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Abstract. In this paper, we consider a kind of second-order neutral differential equation with time-
dependent deviating arguments. By applications of Krasnoselskii’s fixed point theorem, sufficient condi-
tions for the existence of positive periodic solutions are established.

1. Introduction

In this paper, we consider the following second-order neutral differential equation with time-dependent
deviating arguments

(x(t) − cx(t − τ))′′ + a(t)x(t) = f (t, x(t − δ(t))), (1)

where c, τ are constants with |c| , 1 and 0 < τ < ω, a(t) ∈ C(R, (0,+∞)), δ(t) ∈ C(R,R), a(t) and δ(t) are
ω-periodic functions with t, f (t, x) ∈ C(R ×R,R) and f (t + ω, ·) ≡ f (t, ·), here ω is a positive constant.

Neutral differential equations manifest themselves in many fields. There has been a rapid growth
of interest in neutral differential equations which appeared in the control models, blood cell production
models and population models [3, 7]. For example, Bai and Xu [3] discussed the two-phase size-structured
population model with infinite states-at-birth and distributed delay in birth process. In recent years, some
good deal of works have been performed on the existence of periodic solutions of first-order and second-
order neutral differential equations (see [4]-[6],[8]-[14]). In 2007, Wu and Wang [11] discussed a kind of
second-order neutral delay differential equation

(x(t) − cx(t − τ))′′ + a(t)x(t) = λb(t) f (x(t − δ(t))), (2)

which is a particular case of equation (1). By applications of a fixed point theorem in cones, some sufficient
conditions of existence, multiplicity and nonexistence of positive periodic solutions were established with
c ∈ (−1, 0). Afterwards, Cheung, Ren and Han [4] investigated a kind of neutral differential equation

(x(t) − cx(t − δ(t)))′′ + a(t)x(t) = f (t, x(t − δ(t))), (3)
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where |c| < 1. Differing from equation (1), the deviating argument of equation (3) is the same as the time
delay term. By means of Krasnoselskii’s fixed point theorem, they obtained sufficient conditions for the
existence of periodic solutions to equation (3).

In the above papers, the authors investigated second-order neutral differential equations only in the case
that |c| < 1. And to our knowledge, the case |c| > 1 has not been investigated until now. In this paper, we
try to fill this gap and establish the existence of positive periodic solutions of equation (1) in the cases that
|c| < 1 and |c| > 1 by employing the property of the neutral operator (Ax)(t) := x(t) − cx(t − τ) and applying
Krasnoselskii’s fixed point theorem. The techniques used are quite different from that in [4, 11] and our
results are more general than those in [4, 11] in two aspects. Firstly, by using the property of the neutral
operator (Ax)(t), we give f (t, x) condition which is weaker than the F̃(t, x) := f (t, x(t − δ(t))) − ca(t)x(t − δ(t))
condition in [4]. Secondly, we establish the existence of positive periodic solutions of equation (1) in the
cases that |c| < 1 and |c| > 1.

The paper is organized as follows. In Section 2, firstly, the Green’s function is given and some useful
properties for the Green’s function are obtained. Afterwards, we analyze qualitative properties of the
neutral operator (Ax)(t) which is helpful for further studies of differential equations. In Section 3, we
get existence results of positive periodic solutions for equation (1) in the case that c ∈ (− m

m+M ,
m

m+M ), here
M := max {a(t) : t ∈ [0, ω]} and m := min {a(t) : t ∈ [0, ω]}. We prove the existence criteria of periodic solutions
for equation (1) through a basic application of Krasnoselskii’s fixed point theorem. In Section 4, we
investigate the existence of positive periodic solutions for equation (1) in the case that c ∈ (−∞,−1)∪(1,+∞).
Our results extend and improve some corresponding results in [4, 11].

2. Preparation

Let
Cω := {x ∈ C(R,R) : x(t + ω) = x(t)}

with norm ‖x‖ := max
t∈[0,ω]

|x(t)|. Clearly, (Cω, ‖ · ‖) is a Banach space.

