L^{1}-Convergence of Double Trigonometric Series

Karanvir Singh ${ }^{\text {a }}$, Kanak Modi ${ }^{\text {b }}$
${ }^{a}$ Department of Applied Mathematics, GZS Campus College of Engineering and Technology, Maharaja Ranjit Singh Punjab Technical University Bathinda, Punjab, India
${ }^{b}$ Department of Mathematics, Amity University of Rajasthan, Jaipur, India

Abstract

In this paper we study the pointwise convergence and convergence in L^{1}-norm of double trigonometric series whose coefficients form a null sequence of bounded variation of order $(p, 0),(0, p)$ and (p, p) with the weight $(j k)^{p-1}$ for some integer $p>1$. The double trigonometric series in this paper represents double cosine series, double sine series and double cosine sine series. Our results extend the results of Young [9], Kolmogorov [4] in the sense of single trigonometric series to double trigonometric series and of Móricz $[6,7]$ in the sense of higher values of p.

1. Introduction

Consider the double trigonometric series

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j k} \psi_{j}(x) \psi_{k}(y) \tag{1.1}
\end{equation*}
$$

on positive quadrant $T=[0, \pi] \times[0, \pi]$ of the two dimensional torus.
The double trigonometric series (1.1) represents
(a) double cosine series $\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{j} \lambda_{k} a_{j k} \cos j x \cos k y$ where $\lambda_{0}=\frac{1}{2}$ and $\lambda_{j}=1$ for $j=1,2,3, \ldots$.
(b) double sine series $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k} \sin j x \sin k y$
(c) double cosine-sine series $\sum_{j=0}^{\infty} \sum_{k=1}^{\infty} \lambda_{j} a_{j k} \cos j x \sin k y$ where $\lambda_{0}=\frac{1}{2}$ and $\lambda_{j}=1$ for $j=1,2,3, \ldots$.

The rectangular partial sums $\psi_{m n}(x, y)$ and the Cesàro means $\sigma_{m n}(x, y)$ of the series (1.1) are defined as

$$
\psi_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} a_{j k} \psi_{j}(x) \psi_{k}(y)
$$

[^0]$$
\sigma_{m n}(x, y)=\frac{1}{(m+1)(n+1)} \sum_{j=0}^{m} \sum_{k=0}^{n} \psi_{j k}(x, y) \quad(m, n>0)
$$
and for $\lambda>1$, the truncated Cesàro means are defined by
$$
V_{m n}^{\lambda}(x, y)=\frac{1}{([\lambda m]-m)([\lambda n]-n)} \sum_{j=m+1}^{[\lambda m]} \sum_{k=n+1}^{[\lambda n]} \psi_{j k}(x, y)
$$

Assuming the coefficients $\left\{a_{j k}: j, k \geq 0\right\}$ in (1.1) be a double sequence of real numbers which satisfy the following conditions which may be called as conditions of bounded variation for some positive integer p :

$$
\begin{align*}
& \left|a_{j k}\right|(j k)^{p-1} \rightarrow 0 \quad \text { as } \quad \max \{j, k\} \rightarrow \infty, \tag{1.2}\\
& \lim _{k \rightarrow \infty} \sum_{j=0}^{\infty}\left|\Delta_{p 0} a_{j k}\right|(j k)^{p-1}=0, \tag{1.3}\\
& \lim _{j \rightarrow \infty} \sum_{k=0}^{\infty}\left|\Delta_{0 p} a_{j k}\right|(j k)^{p-1}=0, \tag{1.4}\\
& \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|\Delta_{p p} a_{j k}\right|(j k)^{p-1}<\infty . \tag{1.5}
\end{align*}
$$

For some integers p and q, the finite order differences $\Delta_{p q} a_{j k}$ are defined by

$$
\begin{aligned}
& \Delta_{00} a_{j k}=a_{j k} ; \\
& \Delta_{p q} a_{j k}=\Delta_{p-1, q} a_{j k}-\Delta_{p-1, q} a_{j+1, k} \quad(p \geq 1, q \geq 0) ; \\
& \Delta_{p q} a_{j k}=\Delta_{p, q-1} a_{j k}-\Delta_{p, q-1} a_{j, k+1} \quad(p \geq 0, q \geq 1) .
\end{aligned}
$$

Also a double induction argument gives

$$
\Delta_{p q} a_{j k}=\sum_{s=0}^{p} \sum_{t=0}^{q}(-1)^{s+t}\binom{p}{s}\binom{q}{t} a_{j+s, k+t} .
$$

The above mentioned (1.2)-(1.5) conditions generalise the concept of monotone sequences. Also any sequence satisfying (1.5) with $p=2$ is called a quasi-convex sequence [4, 7]. Clearly the conditions (1.2) and (1.5) implies (1.3) and (1.4) for $p=1$ and moreover for $p=1$, the conditions (1.2) and (1.5) reduce to

$$
\left|a_{j k}\right| \rightarrow 0 \text { as } \max \{j, k\} \rightarrow \infty \quad \text { and } \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|\Delta_{11} a_{j k}\right|<\infty .
$$

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim's sense ([10],vol. 2, ch. 17). Let the sum of the series (1.1) be denoted by $f(x, y)$ (provided it exists).

