t ∈ [

1
12
,∞).

Therefore, by choosing matrix M =

 1
√

3π
0

0 1
√

3π

, we immediately obtain
[
D(x, x̃)
D(y, ỹ)

]
≤ M

[
ε1
ε2

]
, which

implies the problem is Ulam-Hyers stable in type (i).
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5. Conclusions

The main goals of this paper have been to investigate the global existence of (i) (or (ii)) - mild fuzzy
solutions of nonlocal problem for implicit fractional fuzzy differential systems under Caputo gH-fractional
derivatives for two cases: in first case, our problem satisfies Hypotheses (H1) - (H2) and the other satisfies
Hypotheses (H1) - (H3) . We have achieved these goals by using Perov’s fixed point theorem and an
extension of Krasnoselskii’s fixed point theorem (see Section 2). Under assumptions of the problem, we
have attained some results about qualitative properties of solutions, such as boundedness, decay, attractivity
and some new concepts of stability for fractional fuzzy differential system. The next step in our future
research is to investigate some controllability results for this problem.

6. Appendix

6.1. Some auxiliary lemmas
Lemma 6.1 ([25], Lemma 2.2.). If A is a square matrix that converges to zero and the elements of an other square
matrix B is small enough, then A + B also converges to zero.

Lemma 6.2. Assume that the hypothesis (H1) is satisfied. Then the following estimation

D(H1(u, v),H1(u, v)) ≤ b1D(u,u) + c1D(v, v)

holds for all u, v,u, v ∈ C(J∞,Ec).

Proof. Let (u, v), (u, v) ∈ C(J∞,Ec) × C(J∞,Ec) be arbitrary. Using the assumption (14), for t ∈ [0, tm], we
deduce that

d∞(H1(u, v)(t),H1(u, v)(t)) ≤ b1d∞(u(t),u(t)) + c1d∞(v(t), v(t)).

Then taking the supremum for t ∈ [0, tm] we obtain

Dtm (H1(u, v),H1(u, v)) ≤ b1Dtm (u,u) + c1Dtm (v, v) ≤ b1D(u,u) + c1D(v, v). (55)

For t ∈ [tm,∞), we have

d∞(H1(u, v)(t),H1(u, v)(t)) ≤ b1d∞(u(t),u(t)) + c1d∞(v(t), v(t))

Dividing both sides by eθ(t−η) and taking supremum when t ∈ [tm,∞) we have :

D̃tm (H1(u, v),H1(u, v)) ≤ b1D̃tm (u,u) + c1D̃tm (v, v) ≤ b1D(u,u) + c1D(v, v). (56)

Combining (55), (56) one gets D(H1(u, v),H1(u, v)) ≤ b1D(u,u) + c1D(v, v).

Corollary 6.3. Under assumption that hi(t, 0̂, 0̂) = 0̂ (i = 1, 2), by similar arguments as in Lemma 6.2, we have[
d∞(H1(u, v)(t), 0̂)
d∞(H2(u, v)(t), 0̂)

]
.R2

[
b1 c1

b2 c2

] [
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
= M1

[
d∞(u(t), 0̂)
d∞(v(t), 0̂)

]
(57)

Remark 6.4. For all t ∈ [0, tm] (tm < 1), we have

d∞
(

RL
F I

q
0+φ(t), 0̂

)
=

1
Γ(q)

d∞
( ∫ t

0
(t − s)q−1φ(s)ds, 0̂

)
≤

1
Γ(q)

∫ t

0
(t − s)q−1d∞(φ(s), 0̂)ds

≤
Dtm (φ, 0̂)

Γ(q)

∫ t

0
(t − s)q−1ds =

Dtm (φ, 0̂)
Γ(q + 1)

tq.
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Remark 6.5. For all t ∈ [tm,∞), we have

d∞
(

RL
F I

q
0+φ(t), 0̂

)
≤

1
Γ(q)

∫ t

0
(t − s)q−1d∞(φ(s), 0̂)ds

≤
1

Γ(q)

( ∫ tm

0
(t − s)q−1d∞(φ(s), 0̂)ds +

∫ t

tm

(t − s)q−1d∞(φ(s), 0̂)ds
)

<
Dtm (φ, 0̂)
Γ(q + 1)

tq
m + D̃tm (φ, 0̂)Q̃(θ, q)eθ(t−η)

Lemma 6.6. Assume that the hypothesis (H3) is satisfied. Then the following estimations

Dtm (G1(u, v), 0̂) ≤ b1β1Dtm (u, 0̂) + c1β2Dtm (v, 0̂) + e1, (58)

D̃tm (G1(u, v), 0̂) ≤
(
B1β1Dtm (u, 0̂) + C1β2Dtm (v, 0̂) + E1

)
e−3θ(t−η)

+
(
B1Q̃(θ, q)D̃tm (u, 0̂) + C1Q̃(θ, q)D̃tm (v, 0̂)

)
e−2θ(t−η) (59)

hold for all u, v ∈ C(J∞,Ec).