Define
C+
ω := {x ∈ C(R, (0,+∞)) : x(t + ω) = x(t)},

β :=
√

M, κ :=
2M + m −

√
(2M + m)2 − 4Mm
2M

.

Next, we show the following main theorem and lemmas which we need.

Theorem 2.1. (see [2])(Krasnoselskii’s fixed point theorem) Let Cω be a Banach space. Assume that Ω is a
bounded closed convex subset of Cω. If Q,S : Ω→ Cω satisfy

(1) Qx + Sy ∈ Ω, ∀ x, y ∈ Ω,

(2) S is a contractive operator and Q is a completely continuous operator.

Then Q + S has a fixed point in Ω.

Lemma 2.1. If M <
(
π
ω

)2
, then the equation

y′′(t) + My(t) = h(t), h(t) ∈ C+
ω, (4)

has a unique ω-periodic solution

y(t) =

∫ ω

0
G(t, s)h(s)ds,
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where

G(t, s) =


cos β(t − s − ω

2 )

2β sin βω
2

, 0 ≤ s ≤ t ≤ ω,

cos β(t − s + ω
2 )

2β sin βω
2

, 0 ≤ t < s ≤ ω.

Proof. This lemma had been proved in [4], for convenience of readers, we present the proof as follows.
Applying the method of variation of constant, we can get the general solution of equation (4), which has
the following form y(t) = c1(t) cos βt + c2(t) sin βt. Therefore, we can get

c′1(t) =
− sin βt
β

h(t), c′2(t) =
cos βt
β

h(t).

Since y(t), y′(t) are periodic functions, we have

c1(t) =

∫ t

0

cos β(s + ω
2 )

2β sin βω
2

h(s)ds +

∫ ω

t

cos β(s − ω
2 )

2β sin βω
2

h(s)ds,

c2(t) =

∫ t

0

sin β(s + ω
2 )

2β sin βω
2

h(s)ds +

∫ ω

t

sin β(s − ω
2 )

2β sin βω
2

h(s)ds.

Thus, we can get the solution of equation (4),

y(t) =c1(t) cos βt + c2(t) sin βt

=

∫ t

0

cos β(s + ω
2 ) cos βt

2β sin βω
2

h(s)ds +

∫ ω

t

cos β(s − ω
2 ) cos βt

2β sin βω
2

h(s)ds

+

∫ t

0

sin β(s + ω
2 ) sin βt

2β sin βω
2

h(s)ds +

∫ ω

t

sin β(s − ω
2 ) sin βt

2β sin βω
2

h(s)ds

=

∫ t

0

cos β(t − s − ω
2 )

2β sin βω
2

h(s)ds +

∫ ω

t

cos β(t − s + ω
2 )

2β sin βω
2

h(s)ds.

One can observe that y(t + ω) = y(t), and we can get the Green’s function, i.e.

G(t, s) =


cos β(t − s − ω

2 )

2β sin βω
2

, 0 ≤ s ≤ t ≤ ω,

cos β(t − s + ω
2 )

2β sin βω
2

, 0 ≤ t < s ≤ ω.

Lemma 2.2. (see [4])
∫ ω

0 G(t, s)ds = 1
M . And if M < ( πω )2, then G(t, s) > 0 for all t ∈ [0, ω] and s ∈ [0, ω].

Furthermore, G(t, s) is a differentiable function with t.

Lemma 2.3. (see [14]) If |c| , 1, then the operator A has a continuous inverse A−1 on Cω, satisfying∣∣∣∣(A−1x
)

(t)
∣∣∣∣ ≤ ‖x‖
|1 − |c||

, ∀ x ∈ Cω.
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3. Positive periodic solutions of equation (1) in the case that c ∈ (− m
M+m ,

m
M+m )

Let y(t) = (Ax)(t), from Lemma 2.3, we have x(t) = (A−1y)(t). Hence, equation (1) can be transformed
into

y′′(t) + a(t)y(t) − a(t)H(y(t)) = f (t, x(t − δ(t))), (5)

where H(y(t)) = −c(A−1y)(t − τ) = −cx(t − τ). We consider

y′′(t) + a(t)y(t) − a(t)H(y(t)) = h(t), h ∈ C+
ω. (6)

