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Abstract. In this paper we study the pointwise convergence and convergence in L1-norm of double
trigonometric series whose coefficients form a null sequence of bounded variation of order (p, 0), (0, p) and
(p, p) with the weight ( jk)p−1 for some integer p > 1. The double trigonometric series in this paper represents
double cosine series, double sine series and double cosine sine series. Our results extend the results of
Young [9], Kolmogorov [4] in the sense of single trigonometric series to double trigonometric series and of
Móricz [6, 7] in the sense of higher values of p.

1. Introduction

Consider the double trigonometric series

∞∑
j=0

∞∑
k=0

a jk ψ j(x) ψk(y) (1.1)

on positive quadrant T = [0, π] × [0, π] of the two dimensional torus.
The double trigonometric series (1.1) represents

(a) double cosine series
∞∑
j=0

∞∑
k=0
λ jλka jk cos jx cos ky where λ0 = 1

2 and λ j = 1 for j = 1, 2, 3, ... .

(b) double sine series
∞∑
j=1

∞∑
k=1

a jk sin jx sin ky

(c) double cosine-sine series
∞∑
j=0

∞∑
k=1
λ ja jk cos jx sin ky where λ0 = 1

2 and λ j = 1 for j = 1, 2, 3, ... .

The rectangular partial sums ψmn(x, y) and the Cesàro means σmn(x, y) of the series (1.1) are defined as

ψmn(x, y) =

m∑
j=0

n∑
k=0

a jk ψ j(x) ψk(y),
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σmn(x, y) =
1

(m + 1)(n + 1)

m∑
j=0

n∑
k=0

ψ jk(x, y) (m,n > 0)

and for λ > 1, the truncated Cesàro means are defined by

Vλ
mn(x, y) =

1
([λm] −m)([λn] − n)

[λm]∑
j=m+1

[λn]∑
k=n+1

ψ jk(x, y).

Assuming the coefficients {a jk : j, k ≥ 0} in (1.1) be a double sequence of real numbers which satisfy the
following conditions which may be called as conditions of bounded variation for some positive integer p:

|a jk|( jk)p−1
→ 0 as max{ j, k} → ∞, (1.2)

lim
k→∞

∞∑
j=0

|4p0a jk|( jk)p−1 = 0, (1.3)

lim
j→∞

∞∑
k=0

|40pa jk|( jk)p−1 = 0, (1.4)

∞∑
j=0

∞∑
k=0

|4ppa jk|( jk)p−1 < ∞. (1.5)

For some integers p and q, the finite order differences 4pqa jk are defined by

400a jk = a jk;

4pqa jk = 4p−1,qa jk − 4p−1,qa j+1,k (p ≥ 1, q ≥ 0);

4pqa jk = 4p,q−1a jk − 4p,q−1a j,k+1 (p ≥ 0, q ≥ 1).

Also a double induction argument gives

4pqa jk =

p∑
s=0

q∑
t=0

(−1)s+t
(
p
s

)(
q
t

)
a j+s, k+t.

The above mentioned (1.2)-(1.5) conditions generalise the concept of monotone sequences. Also any
sequence satisfying (1.5) with p = 2 is called a quasi-convex sequence [4, 7]. Clearly the conditions (1.2)
and (1.5) implies (1.3) and (1.4) for p = 1 and moreover for p = 1 , the conditions (1.2) and (1.5) reduce to

|a jk| → 0 as max{ j, k} → ∞ and
∞∑
j=0

∞∑
k=0
|411a jk| < ∞.

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim’s sense ( [10],vol. 2, ch.
17). Let the sum of the series (1.1) be denoted by f (x, y) (provided it exists).

Also let
∥∥∥ f

∥∥∥ denotes the L1(T2)-norm, i.e,
∥∥∥ f

∥∥∥ =
π∫

0

π∫
0

∣∣∣ f (x, y)
∣∣∣ dxdy

Many authors like Móricz [6, 7], Chen [2], K. Kaur et al. [3] and Krasniqi [5] studied integrability and
L1-convergence of double trigonometric series under different classes of coefficients. In [7], Móricz studied
both double cosine series and double sine series as far as their integrability and convergence in L1

−norm is
concerned where as in [6] he studied complex double trigonometric series under coefficients of bounded
variation.
These authors mainly discussed the case for p = 1 or p = 2 and preferred the condition of bounded variation
on coefficients. Our aim in this paper is to extend the above results from p = 1 or p = 2 to general cases for
double trigonometric series of all types as mentioned above.

