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Abstract. In order to provide a unified treatment for the continuum and digital realm of multivariate data,
Guo, Labate, Weiss and Wilson [Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 78-87] introduced the
notion of AB-wavelets in the context of multiscale analysis. We continue and extend their work by studying
the frame properties of AB-wavelet systems

{
DADBTkψ` (k ∈ Zn; 1 5 ` 5 L)

}
in L2(Rn). More precisely,

we establish four theorems giving sufficient conditions under which the AB-wavelet system constitutes a
frame for L2(Rn). The proposed conditions are stated in terms of the Fourier transforms of the generating
functions.

1. Introduction

A complete representation of non-stationary signals requires frequency analysis that is local in time, result-
ing in the time-frequency analysis of signals. Although time-frequency analysis of signals had its origin
almost sixty years ago, there has been major development of the time-frequency distributions approach in
the last three decades. The basic idea of the method is to develop a joint function of time and frequency,
known as a time-frequency distribution, that can describe the energy density of a signal simultaneously
in both time and frequency. Unlike the case with orthonormal bases, series expansions of functions with
frames give such information at fixed discrete points in the time-frequency plane under relatively flexible
criterion. The theory of frames was initiated by Duffin and Shaeffer [7] with regard to certain interesting
problems in non-harmonic Fourier series, and more precisely with the query to determine when a family of
exponentials

{
eiαnt : n ∈ Z

}
is complete for L2[a, b]. Apparently, the significance of the idea was not realized

by the mathematical community; at least it took almost 30 years prior to the next printed treatment. In 1986,
Daubechies et al. [4] revisited the theory of frames and pointed out that orthonormal basis like series expan-
sions of functions in L2(R) can be obtained via frames. This pioneering treatment had a profound impact
and the theory of frames began to be investigated in a broader context, particularly in the more specialized
areas of wavelet frames and Gabor frames. Nowadays, the theory of frames has attained respectable status
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in the realm of mathematics with numerous implications in signal and image processing, harmonic analysis,
Banach space theory, sampling theory and filter banks, and is a pivotal tool in the modern time-frequency
analysis [1, 5, 6].

It is a fact that wavelets serve as a promising and powerful analyzing tool for time-frequency analysis
and have been applied in a number of fields mainly due to the reason that wavelets offer good properties
like symmetry, regularity, continuity, and compact support. However, the standard orthogonal wavelets
suffer from three major limitations: poor directionality, shift sensitivity and lack of phase information.
These disadvantages severely restrict its scope for certain classes of singular integral operators, signal and
image processing applications such as edge detection, image segmentation, motion estimation, and so on.
To overcome these limitations, Guo et al. [8, 9] introduced the notion of AB-wavelet systems in L2(Rn) as
a directional representation system in order to provide a unified treatment of the continuum and digital
realm. These systems have the following form:

WAB(ψ, j, k) =
{
DADBTkψ

` : A ∈ A,B ∈ B, k ∈ Zn, 1 5 ` 5 L
}

=
{
ψ`j,k(x) = q j/2ψ

(
A jB`x − k

)
: j ∈ Z, k ∈ Zn, 1 5 ` 5 L

}
, (1.1)

where L = min {m : Bm = I,m = 1,m ∈ Z} , Tk are the translations, defined by Tk f (x) = f (x − k), DA are the
dilations, defined by

DA f (x) = q1/2 f (Ax) (q = |det A|),

and the sets A and B, which may not be commuting matrix sets, are denumerable subsets of GLn(R).
Generally, certain constraints are put on the sets A and B. For instance, A is typically chosen to be a
collection of invertible matrices with eigenvalues |λ| > 1 and B to be a group of uni-modular matrices.
Nevertheless, such constraints are not always necessary (see [14]).

The AB-wavelet systemWAB(ψ, j, k) is referred to as a AB-wavelet frame, provided there exist scalars
C and D (0 < C 5 D < ∞) such that the following inequality:

C
∥∥∥ f

∥∥∥2

2
5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 D

∥∥∥ f
∥∥∥2

2
(1.2)

holds true for every f ∈ L2(Rn). We call the optimal constants C and D the lower and upper frame
bounds,respectively. A tight AB-wavelet frame refers to the case when C = D. Furthermore, a Parseval frame
refers to the case when C = D = 1.