Define the operators T,N : Cω → Cω by

(Th)(t) =

∫ ω

0
G(t, s)h(s)ds, (Ny)(t) = (M − a(t))y(t) + a(t)H(y(t)). (7)

Clearly, (Th)(t) > 0, for h(t) > 0 and M < ( πω )2 (see Lemma 2.2). From equality (7), the solution for equation
(6) can be written as

y(t) = (Th)(t) + (TNy)(t). (8)

In view of c ∈ (− m
M+m ,

m
M+m ), we have

‖TN‖ ≤ ‖T‖‖N‖ ≤
1
M

(
M −m +

M|c|
1 − |c|

)
≤

M −m(1 − |c|)
M(1 − |c|)

< 1, (9)

since ‖T‖ ≤ 1
M (see Lemma 2.2). Hence, we get

y(t) = (I − TN)−1(Th)(t). (10)

Define an operator P : Cω → Cω by

(Ph)(t) = (I − TN)−1(Th)(t). (11)

Obviously, if M < ( πω )2, for any h ∈ C+
ω, y(t) = (Ph)(t) is the unique positive ω-periodic solution of equation

(6). Define σ := l
L , where l, L are the maximum and minimum of G(t, s) on R ×R, we can get the following

lemmas.

Lemma 3.1. Assume that c ∈ (− m
M+m , 0), |c| ≤ σ and M < ( πω )2 hold. Then

(Th)(t) ≤ (Ph)(t) ≤
M(1 − |c|)

m − (M + m)|c|
‖Th‖, for all h ∈ C+

ω.

Proof. From equality (11) and ‖TN‖ < 1, we have

P =(I − TN)−1T

=(I + TN + (TN)2 + (TN)3 + · · · )T

=T + TNT + (TN)2T + (TN)3T + · · · . (12)

For all h(t) ∈ C+
ω, from inequality (9), we can get

(Ph)(t) = (I − TN)−1(Th)(t) ≤
‖Th‖

I − ‖TN‖
≤

M(1 − |c|)
m − (M + m)|c|

‖Th‖.

Since c ∈ (− m
M+m , 0), |c| ≤ σ and M < ( πω )2, from equality (7), it is easy to verify that (TNTh)(t) ≥ 0 if h ∈ C+

ω.
then we have from equality (12) that (Th)(t) ≤ (Ph)(t).
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Lemma 3.2. Assume that c ∈ (0, m
M+m ) and M < ( πω )2 hold. Then

m − (M + m)c
M(1 − c)

(Th)(t) ≤ (Ph)(t) ≤
M(1 − c)

m − (M + m)c
‖Th‖, for all h ∈ C+

ω.

Proof. Since ‖TN‖ < 1, similarly as the proof of Lemma 3.1, we can get that (Ph)(t) ≤ M(1−c)
m−(M+m)c‖Th‖.

Since c ∈ (0, m
M+m ), we can not get (TNTh)(t) ≥ 0 for all h ∈ C+

ω. From equality (12), we have

P = (I + TN + (TN)2 + (TN)3 + · · · )T

= (I + (TN)2 + (TN)4 + · · · )T + (TN + (TN)3 + (TN)5 + · · · )T

= (I + (TN)2 + (TN)4 + · · · )T + (I + (TN)2 + (TN)4 + · · · )TNT

= (I + (TN)2 + (TN)4 + · · · )(I + TN)T.

Then, we can get

(Ph)(t) ≥ (I + TN)(Th)(t) ≥ (I − ‖TN‖)(Th)(t) ≥
m − (m + M)c

M(1 − c)
(Th)(t) > 0, for all h ∈ C+

ω.