For convenience, we write λn = [λn] where n is a positive integer, λ > 1 is a real number and [ ] means
greatest integral part and in the results, Cp denote constants which may not be the same at each occurrence.

Our first main result is as follows:
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Theorem 1.1. Assume that conditions (1.2) − (1.5) are satisfied for some integer p ≥ 1, then
(i) ψmn(x, y) converges pointwise to f (x, y) for every (x, y) ∈ T2

\ {(0, 0)};
(ii) ‖ψmn(x, y) − f (x, y)‖ = o(1) as min(m,n)→∞.

The results mentioned in above theorem has been proved by Móricz [6, 7] for p = 1 and p = 2 using suitable
estimates for Dirichlet’s kernel D j(x) and Fejér kernel K j(x) where as in the case of a single series for p = 2,
the results regarding convergence have been proved by Kolmogorov [4].

Obviously, condition (1.5) implies any of the following conditions:

lim
λ↓1

lim
n→∞

∞∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

|4ppa jk|( jk)p−1 = 0; (1.6)

lim
λ↓1

lim
m→∞

λm∑
j=m+1

∞∑
k=0

λm − j + 1
λm −m

|4ppa jk|( jk)p−1 = 0. (1.7)

We introduce the following three sums for m,n ≥ 0 and λ > 1:

Sλ10(m,n, x, y) =

λm∑
j=m+1

n∑
k=0

λm − j + 1
λm −m

a jk ψ j(x) ψk(y);

Sλ01(m,n, x, y) =

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

a jk ψ j(x) ψk(y);

Sλ11(m,n, x, y) =

λm∑
j=m+1

λn∑
k=n+1

λm − j + 1
λm −m

λn − k + 1
λn − n

a jk ψ j(x) ψk(y)

and we have

Sλ11(m,n; x, y) =
1

(λm −m)

λm∑
u=m+1

(
Sλ01(u,n; x, y) − Sλ01(m,n; x, y)

)
;

Sλ11(m,n; x, y) =
1

(λn − n)

λn∑
v=n+1

(
Sλ10(m, v; x, y) − Sλ10(m,n; x, y)

)
.

This implies

Sλ11(m,n; x, y) ≤


2 sup

m≤u≤λm

(
|Sλ01(u,n; x, y)|

)
2 sup

n≤v≤λn

(
|Sλ10(m, v; x, y)|

)
 (1.8)

The second result of this paper is the following theorem:

Theorem 1.2. Let E⊂ T2. Assume that the following conditions are satisfied:

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|Sλ10(m,n; x, y)|

)
= 0; (1.9)

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|Sλ01(m,n; x, y)|

)
= 0. (1.10)

If Vλ
mn(x, y) converges uniformly on E to f (x, y) as min(m,n)→∞, then so does ψmn.
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We will also prove the following theorem:

Theorem 1.3. Assume that the conditions (1.2)-(1.4) and (1.6)-(1.7) are satisfied for some integer p ≥ 1, then (i) if
Vλ

mn(x, y) converges uniformly to f (x, y) as min(m,n) → ∞ then ψmn will also converge uniformly to f (x, y) as
min(m,n)→∞. (ii) If ‖Vλ

mn − f ‖ −→ 0 then ‖ψmn − f ‖ −→ 0 as min(m,n)→∞.

2. Notations and formulas

The Cesàro sums of order α of the sequence {ψ j(t)} for any real number α are denoted by ψαj (t). Thus we
have

ψαj (t) =

j∑
s=0

ψα−1
s (t) (α ≥ 1, j ≥ 0) (2.1)

In this paper ψ j
1(t) either represents D j(t) or D̃ j(t) where D j(t) and D̃ j(t) represents Dirichlet and conjugate

Dirichlet Kernels respectively. Also from [8], we have following estimates

(i) |ψαj (x)| = O
(
( j + 1)α

)
f or all α ≥ 1, −π ≤ x ≤ π. (2.2)

(ii) ψp
j (x) = O

( 1
xp

)
for all p ≥ 2, (0 < x ≤ π) (2.3)

3. Lemmas

We require the following lemmas for the proof of our results:

Lemma 3.1. For m,n ≥ 0 and p > 1, the following representation holds:

ψmn(x, y) =

m∑
j=0

n∑
k=0

a jk ψ j(x) ψk(y)

=

m∑
j=0

n∑
k=0

4ppa jkψ
p−1
j (x)ψp−1

k (y) +

m∑
j=0

p−1∑
t=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y)

+

n∑
k=0

p−1∑
s=0

4spam+1,kψ
s
m(x)ψp−1

k (y) +

p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y).