Also let $\|f\|$ denotes the $L^{1}\left(T^{2}\right)$-norm, i.e, $\|f\|=\int_{0}^{\pi} \int_{0}^{\pi}|f(x, y)| d x d y$
Many authors like Móricz [6, 7], Chen [2], K. Kaur et al. [3] and Krasniqi [5] studied integrability and L^{1}-convergence of double trigonometric series under different classes of coefficients. In [7], Móricz studied both double cosine series and double sine series as far as their integrability and convergence in $L^{1}-$ norm is concerned where as in [6] he studied complex double trigonometric series under coefficients of bounded variation.
These authors mainly discussed the case for $p=1$ or $p=2$ and preferred the condition of bounded variation on coefficients. Our aim in this paper is to extend the above results from $p=1$ or $p=2$ to general cases for double trigonometric series of all types as mentioned above.

For convenience, we write $\lambda_{n}=[\lambda n]$ where n is a positive integer, $\lambda>1$ is a real number and [] means greatest integral part and in the results, C_{p} denote constants which may not be the same at each occurrence.

Our first main result is as follows:

Theorem 1.1. Assume that conditions (1.2) - (1.5) are satisfied for some integer $p \geq 1$, then
(i) $\psi_{m n}(x, y)$ converges pointwise to $f(x, y)$ for every $(x, y) \in T^{2} \backslash\{(0,0)\}$;
(ii) $\left\|\psi_{m n}(x, y)-f(x, y)\right\|=o(1)$ as $\min (m, n) \rightarrow \infty$.

The results mentioned in above theorem has been proved by Móricz [6, 7] for $p=1$ and $p=2$ using suitable estimates for Dirichlet's kernel $D_{j}(x)$ and Fejér kernel $K_{j}(x)$ where as in the case of a single series for $p=2$, the results regarding convergence have been proved by Kolmogorov [4].

Obviously, condition (1.5) implies any of the following conditions:

$$
\begin{align*}
& \lim _{\lambda \downarrow 1} \varlimsup_{n \rightarrow \infty} \sum_{j=0}^{\infty} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n}\left|\Delta_{p p} a_{j k}\right|(j k)^{p-1}=0 \tag{1.6}\\
& \lim _{\lambda \downarrow 1} \varlimsup_{m \rightarrow \infty} \sum_{j=m+1}^{\lambda_{m}} \sum_{k=0}^{\infty} \frac{\lambda_{m}-j+1}{\lambda_{m}-m}\left|\Delta_{p p} a_{j k}\right|(j k)^{p-1}=0 . \tag{1.7}
\end{align*}
$$

We introduce the following three sums for $m, n \geq 0$ and $\lambda>1$:

$$
\begin{aligned}
& S_{10}^{\lambda}(m, n, x, y)=\sum_{j=m+1}^{\lambda_{m}} \sum_{k=0}^{n} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
& S_{01}^{\lambda}(m, n, x, y)=\sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
& S_{11}^{\lambda}(m, n, x, y)=\sum_{j=m+1}^{\lambda_{m}} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} a_{j k} \psi_{j}(x) \psi_{k}(y)
\end{aligned}
$$

and we have

$$
\begin{aligned}
& S_{11}^{\lambda}(m, n ; x, y)=\frac{1}{\left(\lambda_{m}-m\right)} \sum_{u=m+1}^{\lambda_{m}}\left(S_{01}^{\lambda}(u, n ; x, y)-S_{01}^{\lambda}(m, n ; x, y)\right) \\
& S_{11}^{\lambda}(m, n ; x, y)=\frac{1}{\left(\lambda_{n}-n\right)} \sum_{v=n+1}^{\lambda_{n}}\left(S_{10}^{\lambda}(m, v ; x, y)-S_{10}^{\lambda}(m, n ; x, y)\right)
\end{aligned}
$$

This implies

$$
S_{11}^{\lambda}(m, n ; x, y) \leq\left\{\begin{array}{c}
2 \sup _{m \leq u \leq \lambda m}\left(\left|S_{01}^{\lambda}(u, n ; x, y)\right|\right) \tag{1.8}\\
2 \sup _{n \leq v \leq \lambda n}\left(\left|S_{10}^{\lambda}(m, v ; x, y)\right|\right)
\end{array}\right\}
$$

The second result of this paper is the following theorem:
Theorem 1.2. Let $E \subset T^{2}$. Assume that the following conditions are satisfied:

$$
\begin{align*}
& \lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{10}^{\lambda}(m, n ; x, y)\right|\right)=0 ; \tag{1.9}\\
& \lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{01}^{\lambda}(m, n ; x, y)\right|\right)=0 . \tag{1.10}
\end{align*}
$$

If $V_{m n}^{\lambda}(x, y)$ converges uniformly on E to $f(x, y) \quad$ as $\min (m, n) \rightarrow \infty$, then so does $\psi_{m n}$.