We consider the existence of periodic solutions for equation (1). Define operators Q,S : Cω → Cω by

(Qx)(t) = P( f (t, x(t − δ(t)))), (Sx)(t) = cx(t − τ). (13)

In view of equation (6) and the above analysis, the existence of periodic solutions for equation (1) is
equivalent to the existence of periodic solutions for the operator equation

Qx + Sx = x (14)

in Cω.
Now, we present our results of equation (1) in the case that c ∈ (− m

M+m ,
m

M+m ).

Theorem 3.1. Suppose that c ∈ (0, m
M+m ) and M < ( πω )2 hold. Furthermore, assume that the following condition is

satisfied:
(F1) There exist two non-negative constants r and R such that(

M(1 − c)
m − (M + m)c

)2

r < R

and
M2(1 − c)2

m − (M + m)c
r ≤ f (t, x) ≤ (m − (M + m)c)R,

for all t ∈ [0, ω] and x ∈ [r,R].
Then equation (1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof. Let

Ω = {x ∈ Cω : r ≤ x ≤ R, for t ∈ R}.

Obviously, Ω is a bounded closed convex set in Cω.
For any x ∈ Ω, t ∈ R, from equality (13), we have

(Qx)(t + ω) = P( f (t + ω, x(t + ω − δ(t + ω)))) = P( f (t, x(t − δ(t)))) = (Qx)(t),
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and

(Sx)(t + ω) = cx(t + ω − τ) = cx(t − τ) = (Sx)(t),

which show that (Qx)(t) and (Sx)(t) are ω-periodic. Thus, we get Q(Ω) ⊂ Cω and S(Ω) ⊂ Cω.
For all x, y ∈ Ω, from Lemma 3.2 and condition (F1), we arrive at

(Qx)(t) + (Sy)(t) =P( f (t, x(t − δ(t)))) + cy(t − τ)

≤
M(1 − c)

m − (M + m)c
‖T f ‖ + cy(t − τ)

≤
M(1 − c)

m − (M + m)c
max
t∈[0,ω]

∫ ω

0
G(t, s) f (s, x(s − δ(s)))ds + cy(t − τ)

≤
M(1 − c)

m − (M + m)c
· (m − (M + m)c)R ·

1
M

+ cR

=R,

since
∫ ω

0 G(t, s)ds = 1
M . On the other hand, from Lemma 3.2 and condition (F1), it is clear that

(Qx)(t) + (Sy)(t) =P( f (t, x(t − δ(t)))) + cy(t − τ)

≥
m − (M + m)c

M(1 − c)

∫ ω

0
G(t, s) f (s, x(s − δ(s)))ds + cy(t − τ)

≥
m − (M + m)c

M(1 − c)
·

M2(1 − c)2r
m − (M + m)c

·
1
M

+ cr

=r.

Therefore, we obtain that Qx + Sy ∈ Ω.
For all x1, x2 ∈ Ω, we obtain

|(Sx1)(t) − (Sx2)(t)| = |cx1(t − τ) − cx2(t − τ)| ≤ |c|‖x1 − x2‖.

By taking the norm of both sides, we see that

‖Sx1 − Sx2‖ ≤ |c|‖x1 − x2‖.

Thus, we have from 0 < c < m
M+m that S is contractive.

Next, we show that Q is completely continuous. According to equalities (11), (12) and (13), we shall
prove that T is completely continuous and N is a continuous bounded operator. Firstly, we show that T is
completely continuous.

Let {hk} ∈ Ω be a convergent sequence of functions, such that hk(t) → h(t) as k → ∞. Since Ω is closed,
for h ∈ Ω and t ∈ [0, ω], we deduce

|(Thk)(t) − (Th)(t)| =
∣∣∣∣∣∫ ω

0
G(t, s)hk(s)ds −

∫ ω

0
G(t, s)h(s)ds

∣∣∣∣∣
≤

∫ ω

0
G(t, s)|hk(s) − h(s)|ds.

Since |hk(t) − h(t)| → 0 as k→∞, we obtain

lim
k→∞
‖(Thk)(t) − (Th)(t)‖ = 0. (15)
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Therefore, T is continuous. On the other hand, we have