Lemma 3.2. [2] For m,n ≥ 0 and λ > 1, the following representation holds:

ψmn − σmn =
λm + 1
λm −m

λn + 1
λn − n

(σλm,λn − σλm,n − σm,λn + σmn)

+
λm + 1
λm −m

(σλm,n − σmn) +
λn + 1
λn − n

(σm,λn − σmn)

−Sλ11(m,n, x, y) − Sλ10(m,n, x, y) − Sλ01(m,n, x, y).

Lemma 3.3. For m,n ≥ 0 and λ > 1, we have the following representation:

Vλ
mn − ψmn = Sλ11(m,n, x, y) + Sλ10(m,n, x, y) + Sλ01(m,n, x, y).
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Proof. We have

Vλ
mn(x, y) =

1
(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

ψ jk(x, y)

Now we can write

1
(λm −m)

λm∑
j=m+1

ψ jk(x, y) =
1

(λm −m)

[ λm∑
j=0

ψ jk(x, y) −
m∑

j=0

ψ jk(x, y)
]

=
λm + 1

(λm −m))

[ 1
λm + 1

λm∑
j=0

ψ jk(x, y)
]
−

m + 1
(λm −m))

[ 1
m + 1

m∑
j=0

ψ jk(x, y)
]

Thus

Vλ
mn(x, y) =

1
(λn − n)

λn∑
k=n+1

[ 1
(λm −m)

λm∑
j=m+1

ψ jk(x, y)
]

=
1

(λn − n)

λn∑
k=n+1

[
λm + 1

(λm −m)
1

λm + 1

λm∑
j=0

ψ jk(x, y) −
m + 1

(λm −m)
1

m + 1

m∑
j=0

ψ jk(x, y)
]

=
1

(λn − n)
λm + 1

(λm −m)
1

λm + 1

λm∑
j=0

λn∑
k=n+1

ψ jk(x, y) −
1

(λn − n)
m + 1

(λm −m)
1

m + 1

m∑
j=0

λn∑
k=n+1

ψ jk(x, y)

= S11 + S22

Now S11 =
1

(λn − n)
λm + 1

(λm −m)
1

λm + 1

[ λm∑
j=0

λn∑
k=0

ψ jk(x, y) −
λm∑
j=0

n∑
k=0

ψ jk(x, y)
]

=
λm + 1
λm −m

λn + 1
λn − n

σλm,λn −
λm + 1
λm −m

n + 1
λn − n

σλm,n

Similarly we get

S22 =
m + 1
λm −m

λn + 1
λn − n

σm,λn −
m + 1
λm −m

n + 1
λn − n

σmn

Thus we have

Vλ
mn =

λm + 1
λm −m

λn + 1
λn − n

σλm,λn −
λm + 1
λm −m

n + 1
λn − n

σλm,n −
m + 1
λm −m

λn + 1
λn − n

σm,λn +
m + 1
λm −m

n + 1
λn − n

σmn

=
λm + 1
λm −m

λn + 1
λn − n

(σλm,λn − σλm,n − σm,λn + σmn) +
λm + 1
λm −m

(σλm,n − σmn) +
λn + 1
λn − n

(σm,λn − σmn) + σmn.

( by rearrangement of terms)
The use of Lemma 3.2 gives

Vλ
mn − ψmn =

λm∑
j=m+1

λn∑
k=n+1

λm − j + 1
λm −m

λn − k + 1
λn − n

a jkψ j(x)ψk(y)

+

λm∑
j=m+1

n∑
k=0

λm − j + 1
λm −m

a jkψ j(x)ψk(y) +

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

a jkψ j(x)ψk(y).
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Lemma 3.4. For m,n ≥ 0 and λ > 1, we have the following representation:

Sλ10(m,n; x, y) =

λm∑
j=m+1

n∑
k=0

λm − j + 1
λm −m

a jkψ j(x)ψk(y)

=

λm∑
j=m+1

n∑
k=0

λm − j + 1
λm −m

4ppa jkψ
p−1
j (x)ψp−1

k (y) +

λm∑
j=m+1

p−1∑
t=0

λm − j + 1
λm −m

4pta j,n+1ψ
p−1
j (x)ψt

n(y)

+
1

λm −m

λm∑
j=m+1

p−1∑
s=0

n∑
k=0

4spa j+1,kψ
s
j(x)ψp−1

k (y) +
1

λm −m

λm∑
j=m+1

p−1∑
s=0

p−1∑
t=0

4sta j+1,n+1ψ
s
j(x)ψt

n(y)

−

p−1∑
s=0

n∑
k=0

4spam+1,kψ
s
m(x)ψp−1

k (y) −
p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y).