The redundancy and flexibility offered by wavelet frames have impelled their implications in nu-
merous areas of mathematics, physics and engineering. Owing to the increasing number of applications,
significant attention has been paid to find the necessary and sufficient conditions for the wavelet systems to
constitute frames in L2(Rn) in recent years. For instance, Daubechies [3] proved the first result on the neces-
sary and sufficient conditions for the following conventional wavelet system

{
ψ j,k := a j/2ψ

(
a jx−kb

)
: j, k ∈ Z

}
to constitute a frame for L2(Rn), Chui and Shi [2] refined the result of Daubechies in [3], Christenson [1] estab-
lished a stronger version of Daubechies sufficient condition for wavelet frames. Recently, these conditions
have been further refined and investigated by several authors (see, for example, [10–13, 15]). Therefore,
the main objective of this article is to establish conditions on the wavelet function ψ and the dilation and
translation parameters so that the corresponding AB-wavelet systemWAB(ψ, j, k) given by (1.1) constitutes
a frame for L2(Rn). Particularly, we derive four sufficient conditions for the AB-wavelet systemWAB(ψ, j, k)
to be a frame for L2(Rn) using the machinery of the Fourier transforms.

The rest of this article is organized as follows. In Section 2, we first present some notations and
prerequisites related to the AB-wavelets. We then establish, in Section 2 itself, four sufficient conditions for
the AB-wavelet frames in L2(Rn) via Fourier transforms.
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2. AB-Wavelet Frames in L2(Rn)

We shall use the following conventions throughout this paper. We adopt the notation that the time domain
is represented by Rn, and its elements will be column vectors denoted by letters of the Roman alphabet,
x = (x1, x2, . . . , xn)t

∈ Rn. The elements of the frequency domain will be row vectors, ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn.
We denote by Tn = [−1/2, 1/2]n the n-dimensional torus and hence, clearly, the subsets of Rn are invariant
under Zn translations and the subsets of Tn are often identified. We use the Fourier transform in the form
given by

f̂ (ξ) =

∫
Rn

f (x) e−2πiξxdx. (2.1)

As such, the Fourier transform of the AB-wavelet systemWAB(ψ, j, k) is given by

ψ̂`j,k(ξ) = q− j/2ψ̂
(
A∗− jB∗−`ξ

)
e−2πiB−`A− jkξ, (2.2)

where A∗ and B∗ denotes the transpose of A and B, respectively. Before proceeding further, it is useful to
state a basic lemma the proof of which can be found in Christensen [1].

Lemma 1. Suppose that
{
fk
}∞
k=1 is a family of elements in a Hilbert space H such that there exist constants

0 < C 5 D < ∞ satisfying the following inequality:

C
∥∥∥ f

∥∥∥2

2
5
∞∑

k=1

∣∣∣∣〈 f , fk
〉∣∣∣∣2 5 D

∥∥∥ f
∥∥∥2

2
, (2.3)

for all f belonging to a dense subsetD ofH . Then the same inequalities (2.3) are true for all f ∈ H , that is,
{
fk
}∞
k=1 is

a frame forH .

In view of Lemma 1, we will consider the following set of functions:

D =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and f̂ has compact support in Rn
\ {0}

}
.

It is clear thatD is a dense subspace of L2(Rn). Therefore, it is sufficient to verify that the AB-wavelet system
WAB(ψ, j, k) given by (1.1) is a frame for L2(Rn) if (1.2) holds true for all f ∈ D.

We now prove a lemma which will be used in the proofs of our main results.

Lemma 2. Suppose that the AB-wavelet systemWAB(ψ, j, k) is defined by (1.1). If f ∈ D and ess sup
{∑L

`=1
∑

j∈Z

∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣2 :

1 5 ξ 5 q
}
< ∞, then

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 =

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗) j(B∗)`ξ

)∣∣∣∣2 dξ + Rψ( f ), (2.4)

where

Rψ( f ) =

L∑
`=1

∑
j∈Z

∑
s∈Zn\{0}

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

)
f̂
(
ξ + (A∗) j(B∗)`s

)
ψ̂
(
(A∗)− j(B∗)−`ξ + s

)
dξ. (2.5)

Furthermore, the iterated series in (2.5) is absolutely convergent.
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Proof. For fixed j ∈ Z and f ∈ D, we first examine the expression∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 =