We will also prove the following theorem:
Theorem 1.3. Assume that the conditions (1.2)-(1.4) and (1.6)-(1.7) are satisfied for some integer $p \geq 1$, then (i) if $V_{m n}^{\lambda}(x, y)$ converges uniformly to $f(x, y)$ as $\min (m, n) \rightarrow \infty$ then $\psi_{m n}$ will also converge uniformly to $f(x, y)$ as $\min (m, n) \rightarrow \infty$. (ii) If $\left\|V_{m n}^{\lambda}-f\right\| \longrightarrow 0$ then $\left\|\psi_{m n}-f\right\| \longrightarrow 0$ as $\min (m, n) \rightarrow \infty$.

2. Notations and formulas

The Cesàro sums of order α of the sequence $\left\{\psi_{j}(t)\right\}$ for any real number α are denoted by $\psi_{j}^{\alpha}(t)$. Thus we have

$$
\begin{equation*}
\psi_{j}^{\alpha}(t)=\sum_{s=0}^{j} \psi_{s}^{\alpha-1}(t) \quad(\alpha \geq 1, j \geq 0) \tag{2.1}
\end{equation*}
$$

In this paper $\psi_{j}{ }^{1}(t)$ either represents $D_{j}(t)$ or $\tilde{D}_{j}(t)$ where $D_{j}(t)$ and $\tilde{D}_{j}(t)$ represents Dirichlet and conjugate Dirichlet Kernels respectively. Also from [8], we have following estimates
(i) $\left|\psi_{j}^{\alpha}(x)\right|=O\left((j+1)^{\alpha}\right)$ for all $\alpha \geq 1,-\pi \leq x \leq \pi$.
(ii) $\psi_{j}^{p}(x)=O\left(\frac{1}{x^{p}}\right)$ for all $p \geq 2,(0<x \leq \pi)$

3. Lemmas

We require the following lemmas for the proof of our results:
Lemma 3.1. For $m, n \geq 0$ and $p>1$, the following representation holds:

$$
\begin{aligned}
& \psi_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
& \quad=\sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)+\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y) \\
& \quad+\sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)+\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y) .
\end{aligned}
$$

Lemma 3.2. [2] For $m, n \geq 0$ and $\lambda>1$, the following representation holds:

$$
\begin{aligned}
\psi_{m n}-\sigma_{m n}= & \frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{\lambda_{m}, \lambda n}-\sigma_{\lambda_{m, n}}-\sigma_{m, \lambda n}+\sigma_{m n}\right) \\
& +\frac{\lambda_{m}+1}{\lambda_{m}-m}\left(\sigma_{\lambda_{m}, n}-\sigma_{m n}\right)+\frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{m, \lambda_{n}}-\sigma_{m n}\right) \\
& -S_{11}^{\lambda}(m, n, x, y)-S_{10}^{\lambda}(m, n, x, y)-S_{01}^{\lambda}(m, n, x, y) .
\end{aligned}
$$

Lemma 3.3. For $m, n \geq 0$ and $\lambda>1$, we have the following representation:

$$
V_{m n}^{\lambda}-\psi_{m n}=S_{11}^{\lambda}(m, n, x, y)+S_{10}^{\lambda}(m, n, x, y)+S_{01}^{\lambda}(m, n, x, y)
$$

Proof. We have

$$
V_{m n}^{\lambda}(x, y)=\frac{1}{\left(\lambda_{m}-m\right)\left(\lambda_{n}-n\right)} \sum_{j=m+1}^{\lambda_{m}} \sum_{k=n+1}^{\lambda_{n}} \psi_{j k}(x, y)
$$

Now we can write

$$
\begin{aligned}
& \frac{1}{\left(\lambda_{m}-m\right)} \sum_{j=m+1}^{\lambda_{m}} \psi_{j k}(x, y)=\frac{1}{\left(\lambda_{m}-m\right)}\left[\sum_{j=0}^{\lambda_{m}} \psi_{j k}(x, y)-\sum_{j=0}^{m} \psi_{j k}(x, y)\right] \\
& =\frac{\lambda_{m}+1}{\left.\left(\lambda_{m}-m\right)\right)}\left[\frac{1}{\lambda_{m}+1} \sum_{j=0}^{\lambda_{m}} \psi_{j k}(x, y)\right]-\frac{m+1}{\left.\left(\lambda_{m}-m\right)\right)}\left[\frac{1}{m+1} \sum_{j=0}^{m} \psi_{j k}(x, y)\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
& V_{m n}^{\lambda}(x, y)=\frac{1}{\left(\lambda_{n}-n\right)} \sum_{k=n+1}^{\lambda_{n}}\left[\frac{1}{\left(\lambda_{m}-m\right)} \sum_{j=m+1}^{\lambda_{m}} \psi_{j k}(x, y)\right] \\
& =\frac{1}{\left(\lambda_{n}-n\right)} \sum_{k=n+1}^{\lambda_{n}}\left[\frac{\lambda_{m}+1}{\left(\lambda_{m}-m\right)} \frac{1}{\lambda_{m}+1} \sum_{j=0}^{\lambda_{m}} \psi_{j k}(x, y)-\frac{m+1}{\left(\lambda_{m}-m\right)} \frac{1}{m+1} \sum_{j=0}^{m} \psi_{j k}(x, y)\right] \\
& =\frac{1}{\left(\lambda_{n}-n\right)} \frac{\lambda_{m}+1}{\left(\lambda_{m}-m\right)} \frac{1}{\lambda_{m}+1} \sum_{j=0}^{\lambda_{m}} \sum_{k=n+1}^{\lambda_{n}} \psi_{j k}(x, y)-\frac{1}{\left(\lambda_{n}-n\right)} \frac{m+1}{\left(\lambda_{m}-m\right)} \frac{1}{m+1} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \psi_{j k}(x, y)
\end{aligned}
$$