Proof. We have by summation by parts,

Sλ10(m,n; x, y) =
n∑

k=0
ψk(y)

( λm∑
j=m+1

λm − j + 1
λm −m

a jkψ j(x)
)

=

n∑
k=0

ψk(y)
( λm∑

j=m+1

λm − j + 1
λm −m

4p0a jkψ
p−1
j (x) +

1
λm −m

λm∑
j=m+1

p−1∑
s=0

4s0a j+1,kψ
s
j(x) −

p−1∑
s=0

4s0am+1,kψ
s
m(x)

)

=

λm∑
j=m+1

λm − j + 1
λm −m

ψp−1
j (x)

( n∑
k=0

4p0a jkψk(y)
)

+
1

λm −m

λm∑
j=m+1

p−1∑
s=0

( n∑
k=0

4s0a j+1,kψk(y)
)
ψs

j(x)

−

p−1∑
s=0

( n∑
k=0

4s0am+1,kψk(y)
)
ψs

m(x)

=

λm∑
j=m+1

λm − j + 1
λm −m

ψp−1
j (x)

( n∑
k=0

4ppa jkψ
p−1
k (y) +

p−1∑
t=0

4pta j,n+1ψ
t
n(y)

)

+
1

λm −m

λm∑
j=m+1

p−1∑
s=0

( n∑
k=0

4spa j+1,kψ
p−1
k (y) +

p−1∑
t=0

4sta j+1,n+1ψ
t
n(y)

)
ψs

j(x)

−

p−1∑
s=0

( n∑
k=0

4spam+1,kψ
p−1
k (y) +

p−1∑
t=0

4stam+1,n+1ψ
t
n(y)

)
ψs

m(x)

Similarly we can have representation for Sλ01(m,n; x, y).

4. Proof of Theorems

Proof of Theorem 1.1

For m,n ≥ 0 and p > 1, we have from Lemma 3.1

ψmn(x, y) =

m∑
j=0

n∑
k=0

4ppa jkψ
p−1
j (x)ψp−1

k (y) +

m∑
j=0

p−1∑
t=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y)
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+

n∑
k=0

p−1∑
s=0

4spam+1,kψ
s
m(x)ψp−1

k (y) +

p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y) =
∑

1

+
∑

2

+
∑

3

+
∑

4

.

Using (2.3) ,that is, ψp
j (x) = O

( 1
xp

)
for all p ≥ 2, (0 < x ≤ π) etc, we have for (0 < x, y ≤ π),

∞∑
j=0

∞∑
k=0

|4ppa jkψ
p−1
j (x)ψp−1

k (y)| < ∞ (by (1.2))

and also by (1.3) - (1.5), we have

m∑
j=0

p−1∑
t=0

4pta j,n+1 ≤

p−1∑
t=0

t∑
v=0

(
t
v

)
(

m∑
j=0

|4p0a j,n+v+1|)

≤ sup
n<k≤n+p

m∑
j=0

|4p0a jk| ≤ sup
n<k≤n+p

m∑
j=0

|4p0a jk| → 0

as min(m,n)→∞

Thus
m∑

j=0

p−1∑
t=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y)→ 0 as min(m,n)→∞.

and similarly

p−1∑
s=0

n∑
k=0

4spam+1,k ≤

p−1∑
s=0

s∑
u=0

(
s
u

)
(

n∑
k=0

|40pam+u+1,k|)

≤ sup
m< j≤m+p

n∑
k=0

|40pa jk| ≤ sup
m< j≤m+p

n∑
k=0

|40pa jk| → 0

as min(m,n)→∞.

Thus
n∑

k=0

p−1∑
s=0

4spam+1,kψ
s
m(x)ψp−1

k (y)→ 0 as min(m,n)→∞.