∑
k∈Zn

∣∣∣∣〈 f̂ , ψ̂`j,k
〉∣∣∣∣2

=
∑
k∈Zn

∣∣∣∣∣∫
Rn

f̂ (ξ) q− j/2ψ̂
(
(A∗)− j(B∗)−`ξ

)
e2πiB−`A− jkξ dξ

∣∣∣∣∣2
=

∑
k∈Zn

q j
∣∣∣∣∣∫
Rn

f̂
(
(A∗) j(B∗)`ξ

)
ψ̂(ξ) e2πikξ dξ

∣∣∣∣∣2
= q j

∑
k∈Zn

∫
Rn

f̂
(
(A∗) j(B∗)`ξ

)
ψ̂(ξ) e2πikξ dξ

∫
Rn

f̂
(
(A∗) j(B∗)`ξ

)
ψ̂(ξ) e−2πikξ dξ

= q j
∑
k∈Zn

∑
s∈Zn

∫
[0,1]n

f̂
(
(A∗) j(B∗)`(ξ + s)

)
ψ̂(ξ + s) e2πikξ dξ

∫
Rn

f̂
(
(A∗) j(B∗)`ξ

)
ψ̂(ξ) e−2πikξ dξ

= q j
∫
Rn

f̂
(
(A∗) j(B∗)`ξ

)
ψ̂(ξ)

∑
s∈Zn

f̂
(
(A∗) j(B∗)`(ξ + s)

)
ψ̂(ξ + s)

 dξ

=

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

) ∑
s∈Zn

f̂
(
ξ + (A∗) j(B∗)`s

)
ψ̂
(
(A∗)− j(B∗)−`ξ + s

) dξ.

We then have
L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 =

L∑
`=1

∑
j∈Z

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

) ∑
s∈Zn

f̂
(
ξ + (A∗) j(B∗)`s

)
ψ̂
(
(A∗)− j(B∗)−`ξ + s

) dξ

= Qψ( f ) + Rψ( f ), (2.6)

where

Qψ( f ) =

L∑
`=1

∑
j∈Z

∫
Rn

∣∣∣∣ f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 dξ, (2.7)

Rψ( f ) =

L∑
`=1

∑
j∈Z

∑
s∈Zn\{0}

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

)
f̂
(
ξ + (A∗) j(B∗)`s

)
ψ̂
(
(A∗)− j(B∗)−`ξ + s

)
dξ. (2.8)

Implementing our assumption, it follows that Qψ( f ) is convergent.
We now turn to prove that the iterated series in (2.5) is absolutely convergent. We note that∣∣∣∣ψ̂ (

(A∗)− j(B∗)−`ξ
)
ψ̂
(
(A∗)− j(B∗)−`ξ + s

)∣∣∣∣ 5 1
2

[∣∣∣∣ψ̂ (
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 +
∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ + s
)∣∣∣∣2] .

It is easy to verify that the convergence of |Rψ( f )| follows from the convergence of

L∑
`=1

∑
j∈Z

∑
s∈Zn\{0}

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣ ∣∣∣∣ f̂ (

ξ + (A∗) j(B∗)`s
)∣∣∣∣ ∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ
)∣∣∣∣2 dξ

5

∫
Rn


L∑
`=1

∑
j∈Z

∑
s∈Zn\{0}

q j
∣∣∣∣ f̂ (

(A∗) j(B∗)`ξ
)∣∣∣∣ ∣∣∣∣ f̂ (

(A∗) j(B∗)`ξ + (A∗) j(B∗)`s
)∣∣∣∣
 ∣∣∣ψ̂(ξ)

∣∣∣2 dξ.

Since s , 0 and f ∈ D, there exists a constant J > 0 such that, for all j = J, we have

f̂
(
(A∗) j(B∗)`ξ

)
f̂
(
(A∗) j(B∗)`ξ + (A∗) j(B∗)`s

)
= 0.
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On the other hand, for each fixed j 5 J, the number of s ∈ Zn for which the above product is nonzero is less
than or equal to Mq− j for some constant M. We thus find that