$$
=\mathrm{S} 11+\mathrm{S} 22
$$

Now $\quad S 11=\frac{1}{\left(\lambda_{n}-n\right)} \frac{\lambda_{m}+1}{\left(\lambda_{m}-m\right)} \frac{1}{\lambda_{m}+1}\left[\sum_{j=0}^{\lambda_{m}} \sum_{k=0}^{\lambda_{n}} \psi_{j k}(x, y)-\sum_{j=0}^{\lambda_{m}} \sum_{k=0}^{n} \psi_{j k}(x, y)\right]$

$$
=\frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n} \sigma_{\lambda_{m, \lambda n}}-\frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{n+1}{\lambda_{n}-n} \sigma_{\lambda_{m, n}}
$$

Similarly we get

$$
S 22=\frac{m+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n} \sigma_{m, \lambda n}-\frac{m+1}{\lambda_{m}-m} \frac{n+1}{\lambda_{n}-n} \sigma_{m n}
$$

Thus we have

$$
\begin{aligned}
V_{m n}^{\lambda} & =\frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n} \sigma_{\lambda_{m}, \lambda n}-\frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{n+1}{\lambda_{n}-n} \sigma_{\lambda_{m, n}}-\frac{m+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n} \sigma_{m, \lambda n}+\frac{m+1}{\lambda_{m}-m} \frac{n+1}{\lambda_{n}-n} \sigma_{m n} \\
& =\frac{\lambda_{m}+1}{\lambda_{m}-m} \frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{\lambda_{m, \lambda}, \lambda}-\sigma_{\lambda_{m}, n}-\sigma_{m, \lambda n}+\sigma_{m n}\right)+\frac{\lambda_{m}+1}{\lambda_{m}-m}\left(\sigma_{\lambda_{m}, n}-\sigma_{m n}\right)+\frac{\lambda_{n}+1}{\lambda_{n}-n}\left(\sigma_{m, \lambda_{n}}-\sigma_{m n}\right)+\sigma_{m n}
\end{aligned}
$$

(by rearrangement of terms)
The use of Lemma 3.2 gives

$$
\begin{aligned}
V_{m n}^{\lambda}-\psi_{m n} & =\sum_{j=m+1}^{\lambda_{m}} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
& +\sum_{j=m+1}^{\lambda_{m}} \sum_{k=0}^{n} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} a_{j k} \psi_{j}(x) \psi_{k}(y)+\sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} a_{j k} \psi_{j}(x) \psi_{k}(y)
\end{aligned}
$$

Lemma 3.4. For $m, n \geq 0$ and $\lambda>1$, we have the following representation:

$$
\begin{aligned}
& S_{10}^{\lambda}(m, n ; x, y)=\sum_{j=m+1}^{\lambda_{m}} \sum_{k=0}^{n} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
& = \\
& \quad \sum_{j=m+1}^{\lambda_{m}} \sum_{k=0}^{n} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)+\sum_{j=m+1}^{\lambda_{m}} \sum_{t=0}^{p-1} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y) \\
& \\
& \quad-\sum_{s=0}^{p-1} \sum_{k=0}^{n} \sum_{j=m+1}^{\lambda_{m}} \sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{s p} a_{m+1, k} \psi_{j+1, k}^{s}(x) \psi_{j}^{s}(x) \psi_{k}^{p-1}(y)+\frac{1}{\lambda_{m}-m} \sum_{j=m+1}^{\lambda_{m}} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{s t}^{p-1} a_{j+1, n+1}^{p-1} \psi_{j}^{s}(x) \psi_{n}^{t}(y) \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y)
\end{aligned}
$$