|(Th)(t)| =
∣∣∣∣∣∫ ω

0
G(t, s)h(s)ds

∣∣∣∣∣
≤‖h‖

∫ ω

0
G(t, s)ds

≤
‖h‖
M
,

where ‖h‖ := max
t∈[0,ω]

|h(t)|. Moreover, from Lemma 2.2, we get

|(T′h)(t)| =
∣∣∣∣∣∫ ω

0

∂G(t, s)
∂t

h(s)ds
∣∣∣∣∣

≤‖h‖
∫ ω

0

∣∣∣∣∣∂G(t, s)
∂t

∣∣∣∣∣ ds

≤‖h‖G0ω,

where G0 := max
s,t∈[0,ω]

∣∣∣∣ ∂G(t,s)
∂t

∣∣∣∣ . From the above two inequalities, we conclude that {Th : h ∈ Ω} is uniformly

bounded and equicontinuous on t ∈ [0, ω]. Therefore, T(Ω) is relatively compact, i.e., T is a compact
operator. In conclusion, T is completely continuous.

Secondly, we show that N is a continuous bounded operator. By using a similar argument, it is clearly
that N is continuous. From H(y(t)) = −c(A−1y)(t − τ) and Lemma 2.3, we obtain

|(Ny)(t)| =|(M − a(t))y(t) + a(t)H(y(t))|

≤|(M − a(t))||y(t)| + |c||a(t)||(A−1y)(t − τ)|

≤(M −m)|y(t)| + |c|M|(A−1y)(t − τ)|

≤

(
M −m + M

|c|
1 − |c|

)
‖y‖,

where ‖y‖ := max
t∈[0,ω]

|y(t)|. Therefore, N is a bounded operator.

From above analysis, we conclude that TN is completely continuous. From equalities (12) and (13), we
have Q is completely continuous. Then, from Theorem 2.1, we can get that equation (1) has at least one
ω-periodic solution x(t) with r ≤ x(t) ≤ R.

If r = c
M and R = 1

m , condition (F1) can be rewritten as

(F∗1) M(1−c)2c
m−(M+m)c ≤ f (t, x) ≤ 1 − M+m

m c, for all t ∈ [0, ω] and x ∈ [ c
M ,

1
m ].

Then, we can get the following corollary.

Corollary 3.1. Suppose that c ∈ (0, m
M+m ), M < ( πω )2 and condition (F∗1) hold. Then equation (1) has at least one

positive ω-periodic solution x(t) with c
M ≤ x(t) ≤ 1

m .

Remark 3.1. Corollary 3.1 extends and improves the Theorem 2.1 in [4].

Next, we consider the existence of periodic solutions for equation (1) in the case that c ∈ (− m
M+m , 0).

Firstly, we consider the following equation

Mc2
− (2M + m)c + m = 0. (16)

We can get equation (16) has a solution κ :=
2M+m−

√
(2M+m)2−4Mm
2M and 0 < κ < m

M+m . If c < κ, we can get
Mc2
− (2M + m)c + m > 0.
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On the other hand, for any c > 0, we have (M + m)c2
− (M + m)c + M > 0. Therefore, if R >

(M+m)|c|2−(M+m)|c|+M
M|c|2−(2M+m)|c|+m r > 0, we have M(r + |c|R) < m−(M+m)|c|

1−|c| (R + |c|r).
Then, we can obtain the following theorem.