L∑
`=1

∑
j∈Z

∑
s∈Zn\{0}

q j
∣∣∣∣ f̂ (

(A∗) j(B∗)`ξ
)∣∣∣∣ ∣∣∣∣ f̂ (

(A∗) j(B∗)`ξ + (A∗) j(B∗)`s
)∣∣∣∣ 5M

L∑
`=1

∑
j5J

∥∥∥ f̂
∥∥∥2

∞
1S

(
(A∗) j(B∗)`ξ

)
, (2.9)

where 1S(ξ) is the characteristic function on a compact set S inRn
\ {0}. Since A is an expansive matrix and B

is a rotation matrix, so we observe that M1 <
∣∣∣(A∗) j(B∗)`ξ

∣∣∣ < M2, where M1 and M2 are constants. Therefore,

we can find a constant K > 0 such that the inequality (2.9) is less than MK
∥∥∥ f̂

∥∥∥2

∞
. Thus, the iterated series in

(2.5) is absolutely convergent. The proof of Lemma 2 is complete.

In order to derive the first sufficient condition for AB-wavelet frame in L2(Rn), we set

∆ψ(m) = ess sup
15ξ5q

L∑
`=1

∑
j∈Z

∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ
)∣∣∣∣, (2.10)

where

βψ (m, ξ) =
∑
k,0

ψ̂
(
(A∗)k(B∗)`ξ

)
ψ̂
(
(A∗)k(B∗)`(ξ + m)

)
. (2.11)

We also use the following set:

Λ =
{
(AB)n + ` : n ∈ Zn, 1 5 ` 5 q

}
.

Theorem 1. Let ψ ∈ L2(Rn) be such that

C1(ψ) = ess inf
15ξ5q

L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 −∑
m∈Λ

[
∆ψ(m) · ∆ψ(−m)

]1/2
> 0,

D1(ψ) = ess sup
15ξ5q

L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 +
∑
m∈Λ

[
∆ψ(m) · ∆ψ(−m)

]1/2
< ∞.

Then the AB-wavelet system WAB(ψ, j, k) given by (1.1) constitutes a frame for L2(Rn) with bounds C1(ψ) and
D1(ψ).

Proof. Since the last series in (2.5) is absolutely convergent for every f ∈ D, we can estimate Rψ( f ) by
rearranging the series, changing the order of summation and integration by Levi’s Lemma as follows:

Rψ( f ) =

L∑
`=1

∑
j∈Z

∫
Rn

f̂ (ξ) ψ̂
(
(A∗)− j(B∗)−`ξ

) ∑
n,0

f̂
(
ξ + (A∗) j(B∗)`n

)
ψ̂
(
(A∗)− j(B∗)−`ξ + n

) dξ

=

L∑
`=1

∑
j∈Z

∫
Rn

f̂ (ξ)
[∑

k,0

∑
m∈Λ

ψ̂
(
(A∗)− j(B∗)−`ξ

)
f̂
(
ξ + (A∗) j+k(B∗)`m

)
ψ̂
(
(A∗)− j(B∗)−`ξ + (A∗)k(B∗)`m

)]
dξ

=

∫
Rn

f̂ (ξ)
[ L∑
`=1

∑
j∈Z

∑
k,0

∑
m∈Λ

ψ̂
(
(A∗)− j+k(B∗)−`ξ

)
f̂
(
ξ + (A∗) j(B∗)`m

)
ψ̂
(
(A∗)− j+k(B∗)−`ξ + (A∗)k(B∗)`m

)]
dξ
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=

∫
Rn

f̂ (ξ)
[ L∑
`=1

∑
j∈Z

∑
m∈Λ

f̂
(
ξ + (A∗) j(B∗)`m

)∑
k,0

ψ̂
(
(A∗)− j+k(B∗)−`ξ

)
ψ̂
(
(A∗)k(B∗)−`

(
(A∗)− jξ + m

)]
dξ

=

∫
Rn

f̂ (ξ)

 L∑
`=1

∑
j∈Z

∑
m∈Λ

f̂
(
ξ + (A∗) j(B∗)`m

)
βψ

(
m, (A∗)− j(B∗)−`ξ

) dξ

=

L∑
`=1

∑
j∈Z

∑
m∈Λ

∫
Rn

f̂ (ξ) f̂
(
ξ + (A∗) j(B∗)`m

)
βψ

(
m, (A∗)− j(B∗)−`ξ

)
dξ.