Also

p−1∑
s=0

p−1∑
t=0

4stam+1,n+1 ≤

p−1∑
s=0

p−1∑
t=o

s∑
u=0

t∑
v=0

(
s
u

)(
t
v

)
|400am+u+1,n+v+1|

≤ sup
j>m,k>n

|a jk| → 0 as min(m,n)→∞.

So
p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y)→ 0 as min(m,n)→∞.

Consequently series (1.1) converges to the function f (x, y) where

f (x, y) =

∞∑
j=0

∞∑
k=0

4ppa jkψ
p−1
j (x)ψp−1

k (y) and lim
m,n→∞

ψmn(x, y) = f (x, y).
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Now we will calculate ‖
∑

1 ‖, ‖
∑

2 ‖, ‖
∑

3 ‖ and ‖
∑

4 ‖ in the following way:

‖

∑
1

‖ = ‖

m∑
j=0

n∑
k=0

4ppa jkψ
p−1
j (x)ψp−1

k (y)‖

≤

m∑
j=0

n∑
k=0

|4ppa jk|

∫ π

0

∫ π

0
|ψp−1

j (x)ψp−1
k (y)|dxdy

≤ Cp

m∑
j=0

n∑
k=0

|4ppa jk| jp−1kp−1
∫ π

0

∫ π

0
dxdy (by(2.2))

≤ Cp

m∑
j=0

n∑
k=0

|4ppa jk| jp−1kp−1.

‖

∑
2

‖ = ‖

m∑
j=0

p−1∑
t=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y)‖

≤

p−1∑
t=0

t∑
v=0

(
t
v

)
(

m∑
j=0

|4p0a j,n+v+1|)
∫ π

−π

∫ π

−π
|ψp−1

j (x)ψt
n(y)|dxdy

≤ Cp sup
n<k≤n+p

m∑
j=0

|4p0a jk| jp−1
( p−1∑

t=0

nt
)

(by(2.2))

≤ Cp sup
n<k≤n+p

m∑
j=0

|4p0a jk| jp−1kp−1.

‖

∑
3

‖ = ‖

p−1∑
s=0

n∑
k=0

4spam+1,kψ
s
m(x)ψp−1

k (y)‖

≤

p−1∑
s=0

s∑
u=0

(
s
u

)
(

n∑
k=0

|40pam+u+1,k|)s
m kp−1

≤ Cp sup
m< j≤m+p

n∑
k=0

|40pa jk| kp−1
( p−1∑

s=0

ms
)

≤ Cp sup
m< j≤m+p

n∑
k=0

|40pa jk| jp−1kp−1.

‖

∑
4

‖ = ‖

p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y)‖

≤

p−1∑
s=0

p−1∑
t=o

s∑
u=0

t∑
v=0

(
s
u

)(
t
v

)
|400am+u+1,n+v+1|ms nt

≤ Cp sup
j>m,k>n

|a jk| jp−1kp−1.
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Now let Rmn consists of all
(
j, k

)
with j > m or k > n, that is,

∑∑
( j,k)∈Rmn

=

∞∑
j=m+1

n∑
k=0

+

∞∑
j=0

∞∑
k=n+1

+

∞∑
j=m+1

∞∑
k=n+1

.

Then

‖ f − ψmn‖=
( π∫

0

π∫
0

∣∣∣ f (x, y) − ψmn(x, y)
∣∣∣ dxdy

)

≤ ‖

∑
( j,k)

∑
∈Rmn

4ppa jkψ
p−1
j (x)ψp−1

k (y)‖ + ‖

m∑
j=0

p−1∑
t=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y)‖

+‖

n∑
k=0

p−1∑
s=0

4spam+1,kψ
s
m(x)ψp−1

k (y)‖ + ‖

p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y)‖

≤ Cp

{( ∑
( j,k)∈Rmn

|4ppa jk| jp−1kp−1
)

+
(

sup
n<k≤n+p

m∑
j=0

|4p0a jk| jp−1kp−1
)

+
(

sup
m< j≤m+p

n∑
k=0

|40pa jk| jp−1kp−1
)

+
(

sup
j>m,k>n

|a jk| jp−1kp−1
)}

( As discussed above )
−→ 0 as min(m,n)→∞ ( by (1.2) to (1.5) )

which proves (ii) part.