Theorem 3.2. Suppose that c < 0, |c| < min{σ, κ} and M < ( πω )2 hold. Furthermore, assume that the following
condition is satisfied:

(F2) There exist two non-negative constants r, R such that

(M + m)|c|2 − (M + m)|c| + M
M|c|2 − (2M + m)|c| + m

r < R

and
M(r + |c|R) ≤ f (t, x) ≤

m − (M + m)|c|
1 − |c|

(R + |c|r),

for all t ∈ [0, ω] and x ∈ [r,R].
Then equation (1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof. We follow the same notations and use a similar argument as in the proof of Theorem 3.1. It can be
easily shown that (Qx)(t) and (Sx)(t) areω-periodic with t. One can observe that Q is completely continuous
and S is contractive. Next, we claim that Qx + Sy ∈ Ω, for all x, y ∈ Ω. From Lemma 3.1 and condition (F2),
we have

(Qx)(t) + (Sy)(t) =P( f (t, x(t − δ(t)))) + cy(t − τ)

≤
M(1 − |c|)

m − (M + m)|c|
‖T f ‖ + cy(t − τ)

≤
M(1 − |c|)

m − (M + m)|c|
max
t∈[0,ω]

∫ ω

0
G(t, s) f (s, x(s − δ(s)))ds + cy(t − τ)

≤
M(1 − |c|)

m − (M + m)|c|
·

m − (M + m)|c|
1 − |c|

(R + |c|r) ·
1
M
− |c|r

=R,

since
∫ ω

0 G(t, s)ds = 1
M . On the other hand, from Lemma 3.1 and condition (F2), we get

(Qx)(t) + (Sy)(t) =P( f (t, x(t − δ(t)))) + cy(t − τ)

≥

∫ ω

0
G(t, s) f (s, x(s − δ(s)))ds + cy(t − τ)

≥M(r + |c|R) ·
1
M
− |c|R

=r.

From the above two inequalities, we obtain that Qx + Sy ∈ Ω. Then, from Theorem 2.1, equation (1) has at
least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

If r = 0 and R = 1, condition (F2) can be rewritten as
(F∗2) |c|M < f (t, x) ≤ m−(M+m)|c|

1−|c| , for all t ∈ [0, ω] and x ∈ [0, 1].
Then, we can get the following corollary.

Corollary 3.2. Suppose that c < 0, |c| < min{σ, κ}, M < ( πω )2 and condition (F∗2) hold. Then equation (1) has at least
one positive ω-periodic solution x(t) with 0 < x(t) ≤ 1.

Remark 3.2. Corollary 3.2 extends and improves the Theorem 2.3 in [4].

Remark 3.3. If |c| > 1, from Lemma 2.3 and equations (5)−(8), we have ‖TN‖ ≤ 1− m
M + |c|

|c|−1 . Since 1− m
M + |c|

|c|−1 > 1,
we can not get (I − TN)−1. Therefore, the above method does not apply to the case that |c| > 1. Next, we have to find
another way to get over this problem.
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4. Positive periodic solutions of equation (1) in the case that |c| > 1

According to Remark 3.3, we consider the positive periodic solutions of equation (1) in the case that
|c| > 1. Firstly, we consider the following equation

y′′(t) + a(t)y(t) = h(t), h ∈ C+
ω. (17)

And define Ñ : Cω → Cω by

(Ñy)(t) = (M − a(t))y(t). (18)

From Lemma 2.1 and (Th)(t) =
∫ ω

0 G(t, s)h(s)ds, the solution of equation (17) can be written as

y(t) = (Th)(t) + (TÑy)(t). (19)

Since ‖Ñ‖ ≤M −m and ‖T‖ ≤ 1
M , we have

‖TÑ‖ ≤ ‖T‖‖Ñ‖ ≤ 1 −
m
M
< 1. (20)

Therefore, we have

y(t) = (I − TÑ)−1(Th)(t). (21)

We define an operator P̃ : Cω → Cω by

(P̃h)(t) = (I − TÑ)−1(Th)(t). (22)

Clearly, y(t) = (P̃h)(t) is the unique positive ω-periodic solution of equation (17), for any h ∈ C+
ω and

M < ( πω )2. And we can get the following lemma which is similar to Lemma 3.1.

Lemma 4.1. Assume that M < ( πω )2 holds. Then, we have

(Th)(t) ≤ (P̃h)(t) ≤
M
m
‖Th‖, for all h ∈ C+

ω.