We further deduce that∣∣∣Rψ( f )
∣∣∣

≤

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣  L∑
`=1

∑
j∈Z

∑
m∈Λ

∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`m

)∣∣∣∣ ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ
)∣∣∣∣
 dξ

=

L∑
`=1

∑
j∈Z

∑
m∈Λ

∫
Rn

[∣∣∣ f̂ (ξ)
∣∣∣ ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ

)∣∣∣∣1/2] [∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`m

)∣∣∣∣ ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ
)∣∣∣∣1/2] dξ

5
L∑
`=1

∑
j∈Z

∑
m∈Λ

[∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ

)∣∣∣∣ dξ]1/2 [∫
Rn

∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`m

)∣∣∣∣2 ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ
)∣∣∣∣ dξ]1/2

5
∑
m∈Λ

 L∑
`=1

∑
j∈Z

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ

)∣∣∣∣ dξ


1/2  L∑
`=1

∑
j∈Z

∫
Rn

∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`m

)∣∣∣∣2 ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ
)∣∣∣∣ dξ


1/2

=
∑
m∈Λ

 L∑
`=1

∑
j∈Z

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣βψ(m, (A∗)− j(B∗)−`ξ

)∣∣∣∣ dξ


1/2  L∑
`=1

∑
j∈Z

∫
Rn

∣∣∣ f̂ (
η
)∣∣∣2 ∣∣∣∣βψ( −m, (A∗)− j(B∗)−`η

)∣∣∣∣ dη


1/2

5
∑
m∈Λ

[∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∆ψ(m) dξ

]1/2 [∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∆ψ(−m) dξ

]1/2

=

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 dξ

∑
m∈Λ

[
∆ψ(m) · ∆ψ(−m)

]1/2
.

Consequently, it follows from the expression (2.4) in Lemma 2 that∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2


L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 −∑
m∈Λ

[
∆ψ(m) · ∆ψ(−m)

]1/2

 dξ 5
L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 (2.12)

and

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2


L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 +
∑
m∈Λ

[
∆ψ(m) · ∆ψ(−m)

]1/2

 dξ. (2.13)

Taking the infimum in (2.12) and the supremum in (2.13), we see that

C1(ψ)
∥∥∥ f

∥∥∥2

2
5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 D1(ψ)

∥∥∥ f
∥∥∥2

2

holds true for every f ∈ D. The proof of Theorem 1 is complete.
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Theorem 2. Let ψ ∈ L2(Rn) be such that

C2(ψ) = ess inf
15ξ5q

{ L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 − L∑
`=1

∑
j∈Z

∑
k,0

∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ } > 0,

D2(ψ) = ess sup
15ξ5q

L∑
`=1

∑
j∈Z

∑
k,0

∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ < ∞.
Then the AB-wavelet systemWAB(ψ, j, k) given by (1.1) is a frame for L2(Rn) with bounds C2(ψ) and D2(ψ).

Proof. We apply Lemma 2 to estimate Rψ( f ) in (2.5) for f ∈ D by using another technique. We first deduce
that

∣∣∣Rψ( f )
∣∣∣ =

∣∣∣∣∣∣∣∣
L∑
`=1

∑
j∈Z

∑
k,0

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

)
f̂
(
ξ + (A∗) j(B∗)`k

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)
dξ

∣∣∣∣∣∣∣∣
5

L∑
`=1

∑
j∈Z

∑
k,0

{∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ
)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ}1/2

{∫
Rn

∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`k

)∣∣∣∣2 ∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ}1/2

5
L∑
`=1

∑
j∈Z

∑
k,0

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ
)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ


1/2

∑
k,0

∫
Rn

∣∣∣∣ f̂ (
ξ + (A∗) j(B∗)`k

)∣∣∣∣2 ∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ


1/2

=

L∑
`=1

∑
j∈Z

∑
k,0

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ
)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ


1/2

∑
k,0

∫
Rn

∣∣∣ f̂ (
η
)∣∣∣2 ∣∣∣∣∣ψ̂(

(A∗)− j(B∗)−`η − k
)
ψ̂
(
(A∗)− j(B∗)−`η

)∣∣∣∣∣ dη


1/2

5
L∑
`=1

∑
j∈Z

∑
k,0

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣∣∣ψ̂(

(A∗)− j(B∗)−`ξ
)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ dξ.
Using Levi’s Lemma once again, we obtain

∣∣∣Rψ( f )
∣∣∣ ≤ ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2


L∑
`=1

∑
j∈Z

∑
k,0

∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣
 dξ.