Proof. We have by summation by parts,

$$
\begin{aligned}
& S_{10}^{\lambda}(m, n ; x, y)=\sum_{k=0}^{n} \psi_{k}(y)\left(\sum_{j=m+1}^{\lambda_{m}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} a_{j k} \psi_{j}(x)\right) \\
& =\sum_{k=0}^{n} \psi_{k}(y)\left(\sum_{j=m+1}^{\lambda_{m}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \Delta_{p 0} a_{j k} \psi_{j}^{p-1}(x)+\frac{1}{\lambda_{m}-m} \sum_{j=m+1}^{\lambda_{m}} \sum_{s=0}^{p-1} \Delta_{s 0} a_{j+1, k} \psi_{j}^{s}(x)-\sum_{s=0}^{p-1} \Delta_{s 0} a_{m+1, k} \psi_{m}^{s}(x)\right) \\
& =\sum_{j=m+1}^{\lambda_{m}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \psi_{j}^{p-1}(x)\left(\sum_{k=0}^{n} \Delta_{p 0} a_{j k} \psi_{k}(y)\right)+\frac{1}{\lambda_{m}-m} \sum_{j=m+1}^{\lambda_{m}} \sum_{s=0}^{p-1}\left(\sum_{k=0}^{n} \Delta_{s 0} a_{j+1, k} \psi_{k}(y)\right) \psi_{j}^{s}(x) \\
& \quad-\sum_{s=0}^{p-1}\left(\sum_{k=0}^{n} \Delta_{s 0} a_{m+1, k} \psi_{k}(y)\right) \psi_{m}^{s}(x) \\
& =\sum_{j=m+1}^{\lambda_{m}} \frac{\lambda_{m}-j+1}{\lambda_{m}-m} \psi_{j}^{p-1}(x)\left(\sum_{k=0}^{n} \Delta_{p p} a_{j k} \psi_{k}^{p-1}(y)+\sum_{t=0}^{p-1} \Delta_{p t t} a_{j, n+1} \psi_{n}^{t}(y)\right) \\
& \quad+\frac{1}{\lambda_{m}-m} \sum_{j=m+1}^{\lambda_{m}} \sum_{s=0}^{p-1}\left(\sum_{k=0}^{n} \Delta_{s p} a_{j+1, k} \psi_{k}^{p-1}(y)+\sum_{t=0}^{p-1} \Delta_{s t} a_{j+1, n+1} \psi_{n}^{t}(y)\right) \psi_{j}^{s}(x) \\
& \quad-\sum_{s=0}^{p-1}\left(\sum_{k=0}^{n} \Delta_{s p} a_{m+1, k} \psi_{k}^{p-1}(y)+\sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{n}^{t}(y)\right) \psi_{m}^{s}(x)
\end{aligned}
$$

Similarly we can have representation for $S_{01}^{\lambda}(m, n ; x, y)$.

4. Proof of Theorems

Proof of Theorem 1.1

For $m, n \geq 0$ and $p>1$, we have from Lemma 3.1

$$
\psi_{m n}(x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)+\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y)
$$

$$
+\sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)+\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y)=\sum_{1}+\sum_{2}+\sum_{3}+\sum_{4}
$$

Using (2.3) , that is, $\psi_{j}^{p}(x)=O\left(\frac{1}{x^{p}}\right)$ for all $p \geq 2,(0<x \leq \pi)$ etc, we have for $(0<x, y \leq \pi)$,

$$
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|\Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right|<\infty \quad \text { (by (1.2)) }
$$

and also by (1.3) - (1.5), we have

$$
\begin{aligned}
& \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \leq \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v}\left(\sum_{j=0}^{m}\left|\Delta_{p 0} a_{j, n+v+1}\right|\right) \\
& \leq \sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| \leq \sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| \rightarrow 0 \\
& \quad \text { as } \min (m, n) \rightarrow \infty \\
& \text { Thus } \quad \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y) \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{s p} a_{m+1, k} \leq \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u}\left(\sum_{k=0}^{n}\left|\Delta_{0 p} a_{m+u+1, k}\right|\right) \\
& \quad \leq \sup _{m<j \leq m+p} \sum_{k=0}^{n}\left|\Delta_{0 p} a_{j k}\right| \leq \sup _{m<j \leq m+p} \sum_{k=0}^{n}\left|\Delta_{0 p} a_{j k}\right| \rightarrow 0
\end{aligned}
$$

as $\min (m, n) \rightarrow \infty$.
Thus $\quad \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y) \rightarrow 0 \quad$ as $\min (m, n) \rightarrow \infty$.
Also

$$
\begin{aligned}
& \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \leq \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{t}\binom{s}{u}\binom{t}{v}\left|\Delta_{00} a_{m+u+1, n+v+1}\right| \\
& \quad \leq \sup _{j>m, k>n}\left|a_{j k}\right| \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty . \\
& \text { So } \quad \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y) \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
\end{aligned}
$$

Consequently series (1.1) converges to the function $f(x, y)$ where

$$
f(x, y)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y) \quad \text { and } \quad \lim _{m, n \rightarrow \infty} \psi_{m n}(x, y)=f(x, y)
$$

Now we will calculate $\left\|\sum_{1}\right\|,\left\|\sum_{2}\right\|,\left\|\sum_{3}\right\|$ and $\left\|\sum_{4}\right\|$ in the following way:

$$
\begin{aligned}
& \left\|\sum_{1}\right\|=\left\|\sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right\| \\
& \leq \sum_{j=0}^{m} \sum_{k=0}^{n}\left|\Delta_{p p} a_{j k}\right| \int_{0}^{\pi} \int_{0}^{\pi}\left|\psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right| d x d y \\
& \leq\left. C_{p} \sum_{j=0}^{m} \sum_{k=0}^{n}\left|\Delta_{p p} a_{j k}\right|\right|^{j-1} k^{p-1} \int_{0}^{\pi} \int_{0}^{\pi} d x d y \quad(b y(2.2)) \\
& \leq C_{p} \sum_{j=0}^{m} \sum_{k=0}^{n}\left|\triangle_{p p} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{2}\right\|=\left\|\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y)\right\| \\
& \leq \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v}\left(\sum_{j=0}^{m}\left|\triangle_{p 0} a_{j, n+v+1}\right|\right) \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}\left|\psi_{j}^{p-1}(x) \psi_{n}^{t}(y)\right| d x d y \\
& \leq C_{p} \sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1}\left(\sum_{t=0}^{p-1} n^{t}\right) \quad(b y(2.2)) \\
& \leq C_{p} \sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{3}\right\|=\left\|\sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)\right\| \\
& \leq \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u}\left(\sum_{k=0}^{n}\left|\Delta_{0 p} a_{m+u+1, k}\right|\right)_{m}^{s} k^{p-1} \\
& \leq C_{p} \sup _{m<j \leq m+p} \sum_{k=0}^{n}\left|\Delta_{0 p} a_{j k}\right| k^{p-1}\left(\sum_{s=0}^{p-1} m^{s}\right) \\
& \leq C_{p} \sup _{m<j \leq m+p} \sum_{k=0}^{n}\left|\Delta_{0 p} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{4}\right\|=\left\|\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y)\right\| \\
& \leq \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{t}\binom{s}{u}\binom{t}{v}\left|\Delta_{00} a_{m+u+1, n+v+1}\right| m^{s} n^{t} \\
& \leq C_{p} \sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1} .
\end{aligned}
$$

Now let $R_{m n}$ consists of all (j, k) with $j>m$ or $k>n$, that is,

$$
\sum \sum_{(j, k) \in R_{m n}}=\sum_{j=m+1}^{\infty} \sum_{k=0}^{n}+\sum_{j=0}^{\infty} \sum_{k=n+1}^{\infty}+\sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty}
$$

Then

$$
\begin{aligned}
& \left\|f-\psi_{m n}\right\|=\left(\int_{0}^{\pi} \int_{0}^{\pi}\left|f(x, y)-\psi_{m n}(x, y)\right| d x d y\right) \\
& \leq\left\|\sum_{(j, k)} \sum_{\in R_{m n}} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right\|+\left\|\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y)\right\| \\
& +\left\|\sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)\right\|+\left\|\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y)\right\| \\
& \leq C_{p}\left\{\left(\sum_{(j, k) \in R_{m n}}\left|\Delta_{p p} a_{j k}\right| j^{p-1} k^{p-1}\right)+\left(\sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1}\right)\right. \\
& \left.\quad+\left(\sup _{m<j \leq m+p} \sum_{k=0}^{n}\left|\Delta_{0 p} a_{j k}\right| j^{p-1} k^{p-1}\right)+\left(\sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1}\right)\right\} \\
& \quad \longrightarrow 0 \text { as } \min (m, n) \rightarrow \infty(\text { by (1.2) to (1.5) })
\end{aligned}
$$

which proves (ii) part.

Proof of Theorem 1.2

Using the relation (1.8), we find that (1.9) or (1.10) implies

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{11}^{\lambda}(m, n ; x, y)\right|\right)=0 \tag{4.1}
\end{equation*}
$$

Assume that $V_{m n}^{\lambda}(x, y)$ converges uniformly on E to $f(x, y)$. Then by Lemma 3.3, we get

$$
\begin{aligned}
& \varlimsup_{m, n \rightarrow \infty}\left(\left|\sup _{(x, y) \in E}\left(\psi_{m n}(x, y)-V_{m n}^{\lambda}(x, y)\right)\right|\right) \\
& \quad \leq \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{10}^{\lambda}(m, n ; x, y)\right|\right) \\
& \quad+\varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{01}^{\lambda}(m, n ; x, y)\right|\right) \\
& \quad+\varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{11}^{\lambda}(m, n ; x, y)\right|\right) .
\end{aligned}
$$

After taking $\lambda \downarrow 1$ the result follows from (1.9), (1.10) and (4.1).

Proof of Theorem 1.3

Using the Lemma 3.4, we can write the expression for $S_{01}^{\lambda}(m, n ; x, y)$ as

$$
\begin{aligned}
S_{01}^{\lambda}(m, n ; x, y) & =\sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} a_{j k} \psi_{j}(x) \psi_{k}(y) \\
= & \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)+\sum_{k=n+1}^{\lambda_{n}} \sum_{s=0}^{p-1} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y) \\
& +\frac{1}{\lambda_{n}-n} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \sum_{t=0}^{p-1} \Delta_{p t} a_{j, k+1} \psi_{j}^{p-1}(x) \psi_{k}^{t}(y)+\frac{1}{\lambda_{n}-n} \sum_{k=n+1}^{\lambda_{n}} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, k+1} \psi_{m}^{s}(x) \psi_{k}^{t}(y) \\
& -\sum_{t=0}^{p-1} \sum_{j=0}^{m} \Delta_{p t} a_{j, n+1} \psi_{j}^{p-1}(x) \psi_{n}^{t}(y)-\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s t} a_{m+1, n+1} \psi_{m}^{s}(x) \psi_{n}^{t}(y) \\
& =\sum_{11}+\sum_{12}+\sum_{13}+\sum_{14}+\sum_{15}+\sum_{16} .
\end{aligned}
$$

Now by using (1.2)-(1.4) and (1.6) along with estimates of $\psi_{j}^{p-1}(x)$ etc., as mentioned in [8], we have the following estimates :

$$
\begin{aligned}
& \left|\sum_{11}\right|=\left|\sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right| \\
& \quad \leq \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n}\left|\Delta_{p p} a_{j k}\right| j^{p-1} k^{p-1} \\
& \quad \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
\end{aligned}
$$