Proof. Without loss of generality, we suppose that x, y ∈ C
q
1 (J∞,Ec) satisfy nonlocal condition (2) and

u, v ∈ C(J∞,Ec) are defined by setting (6). From (7) in Lemma 3.4 we have with t ∈ [0, tm]

d∞(x(t), 0̂) ≤ d∞
(
a
∑
k∈J2

ak
RL
F I

q
0+ u(tk), 0̂

)
+ d∞

(
a
∑
k∈J1

ak
RL
F I

q
0+ u(tk), 0̂

)
+ d∞

(
RL
F I

q
0+ u(t), 0̂

)
≤

Dtm (u, 0̂)
Γ(q + 1)

[
a

m∑
k=1

aktq
k + tq

]
≤

Dtm (u, 0̂)
Γ(q + 1)

tq
m

[
a

m∑
k=1

ak + 1
]

= β1Dtm (u, 0̂).

Similarly, one gets d∞(y(t), 0̂) ≤ β2Dtm (v, 0̂). Applying hypothesis (H3), we obtain

d∞(G1(u, v)(t), 0̂) ≤ b1d∞
(
x(t), 0̂

)
+ c1d∞

(
y(t), 0̂

)
+ e1

≤ b1β1Dtm (u, 0̂) + c1β2Dtm (v, 0̂) + e1.

By taking supremum, we receive the first estimation in (58). By doing same arguments for t ∈ [tm,∞)
and using Remark 6.5, we have

d∞(G1(u, v)(t), 0̂) ≤
(
B1d∞

(
x(t), 0̂

)
+ C1d∞

(
y(t), 0̂

)
+ E1

)
e−2θ(t−η)

≤

(
B1β1Dtm (u, 0̂) + C1β2Dtm (v, 0̂) + E1

)
e−2θ(t−η)

+
(
B1Q̃(θ, q)D̃tm (u, 0̂) + C1Q̃(θ, q)D̃tm (v, 0̂)

)
e−θ(t−η). (60)

Then dividing both sides of the inequality by eθ(t−η) and taking supremum when t ∈ [tm,∞), we obtain
the inequality (59).

Lemma 6.7. Assume that hypothesis (H2) is satisfied. Then the following estimations

D(Gi(u, v),Gi(u, v)) ≤ σi1β1D(u,u) + σi2β2D(v, v), i = 1, 2 (61)

hold for all (u, v), (u, v) ∈ C(J∞,Ec) × C(J∞,Ec).
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Proof. Assume that x, y ∈ C
q
1 (J∞,Ec) and satisfy the nonlocal condition (2) and u, v ∈ C(J∞,Ec) are Caputo

gH - derivatives in type 1 of x, y, respectively. From Lemma 3.4, it implies that x, y satisfies the integral
forms (7). From Gi(u, v)(t) = 1i

(
t, x(u(t), v(t)), y(u(t), v(t))

)
and (H2), we imply that

d∞(Gi(u, v)(t),Gi(u, v)(t))
= d∞

(
1i

(
t, x(u(t), v(t)), y(u(t), v(t))

)
, 1i

(
t, x(u(t), v(t)), y(u(t), v(t))

))
≤ σi1

[
d∞(x(u(t), v(t)), x(u(t), v(t))) + σi2d∞(y(u(t), v(t)), y(u(t), v(t)))

]
≤ σi1

[
d∞(A1(u),A1(u)) + d∞(RL

F I
q
0+ u(t), RL

F I
q
0+ u(t))

]
+ σi2

[
d∞(Ã1(v), Ã1(v)) + d∞(RL

F I
q
0+ v(t), RL

F I
q
0+ v(t))

]
(62)

Case 1. If t ∈ [0, tm] then we have

d∞(A1(u),A1(u)) ≤ a
∑
k∈J2

ak d∞
(

RL
F I

q
0+ u(tk), RL

F I
q
0+ u(tk)

)
+ a

∑
k∈J1

ak d∞
(

RL
F I

q
0+ u(tk), RL

F I
q
0+ u(tk)

)
= a

m∑
k=1

ak d∞
(

RL
F I

q
0+ u(tk), RL

F I
q
0+ u(tk)

)
≤ a

m∑
k=1

ak
1

Γ(q)

∫ tk

0
(tk − s)q−1d∞

(
u(s),u(s)

)
ds

≤
a

Γ(q + 1)

m∑
k=1

aktq
kDtm

(
u,u

)
,

and

d∞
(

RL
F I

q
0+ u(t), RL

F I
q
0+ u(t)

)
≤

1
Γ(q)

∫ t

0
(t − s)q−1d∞

(
u(s),u(s)

)
ds

≤
tq

Γ(q + 1)
Dtm

(
u,u

)
.

By doing the same arguments for the third and the forth terms in the right hand side of estimation (62),
we obtain

d∞(Ã1(v), Ã1(v)) + d∞(RL
F I

q
0+ v(t), RL

F I
q
0+ v(t)) ≤

1
Γ(q + 1)

ã m∑
k=1

ãktq
k + tq

 Dtm

(
v, v

)
.