Also, by applying (2.4), we have
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Rn

∣∣∣ f̂ (ξ)
∣∣∣2 { L∑

`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 − L∑
`=1

∑
j∈Z

∑
k,0

∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣ }dξ

5
L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 (2.14)

and

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2


L∑
`=1

∑
j∈Z

∑
k,0

∣∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)∣∣∣∣∣
 dξ. (2.15)

Now, by taking the infimum in (2.14) and the supremum in (2.15), we observe again that

C2(ψ)
∥∥∥ f

∥∥∥2

2
5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 D2(ψ)

∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 2.

In order to state our next sufficient condition, we first introduce some further notations. Given the
dilation matrix A and the rotation matrix B, similar to the a-adic number [1], the AB-adic vector is defined
by

Γ =
{
α ∈ Rn : ∃ ( j,m) ∈ Z ×Zn, α = (A∗)− j(B∗)−`m, 1 5 ` 5 L

}
. (2.16)

Also, for all α ∈ Γ, we define

I(α) =
{
( j,m) ∈ Z ×Zn : α = (A∗)− j(B∗)−`m, 1 5 ` 5 L

}
, (2.17)

Υ+
α (ξ) =

L∑
`=1

∑
( j,m)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + m

)
(2.18)

and

Υ−α (ξ) =

L∑
`=1

∑
( j,m)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ −m

)
. (2.19)

Theorem 3. Let ψ ∈ L2(Rn) be such that

C3(ψ) = ess inf
15ξ5q

{
Υ+

0 (ξ) −
∑
α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ } > 0,

D3(ψ) = ess sup
15ξ5q

∑
α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ < ∞.
Then the AB-wavelet systemWAB(ψ, j, k) given by (1.1) is a frame for L2(Rn) with bounds C3(ψ) and D3(ψ).
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Proof. We first note that

Υ+
0 (ξ) =

L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 .
We apply Lemma 2 to re-estimate Rψ( f ) for f ∈ D as follows:

Rψ( f ) =

L∑
`=1

∑
j∈Z

∫
Rn

f̂ (ξ)ψ̂
(
(A∗)− j(B∗)−`ξ

) ∑
m,0

f̂
(
ξ + (A∗) j(B∗)`m

)
ψ̂
(
(A∗)− j(B∗)−`ξ + m

) dξ

=

L∑
`=1

∑
j∈Z

∑
m,0

∫
Rn

f̂ (ξ) f̂
(
ξ + (A∗) j(B∗)`m

)
ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + m

)
dξ

=

L∑
`=1

∑
α∈Γ\{0}

∑
( j,k)∈I(α)

∫
Rn

f̂ (ξ) f̂
(
ξ + (A∗) j(B∗)`k

)
ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)
dξ

=
∑
α∈Γ\{0}

∫
Rn

f̂ (ξ) f̂ (ξ + α)


L∑
`=1

∑
( j,k)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

) dξ

=
∑
α∈Γ\{0}

∫
Rn

f̂ (ξ) f̂ (ξ + α) Υ+
α (ξ) dξ. (2.20)

Using the Cauchy-Schwartz inequality, Eq. (2.20) becomes∣∣∣Rψ( f )
∣∣∣ ≤ ∑

α∈Γ\{0}

{∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ}1/2 {∫

Rn

∣∣∣ f̂ (ξ + α)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ}1/2

5

 ∑
α∈Γ\{0}

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ

1/2  ∑
α∈Γ\{0}

∫
Rn

∣∣∣ f̂ (ξ + α)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ

1/2

. (2.21)

For η = ξ + α, we deduce from α = A∗ jB∗`k for ( j, k) ∈ I(α) that

Υ+
α (ξ) =

L∑
`=1

∑
( j,k)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`ξ

)
ψ̂
(
(A∗)− j(B∗)−`ξ + k

)
=

L∑
`=1

∑
( j,k)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`(η − ξ)

)
ψ̂
(
(A∗)− j(B∗)−`(η − ξ) + k

)
=

L∑
`=1

∑
( j,k)∈I(α)

ψ̂
(
(A∗)− j(B∗)−`η − k

)
ψ̂
(
(A∗)− j(B∗)−`η

)
= Υ−α (η).