Now, we consider the existence of periodic solution for equation (1). If |c| > 1, equation (1) can be written
as

− c
(
x(t − τ) −

1
c

x(t)
)′′
− ca(t)

(
x(t − τ) −

1
c

x(t)
)

= f (t, x(t − δ(t))) − ca(t)x(t − τ), (23)

which can be further written as(
x(t − τ) −

1
c

x(t)
)′′

+ a(t)
(
x(t − δ(t)) −

1
c

x(t)
)

= a(t)x(t − τ) −
f (t, x(t − δ(t)))

c
. (24)

Taking y(t) = x(t − τ) − 1
c x(t), then equation (24) can be transformed into

y′′(t) + a(t)y(t) = a(t)x(t − τ) −
f (t, x(t − δ(t)))

c
. (25)

For convenience, let

F(t, x(t)) := a(t)x(t − τ) −
f (t, x(t − δ(t)))

c
.
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Furthermore, we have

x(t) = y(t + τ) +
1
c

x(t + τ) = P̃(F(t + τ, x(t + τ))) +
1
c

x(t + τ). (26)

Define operators Q̃, S̃ : Cω → Cω by

(Q̃x)(t) = P̃(F(t + τ, x(t + τ))), (S̃x)(t) =
1
c

x(t + τ). (27)

In view of equations (25), (26) and above analysis, the existence of periodic solutions of equation (1) is
equivalent to the existence of solutions for the operator equation

Q̃x + S̃x = x (28)

in Cω.
Next, we present our main results about the existence of periodic solutions for equation (1).

Theorem 4.1. Suppose that c > 1 and M < ( πω )2 hold. Furthermore, assume that the following condition is satisfied:
(F3) There exist two constants r, R, such that 0 < M

m r < R and

M
(
1 −

1
c

)
r ≤ F(t, x(t)) ≤ m

(
1 −

1
c

)
R,

for all t ∈ [0, ω] and x ∈ [r,R].
Then equation (1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof. We define Ω as in the proof of Theorem 3.1. For any x ∈ Ω, t ∈ R, from equality (27), we have

(Q̃x)(t + ω) =P̃(F(t + ω + τ, x(t + ω + τ)))

=P̃
(
a(t + ω + τ)x(t + ω) −

f (t + ω + τ, x(t + ω + τ + δ(t + ω + τ)))
c

)
=P̃

(
a(t + τ)x(t) −

f (t + τ, x(t + τ + δ(t + τ)))
c

)
=P̃(F(t + τ, x(t + τ))) = (Q̃x)(t),

and

(S̃x)(t + ω) =
1
c

x(t + ω + τ) =
1
c

x(t + τ) = (S̃x)(t),

which show that (Q̃x)(t) and (S̃x)(t) are ω-periodic. Thus, we have Q̃(Ω) ⊂ Cω and S̃(Ω) ⊂ Cω.
For any x, y ∈ Ω, from Lemma 4.1 and condition (F3), we get

(Q̃x)(t) + (S̃y)(t) =P̃(F(t + τ, x(t + τ))) +
1
c

y(t + τ)

≤
M
m
‖TF‖ +

1
c

y(t + τ)

≤
M
m

max
t∈[0,ω]

∫ ω

0
G(t + τ, s)

(
a(s)x(s − τ) −

f (s, x(s − δ(s)))
c

)
ds +

1
c

y(t + τ)

≤
M
m
·m

(
1 −

1
c

)
R ·

1
M

+
1
c

R

=R,
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since
∫ ω

0 G(t, s)ds = 1
M . On the other hand, from Lemma 4.1 and condition (F3), we arrive at

(Q̃x)(t) + (S̃y)(t) =P̃(F(t + τ, x(t + τ))) +
1
c

y(t + τ)

≥

∫ ω

0
G(t + τ, s)

(
a(s)x(s − τ) −

f (s, x(s − δ(s)))
c

)
ds +

1
c

y(t + τ)

≥M(1 −
1
c

)r ·
1
M

+
1
c

r

=r.