Consequently $\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{11}\right|\right) \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.

$$
\begin{aligned}
\left|\sum_{12}\right| & =\left|\sum_{k=n+1}^{\lambda_{n}} \sum_{s=0}^{p-1} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)\right| \\
& \leq \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u} \sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{m+u+1, k}\right| m^{s} k^{p-1} \\
& \leq \sup _{m<j \leq m+p} \sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{j k}\right| j^{p-1} k^{p-1} \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
\end{aligned}
$$

$$
\text { So } \quad \lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{12}\right|\right) \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty
$$

$$
\begin{aligned}
\left|\sum_{13}\right| & \leq \sup _{n<k \leq \lambda_{n}} \sum_{t=0}^{p-1} \sum_{j=0}^{m}\left|\Delta_{p t} a_{j, k+1}\right| j^{j-1} k^{t} \\
& \leq \sup _{n<k \leq \lambda_{n}} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{j=0}^{m}\left|\Delta_{p t} a_{j, k+v+1}\right| j^{p-1} k^{t}
\end{aligned}
$$

$$
\leq \sup _{n<k \leq \lambda_{n}+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1} \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
$$

which implies $\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{13}\right|\right) \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.
Similarly we estimate others in brief

$$
\begin{aligned}
& \left|\sum_{14}\right| \leq \sup _{n<k \leq \lambda_{n}} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1}\left|\Delta_{s t} a_{m+1, k+1}\right| j^{p-1} k^{p-1} \\
& \quad \leq \sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1} \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty .
\end{aligned}
$$

Thus $\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{14}\right|\right) \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.

$$
\left|\sum_{15}\right| \leq \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j, n+v+1}\right| j^{p-1} n^{t} \leq\left.\sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right|\right|^{p-1} k^{p-1}
$$

$\rightarrow 0$ as $\min (m, n) \rightarrow \infty$.
which implies $\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{15}\right|\right) \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.

$$
\begin{aligned}
\mid \sum_{16} & \mid
\end{aligned} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{t}\binom{s}{u}\binom{t}{v}\left|\Delta_{00} a_{m+u+1, n+v+1}\right| m^{s} n^{t} .
$$

$$
\text { So } \quad \lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|\sum_{16}\right|\right) \rightarrow 0 \text { as } \min (m, n) \rightarrow \infty \text {. }
$$

Thus combining all these, we have

$$
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{01}^{\lambda}(m, n ; x, y)\right|\right)=0
$$

Similarly (1.2)-(1.4) and (1.7) results in

$$
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\sup _{(x, y) \in E}\left|S_{10}^{\lambda}(m, n ; x, y)\right|\right)=0 ;
$$

Thus first part of theorem follows from Theorem 4.2

Proof of (ii) We have

$\left\|\psi_{m n}-f\right\| \leq\left\|\psi_{m n}-V_{m n}^{\lambda}\right\|+\left\|V_{m n}^{\lambda}-f\right\|$.
By assumption $\left\|V_{m n}^{\lambda}-f\right\| \rightarrow 0$, so it is sufficient to show that
$\left\|\psi_{m n}-V_{m n}^{\lambda}\right\| \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.

By Lemma 3.3, we have
$\left\|\psi_{m n}-V_{m n}^{\lambda}\right\| \leq\left\|S_{10}^{\lambda}(m, n ; x, y)\right\|+\left\|S_{01}^{\lambda}(m, n ; x, y)\right\|$

$$
+\left\|S_{11}^{\lambda}(m, n ; x, y)\right\| .
$$

Now in order to estimate $\left\|S_{01}^{\lambda}(m, n ; x, y)\right\|$, we first find $\left\|\sum_{11}\right\|,\left\|\sum_{12}\right\|$,
$\left\|\sum_{13}\right\|,\left\|\sum_{14}\right\|,\left\|\sum_{15}\right\|$ and $\left\|\sum_{16}\right\|$, so we have