Therefore, we have∑
α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ =
∑
α∈Γ\{0}

∣∣∣∣Υ−α (ξ)
∣∣∣∣ . (2.22)

Replacing ξ + α by η in the last integration of (2.21), we find from (2.21) and (2.22) that

∣∣∣Rψ( f )
∣∣∣ ≤  ∑

α∈Γ\{0}

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ

1/2  ∑
α∈Γ\{0}

∫
Rn

∣∣∣ f̂ (η)
∣∣∣2 ∣∣∣∣Υ−α (η)

∣∣∣∣ dη
1/2

5

∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 { ∑

α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ }dξ.

(2.23)
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Lemma 2 and the inequality (2.23) imply that∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 {

Υ+
0 (ξ) −

∑
α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ }dξ 5
L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 (2.24)

and

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2 {

Υ+
0 (ξ) +

∑
α∈Γ\{0}

∣∣∣Υ+
α (ξ)

∣∣∣ }dξ

or, equivalently,

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2 {∑

α∈Γ

∣∣∣Υ+
α (ξ)

∣∣∣ }dξ. (2.25)

Upon taking the infimum in (2.24) and the supremum in (2.25), we see again that

C3(ψ)
∥∥∥ f

∥∥∥2

2
5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 D3(ψ)

∥∥∥ f
∥∥∥2

2
.

The proof of Theorem 3 is complete.

With the notations in (2.18) and (2.19), we define the new sets as follows:

Ω+
α = ess sup

{ ∣∣∣Υ+
α (ξ)

∣∣∣ : 1 5 ξ 5 q
}
, Ω−α = ess sup

{ ∣∣∣Υ−α (ξ)
∣∣∣ : 1 5 ξ 5 q

}
. (2.26)

Theorem 4. Let ψ ∈ L2(Rn) be such that

C4(ψ) = ess inf
15ξ5q

{ L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 }
−

∑
α∈Γ\{0}

[
Π+
α Π−α

]1/2
> 0 (2.27)

and

D4(ψ) = ess inf
15ξ5q

{ L∑
`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 }
+

∑
α∈Γ\{0}

[
Π+
α Π−α

]1/2
< ∞. (2.28)

Then the AB-wavelet systemWAB(ψ, j, k) given by (1.1) is a frame for L2(Rn) with bounds C4(ψ) and D4(ψ).

Proof. By using the equation (2.20), we have

∣∣∣Rψ( f )
∣∣∣ 5 ∑

α∈Γ\{0}

{∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ}1/2 {∫

Rn

∣∣∣∣ f̂ (ξ + α
)∣∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ}1/2

=
∑
α∈Γ\{0}

{∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ∣∣∣Υ+

α (ξ)
∣∣∣ dξ}1/2 {∫

Rn

∣∣∣ f̂ (ω)
∣∣∣2 ∣∣∣∣Υ−α (ω)

∣∣∣∣ dξ}1/2

5
[
Π+
α Π−α

]1/2
∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 dξ.
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Proceeding similarly as in Theorem 1, we have∫
Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ( L∑

`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 − ∑
α∈Γ\{0}

[
Π+
α Π−α

]1/2
)
dξ 5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 (2.29)

and
L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 ∫

Rn

∣∣∣ f̂ (ξ)
∣∣∣2 ( L∑

`=1

∑
j∈Z

∣∣∣∣ψ̂(
(A∗)− j(B∗)−`ξ

)∣∣∣∣2 +
∑
α∈Γ\{0}

[
Π+
α Π−α

]1/2
)
dξ. (2.30)

The last two inequalities (2.29) and (2.30) imply that

C4(ψ)
∥∥∥ f

∥∥∥2

2
5

L∑
`=1

∑
j∈Z

∑
k∈Zn

∣∣∣∣〈 f , ψ`j,k
〉∣∣∣∣2 5 D4(ψ)

∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 4.

3. Concluding Remarks and Observations

The present investigation was motivated by the recent work on a unified treatment for the continuum and
digital realm of multivariate data by Guo et al. [8], who introduced the notion of AB-wavelets in the context
of multiscale analysis. Here, in this sequel, we have continued and extended their work by studying the
frame properties of the AB-wavelet systems

{
DADBTkψ` (k ∈ Zn; 1 5 ` 5 L)

}
in L2(Rn). More precisely, we

have established four theorems (see Theorems 1 to 4 of the preceding section), each of which is intended
to give sufficient conditions under which the AB-wavelet system constitutes a frame for L2(Rn). We have
chosen to state the proposed conditions in terms of the Fourier transforms of the generating functions. Our
results are believed to be potentially useful in several areas of the mathematical, physical and engineering
sciences.
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