Combing with the above two inequalities, we obtain Q̃x + S̃y ∈ Ω.
For all x1, x2 ∈ Ω, we see that

|(S̃x1)(t) − (S̃x2)(t)| =
∣∣∣∣∣1c x1(t + τ) −

1
c

x2(t + τ)
∣∣∣∣∣ ≤ 1
|c|
‖x1 − x2‖.

By taking the norm of both sides, we can get

‖S̃x1 − S̃x2‖ ≤
1
|c|
‖x1 − x2‖.

Thus, we have from |c| > 1 that S̃ is contractive.
By using a similar argument as in the proof of Theorem 3.1, we can observe that TÑ is completely

continuous. Then, from Lemma 4.1 and equation (27), we have Q̃ is completely continuous. And from
Theorem 2.1, we get that equation (1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

For c < −1, we can get the following theorem.

Theorem 4.2. Suppose that c < −M
m and M < ( πω )2 hold. Furthermore, assume that the following condition is

satisfied:
(F4) There exist two constants r, R such that 0 < M|c|−m

m|c|−M r < R and

M
(
r +

1
|c|

R
)
≤ F(t, x(t)) ≤ m

(
R +

1
|c|

r
)
,

for all t ∈ [0, ω] and x ∈ [r,R].
Then equation (1) has at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Proof. We define Ω as in the proof of Theorem 3.1 and use a similar argument as in the proof of Theorem 4.1.
It can be easily shown that (Q̃x)(t) and (S̃x)(t) are ω-periodic with t. One can observe that Q̃ is completely
continuous and S̃ is contractive. Next, we show that Q̃x + S̃y ∈ Ω, for all x, y ∈ Ω. From Lemma 4.1 and
condition (F4), we deduce

(Q̃x)(t) + (S̃y)(t) =P̃(F(t + τ, x(t + τ))) +
1
c

y(t + τ)

≤
M
m
‖TF‖ +

1
c

y(t + τ)

≤
M
m

max
t∈[0,ω]

∫ ω

0
G(t + τ, s)

(
a(s)x(s − τ) −

f (s, x(s − δ(s)))
c

)
ds +

1
c

y(t + τ)

≤
M
m
·m

(
R +

1
|c|

r
)
·

1
M
−

1
|c|

r

=R.



Z. Cheng et al. / Filomat 33:12 (2019), 3627–3638 3638

On the other hand, from Lemma 4.1 and condition (F4), we have

(Q̃x)(t) + (S̃y)(t) =P̃(F(t + τ, x(t + τ))) +
1
c

y(t + τ)

≥

∫ ω

0
G(t + τ, s)

(
a(s)x(s − τ) −

f (s, x(s − δ(s)))
c

)
ds +

1
c

y(t + τ)

≥M
(
r +

1
|c|

R
)
·

1
M
−

1
|c|

R

=r.

Combing the above two inequalities, we obtain that Q̃x + S̃y ∈ Ω. Then, from Theorem 2.1, equation (1) has
at least one ω-periodic solution x(t) with r ≤ x(t) ≤ R.

Finally, we present an example to illustrate our results.

Example 4.1. Consider the following equation(
x(t) −

1
4

x
(
t −

π
4

))′′
+ (3 − cos 6t)x(t) = 3esin 6t +

1
8

cos2 x
(
t −

1
2

cos 6t
)
. (29)

Comparing equation (29) to equation (1), we have ω = π
3 , τ = π

4 , c = 1
4 , δ(t) = 1

2 cos 6t, a(t) = 3 − cos 6t,
( πω )2 = 9, f (t, x(t− δ(t))) = 3esin 6t + 1

8 cos2 x(t− 1
2 cos 6t), and we can easily get M = max{a(t) : t ∈ [0, π3 ]} = 4 < 9,

m = min{a(t) : t ∈ [0, π3 ]} = 2, 1 ≤ f (t, x) ≤ 9. Let r = 1
18 and R = 18, we can verify that the condition (F1) is

satisfied. From Theorem 3.1, equation (29) has at least one π
3 -periodic solution with 1

18 ≤ x(t) ≤ 18.
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