$$
\begin{aligned}
& \left\|\sum_{11}\right\|=\left\|\sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{p p} a_{j k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)\right\| \\
& \leq \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{p p} a_{j k} j^{p-1} k^{p-1} \int_{0}^{\pi} \int_{0}^{\pi} d x d y \\
& \leq C_{p} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_{n}} \frac{\lambda_{n}-k+1}{\lambda_{n}-n}\left|\triangle_{p p} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{12}\right\|=\left\|\sum_{k=n+1}^{\lambda_{n}} \sum_{s=0}^{p-1} \frac{\lambda_{n}-k+1}{\lambda_{n}-n} \Delta_{s p} a_{m+1, k} \psi_{m}^{s}(x) \psi_{k}^{p-1}(y)\right\| \\
& \leq C_{p} \sum_{s=0}^{p-1} \sum_{u=0}^{s}\binom{s}{u} \sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{m+u+1, k}\right| k^{p-1} m^{s} \\
& \leq C_{p} \sup _{m<j \leq m+p}\left(\sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{j k}\right| k^{p-1}\right)\left(\sum_{s=0}^{p-1} m^{s}\right) \\
& \leq C_{p} \sup _{m<j \leq m+p} \sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{13}\right\| \leq C_{p} \sup _{n<k \leq \lambda_{n}} \sum_{t=0}^{p-1} \sum_{j=0}^{m}\left|\Delta_{p t} a_{j, k+1}\right| j^{p-1} k^{t} \\
& \leq C_{p} \sup _{n<k \leq \lambda_{n}} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{j=0}^{m}\left|\Delta_{p t} a_{j, k+v+1}\right| j^{p-1} k^{t} \\
& \leq C_{p} \sup _{n<k \leq \lambda_{n}+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{14}\right\| \leq C_{p} \sup _{n<k \leq \lambda_{n}} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1}\left|\Delta_{s t} a_{m+1, k+1}\right| m^{s} k^{t} \\
& \leq C_{p} \sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1} . \\
& \left\|\sum_{15}\right\| \leq C_{p} \sum_{t=0}^{p-1} \sum_{v=0}^{t}\binom{t}{v} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j, n+v+1}\right| j^{p-1} n^{t}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left. C_{p} \sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right|\right|^{p-1} k^{p-1} . \\
& \left\|\sum_{16}\right\| \leq C_{p} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{t}\binom{s}{u}\binom{t}{v}\left|\Delta_{00} a_{m+u+1, n+v+1}\right| m^{s} n^{t} \\
& \leq C_{p} \sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1} .
\end{aligned}
$$

Thus we can estimate

$$
\begin{aligned}
\left\|S_{01}^{\lambda}(m, n ; x, y)\right\| & \leq C_{p} \sum_{k=n+1}^{\lambda_{n}} \sum_{j=0}^{m} \frac{\lambda_{n}-k+1}{\lambda_{n}-n}\left|\Delta_{p p} a_{j k}\right| j^{p-1} k^{p-1}+C_{p}\left(\sup _{m<j \leq m+p} \sum_{k=n+1}^{\lambda_{n}}\left|\Delta_{0 p} a_{j k}\right| j^{p-1} k^{p-1}\right) \\
& +C_{p}\left(\sup _{n<k \leq \lambda_{n}+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1}\right)+C_{p}\left(\sup _{j>m, k>n}\left|a_{j k}\right| j^{p-1} k^{p-1}\right) \\
& +C_{p}\left(\sup _{n<k \leq n+p} \sum_{j=0}^{m}\left|\Delta_{p 0} a_{j k}\right| j^{p-1} k^{p-1}\right)+C_{p}\left(\left.\sup _{j>m, k>n}\left|a_{j k}\right|\right|^{p-1} k^{p-1}\right) .
\end{aligned}
$$

By (1.2)-(1.4) and (1.6), we conclude that

$$
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\left\|S_{01}^{\lambda}(m, n ; x, y)\right\|\right)=0
$$

Similarly by conditions (1.2)-(1.4) and (1.7), we get

$$
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\left\|S_{10}^{\lambda}(m, n ; x, y)\right\|\right)=0
$$

Also by (1.8), we have

$$
\lim _{\lambda \downarrow 1} \varlimsup_{m, n \rightarrow \infty}\left(\left\|S_{11}^{\lambda}(m, n ; x, y)\right\|\right)=0 .
$$

Thus $\left\|\psi_{m n}-V_{m n}^{\lambda}\right\| \rightarrow 0$ as $\min (m, n) \rightarrow \infty$.

References

[1] N.K. Bary : A treatise on trigonometric series, Vol.II, Pergamon Press, London 1964.
[2] C.P. Chen and Y.W. Chauang : L^{1}-convergence of double Fourier series, Chinese Journal of Math. 19 (4) (1991), 391-410.
[3] K. Kaur , S. S. Bhatia and B. Ram : L^{1}-Convergence of complex double trigonometric series, Proc. Indian Acad. Sci., Vol. 113, No. 3 (Nov.2003), 01-09.
[4] A. N. Kolmogorov: Sur l'ordre de grandeur des coefficients de la sėrie de Fourier-Lebesque, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923), 83-86.
[5] Xh. Z. Krasniqi : Integrability of double cosine trigonometric series with coefficients of bounded variation of second order, Commentationes Mathematicae, 51 (2011), 125-139.
[6] F. Móricz : Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633-640.
[7] F. Móricz: On the integrability and L^{1}-convergence of double trigonometric series, Studia Math. (1991), 203-225.
[8] T. M. Vukolova: Certain properties of trigonometric series with monotone coefficients (English, Russian original), Mosc. Univ. Math. Bull., 39(6)(1984), 24-30; translation from Vestn. Mosk. Univ., Ser.I, (1984), No.6, 18-23.
[9] W. H. Young : On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (2) (1913), 41-70.
[10] A. Zygmund : Trigonometric series, Vols. I,II, Cambridge University Press (1959).

[^0]: 2010 Mathematics Subject Classification. 42A20, 42A32
 Keywords. L^{1}-convergence, Cesàro means, monotone sequences
 Received: 18 May 2018; Revised: 31 August 2018; Accepted: 14 September 2018
 Communicated by Ivana Djolović
 Email addresses: karanvir@mrsptu.ac.in (Karanvir Singh), kmodi@jpr.amity.edu (Kanak Modi)