Thus, the inequality (62) becomes

d∞(Gi(u, v)(t),Gi(u, v)(t)) ≤
1

Γ(q + 1)


a

m∑
k=1

aktq
k + tq

 Dtm

(
u,u

)
+ σi2

ã
m∑

k=1

ãktq
k + tq

 Dtm

(
v, v

) .
Then, by taking supremum for t ∈ [0, tm], we obtain

Dtm (Gi(u, v),Gi(u, v)) ≤ σi1β1Dtm (u,u) + σi2β2Dtm (v,u)
≤ σi1β1D(u,u) + σi2β2D(v,u). (63)

Case 2. If t ∈ [tm,∞) then by using similar arguments, we also obtain

d∞(A1(u),A1(u)) ≤
a

Γ(q + 1)

m∑
k=1

aktq
kDtm

(
u,u

)
,
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and

d∞(RL
F I

q
0+ u(t), RL

F I
q
0+ u(t)) ≤

1
Γ(q)

[∫ tm

0
(t − s)q−1d∞(u(s),u(s))ds +

∫ t

tm

(t − s)q−1d∞(u(s),u(s))ds
]

≤
1

Γ(q)

[∫ tm

0
(t − s)q−1Dtm (u,u)ds +

∫ t

tm

(t − s)q−1eθ(s−η)D̃tm (u,u)ds
]

<
1

Γ(q)

[∫ tm

0
(tm − s)q−1Dtm (u,u)ds +

∫ t

0
(t − s)q−1eθ(s−η)D̃tm (u,u)ds

]
<

tq
m

Γ(q + 1)
Dtm (u,u) +

Q(θ, q)eθ(t−η)

Γ(q + 1)
D̃tm (u,u).

Then, the inequality (62) becomes

d∞(Gi(u, v)(t),Gi(u, v)(t)) ≤
σi1

Γ(q + 1)


a

m∑
k=1

aktq
k + tq

m

 Dtm (u,u) + eθ(t−η)Q(θ, q)D̃tm (u,u)


+

σi2

Γ(q + 1)


ã

m∑
k=1

ãktq
k + tq

m

 Dtm (v, v) + eθ(t−η)Q(θ, q)D̃tm (v, v)

 .
Dividing both sides by eθ(t−η) and taking supremum when t ∈ [tm,∞), we obtain

D̃tm (Gi(u, v),Gi(u, v)) <
σi1

Γ(q + 1)


a

m∑
k=1

aktq
m + tq

m

 Dtm (u,u) + Q(θ, q)D̃tm (u,u)


+

σi2

Γ(q + 1)


ã

m∑
k=1

ãktq
m + tq

m

 Dtm (v, v) + Q(θ, q)D̃tm (v, v)


≤

σi1

Γ(q + 1)

a m∑
k=1

aktq
m + tq

m + Q(θ, q)

 D(u,u)

+
σi2

Γ(q + 1)

ã m∑
k=1

ãktq
m + tq

m + Q(θ, q)

 D(v, v).

From Remark 6.9, we can choose a big enough number θ such that tq
m + Q(θ, q) ≤ 1. Then, the above

estimation becomes

D̃tm (Gi(u, v),Gi(u, v)) ≤ σi1β1D(u,u) + σi2β2D(v,u). (64)

Therefore, the inequality (61) can be implied directly from the estimations (63), (64).

Lemma 6.8 ([24], Lemma 2.3). For all ε > 0, the following estimation∫ t

0
(t − s)q−1eλsds <

eλt

q

2 (
C

λ
1

1+ε

) q
2

+
1
λ

(
C

λ
1

1+ε

)q
 =

eλt

q
Q(λ, q)

holds, where C > 0 does not depend on λ, t ∈ [0,∞), q ∈ (0, 1].

Remark 6.9. For C > 0 and q ∈ (0, 1], the value of Q(λ, q) tends to 0 as λ→ +∞.

Lemma 6.10. For q ∈ (0, 1] and λ > q, the following estimation∫ t

0
(t − s)q−1e−λsds ≤ Jt(λ, q)

holds, where Jt(λ, q) := 1
λ + e−λ(t−1)

(
1
q −

1
λ

)
.



N.T.K. Son, N.P. Dong / Filomat 33:12 (2019), 3795–3822 3821

Proof. By changing variable s1 = t − s, we have∫ t

0
sq−1

1 e−λ(t−s1)ds1 ≤ e−λt
(∫ 1

0
sq−1

1 eλs1 ds1 +

∫ t

1
sq−1

1 eλs1 ds1

)
≤ e−λt

(
eλ

∫ 1

0
sq−1

1 ds1 +

∫ t

1
eλs1 ds1

)
≤ e−λt

(
eλt

λ
+

eλ(λ − q)
λq

)
=

1
λ

+ e−λ(t−1)

(
1
q
−

1
λ

)
:= Jt(λ, q).
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