Proof of Theorem 1.2

Using the relation (1.8), we find that (1.9) or (1.10) implies

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|Sλ11(m,n; x, y)|

)
= 0. (4.1)

Assume that Vλ
mn(x, y) converges uniformly on E to f (x, y). Then by Lemma 3.3, we get

lim
m,n→∞

(
| sup
(x,y)∈E

(
ψmn(x, y) − Vλ

mn(x, y)
)
|

)
≤ lim

m,n→∞

(
sup

(x,y)∈E
|Sλ10(m,n; x, y)|

)
+ lim

m,n→∞

(
sup

(x,y)∈E
|Sλ01(m,n; x, y)|

)
+ lim

m,n→∞

(
sup

(x,y)∈E
|Sλ11(m,n; x, y)|

)
.

After taking λ ↓ 1 the result follows from (1.9), (1.10) and (4.1).

Proof of Theorem 1.3
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Using the Lemma 3.4, we can write the expression for Sλ01(m,n; x, y) as

Sλ01(m,n; x, y) =

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

a jkψ j(x)ψk(y)

=

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppa jkψ
p−1
j (x)ψp−1

k (y) +

λn∑
k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kψ
s
m(x)ψp−1

k (y)

+
1

λn − n

m∑
j=0

λn∑
k=n+1

p−1∑
t=0

4pta j,k+1ψ
p−1
j (x)ψt

k(y) +
1

λn − n

λn∑
k=n+1

p−1∑
s=0

p−1∑
t=0

4stam+1,k+1ψ
s
m(x)ψt

k(y)

−

p−1∑
t=0

m∑
j=0

4pta j,n+1ψ
p−1
j (x)ψt

n(y) −
p−1∑
s=0

p−1∑
t=0

4stam+1,n+1ψ
s
m(x)ψt

n(y)

=
∑
11

+
∑
12

+
∑
13

+
∑
14

+
∑
15

+
∑
16

.

Now by using (1.2)-(1.4) and (1.6) along with estimates of ψp−1
j (x) etc., as mentioned in [8], we have the

following estimates :

|

∑
11

| =
∣∣∣ m∑

j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppa jkψ
p−1
j (x)ψp−1

k (y)
∣∣∣

≤

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

∣∣∣4ppa jk

∣∣∣ jp−1kp−1

→ 0 as min(m,n)→∞.

Consequently lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑

11 |
)
→ 0 as min(m,n)→∞.

|

∑
12

| =
∣∣∣ λn∑

k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kψ
s
m(x)ψp−1

k (y)
∣∣∣

≤

p−1∑
s=0

s∑
u=0

(
s
u

) λn∑
k=n+1

|40pam+u+1,k|mskp−1

≤ sup
m< j≤m+p

λn∑
k=n+1

|40pa jk| jp−1kp−1
→ 0 as min(m,n)→∞.

So lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|

∑
12

|

)
→ 0 as min(m,n)→∞.

|

∑
13

| ≤ sup
n<k≤λn

p−1∑
t=0

m∑
j=0

|4pta j,k+1| jp−1kt

≤ sup
n<k≤λn

p−1∑
t=0

t∑
v=0

(
t
v

) m∑
j=0

|4pta j,k+v+1| jp−1kt
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≤ sup
n<k≤λn+p

m∑
j=0

|4p0a jk| jp−1kp−1
→ 0 as min(m,n)→∞.

which implies lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑

13 |
)
→ 0 as min(m,n)→∞.

Similarly we estimate others in brief

|

∑
14

| ≤ sup
n<k≤λn

p−1∑
s=0

p−1∑
t=0

|4stam+1,k+1| jp−1kp−1

≤ sup
j>m,k>n

|a jk| jp−1kp−1
→ 0 as min(m,n)→∞.

Thus lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑

14 |
)
→ 0 as min(m,n)→∞.

|

∑
15

| ≤

p−1∑
t=0

t∑
v=0

(
t
v

) m∑
j=0

|4p0a j,n+v+1| jp−1nt
≤ sup

n<k≤n+p

m∑
j=0

|4p0a jk| jp−1kp−1

→ 0 as min(m,n)→∞.

which implies lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑

15 |
)
→ 0 as min(m,n)→∞.

|

∑
16

| ≤

p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s
u

)(
t
v

)
|400am+u+1,n+v+1|msnt

≤ sup
j>m,k>n

|a jk| jp−1kp−1
→ 0 as min(m,n)→∞.

So lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|

∑
16

|

)
→ 0 as min(m,n)→∞.

Thus combining all these, we have

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|Sλ01(m,n; x, y)|

)
= 0.

Similarly (1.2)-(1.4) and (1.7) results in

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|Sλ10(m,n; x, y)|

)
= 0;

Thus first part of theorem follows from Theorem 4.2

Proof of (ii) We have

‖ψmn − f ‖ ≤‖ψmn − Vλ
mn‖ +‖Vλ

mn − f ‖.

By assumption ‖Vλ
mn − f ‖ → 0, so it is sufficient to show that

‖ψmn − Vλ
mn‖ → 0 as min(m,n)→∞.
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By Lemma 3.3, we have

‖ψmn − Vλ
mn‖ ≤ ‖Sλ10(m,n; x, y)‖ + ‖Sλ01(m,n; x, y)‖

+‖Sλ11(m,n; x, y)‖.

Now in order to estimate ‖Sλ01(m,n; x, y)‖ , we first find ‖
∑

11‖, ‖
∑

12‖,

‖
∑

13 ‖, ‖
∑

14‖, ‖
∑

15‖ and ‖
∑

16‖ , so we have

‖

∑
11

‖ = ‖

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppa jkψ
p−1
j (x)ψp−1

k (y)‖

≤

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppa jk jp−1kp−1

π∫
0

π∫
0

dxdy

≤ Cp

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

|4ppa jk| jp−1kp−1.

‖

∑
12

‖ = ‖

λn∑
k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kψ
s
m(x)ψp−1

k (y)‖

≤ Cp

p−1∑
s=0

s∑
u=0

(
s
u

) λn∑
k=n+1

|40pam+u+1,k|kp−1ms

≤ Cp sup
m< j≤m+p

( λn∑
k=n+1

|40pa jk|kp−1
)( p−1∑

s=0

ms
)

≤ Cp sup
m< j≤m+p

λn∑
k=n+1

|40pa jk| jp−1kp−1.

‖

∑
13

‖ ≤ Cp sup
n<k≤λn

p−1∑
t=0

m∑
j=0

|4pta j,k+1| jp−1kt

≤ Cp sup
n<k≤λn

p−1∑
t=0

t∑
v=0

(
t
v

) m∑
j=0

|4pta j,k+v+1| jp−1kt

≤ Cp sup
n<k≤λn+p

m∑
j=0

|4p0a jk| jp−1kp−1.

‖

∑
14

‖ ≤ Cp sup
n<k≤λn

p−1∑
s=0

p−1∑
t=0

|4stam+1,k+1|mskt

≤ Cp sup
j>m,k>n

|a jk| jp−1kp−1.

‖

∑
15

‖ ≤ Cp

p−1∑
t=0

t∑
v=0

(
t
v

) m∑
j=0

|4p0a j,n+v+1| jp−1nt
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≤ Cp sup
n<k≤n+p

m∑
j=0

|4p0a jk| jp−1kp−1.

‖

∑
16

‖ ≤ Cp

p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s
u

)(
t
v

)
|400am+u+1,n+v+1|msnt

≤ Cp sup
j>m,k>n

|a jk| jp−1kp−1.

Thus we can estimate

‖Sλ01(m,n; x, y)‖ ≤ Cp

λn∑
k=n+1

m∑
j=0

λn − k + 1
λn − n

|4ppa jk| jp−1kp−1 + Cp

(
sup

m< j≤m+p

λn∑
k=n+1

|40pa jk| jp−1kp−1
)

+Cp

(
sup

n<k≤λn+p

m∑
j=0

|4p0a jk| jp−1kp−1
)

+ Cp

(
sup

j>m,k>n
|a jk| jp−1kp−1

)

+Cp

(
sup

n<k≤n+p

m∑
j=0

|4p0a jk| jp−1kp−1
)

+ Cp

(
sup

j>m,k>n
|a jk| jp−1kp−1

)
.

By (1.2)-(1.4) and (1.6), we conclude that

lim
λ↓1

lim
m,n→∞

(
‖Sλ01(m,n; x, y)‖

)
= 0.

Similarly by conditions (1.2)-(1.4) and (1.7), we get

lim
λ↓1

lim
m,n→∞

(
‖Sλ10(m,n; x, y)‖

)
= 0.

Also by (1.8), we have

lim
λ↓1

lim
m,n→∞

(
‖Sλ11(m,n; x, y)‖

)
= 0.

Thus ‖ψmn − Vλ
mn‖ → 0 as min(m,n)→∞.
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