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Abstract. In this paper, we study properties of operators which are power similar to complex symmetric
operators. In particular, we prove that if T is power similar to a complex symmetric operator, then T is
decomposable modulo a closed set S ⊂ C if and only if R has the Bishop’s property (β) modulo S. Using the
results, we get some applications of such operators.

1. Introduction and preliminaries

Let H be a separable complex Hilbert space and let L(H) denote the algebra of all bounded linear
operators onH . If T ∈ L(H), we write σ(T), σa(T), σsu(T), and σe(T) for the spectrum, the approximate point
spectrum, the surjective spectrum, and the essential spectrum of T, respectively.

A conjugation onH is an antilinear operator C : H →H which satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H
and C2 = I. An operator T ∈ L(H) is said to be complex symmetric if there exists a conjugation C onH such
that T = CT∗C. In this case, we say that T is a complex symmetric operator with a conjugation C. The
terminology of complex symmetric operators was motivated by the antilinear eigenvalue problem Tx = λx̄
where T is an n×n symmetric complex matrix and x̄ denotes the complex conjugation of the vector x in
Cn. In [18], T. Takagi noted that this equation gives information about eigenvalues of |T| := (T∗T)

1
2 and

he obtained various results based on this observation. Indeed, complex symmetric operators have been
studied for many years in the finite dimensional setting. In 2006, S. R. Garcia and M. Putinar ([4]) have
proven interesting results for this class of operators in the infinite dimensional case. The class of complex
symmetric operators includes all normal operators, Hankel operators, compressed Toeplitz operators, and
the Volterra integration operator, and there are a lot of consequences and applications concerning complex
symmetric operators (see [4], [5], [8]-[11], etc.).
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Definition 1.1. Let R ∈ L(H) be a complex symmetric operator. We say that an operator T ∈ L(H) is power
similar to R if there exists a positive integer n such that Tn is similar to Rn. In this case, we use the notation
T

ps
∼ R.

For a fixed complex symmetric operator R ∈ L(H), define the following subset of L(H):

PSn(R) = {T ∈ L(H) : Tn is similar to Rn
}

where n is a positive integer. We observe that the following relations hold:

PS1(R) ⊂ PSn(R) ⊂ PSn2 (R) ⊂ PSn3 (R) ⊂ · · ·

for each positive integer n. Set

PS(R) := ∪∞n=1PSn(R) = {T ∈ L(H) : T
ps
∼ R}.

An operator T ∈ L(H) is said to have the single-valued extension property, abbreviated SVEP, if for every
open subset G of C and any analytic function f : G → H such that (T − z) f (z) ≡ 0 on G, we have f (z) ≡ 0
on G. An operator T ∈ L(H) is said to have the Bishop’s property (β) if for every open subset G of C and
every sequence fn : G→ H ofH-valued analytic functions such that (T − z) fn(z) converges uniformly to 0
in norm on compact subsets of G, then fn(z) converges uniformly to 0 in norm on compact subsets of G. It
is well known from [13] that

Bishop’s property (β)⇒ SVEP.

It can be shown that the converse implication does not hold in general as can be seen from [13].
An operator T ∈ L(H) is called upper semi-Fredholm if it has closed range and finite dimensional null space

and is called lower semi-Fredholm if it has closed range and its range has finite co-dimension. If T ∈ L(H)
is either upper or lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator
T ∈ L(H) is defined by

ind(T) := α(T) − β(T)

where α(T) := dimker(T) and β(T) := dimker(T∗), respectively. If both α(T) and β(T) are finite, then T is called
Fredholm. An operator T ∈ L(H) is called Weyl if it is Fredholm of index zero and Browder if it is Fredholm
of finite ascent and descent, respectively.

In 2015, S. Jung, E. Ko, and M. Lee ([12]) studied operators which are power similar to hyponormal
operators. Recently, S. Zhu and J. Zhao ([19]) considered similarity orbits of complex symmetric operators.
From the main results of [12] and [19], we study operators which are power similar to complex symmetric
operators.

The outline of the paper organizes the followings. In section 2, we investigate examples of an operator
T which belongs to PSn(R) and basic properties of such operators. In section 3, we prove that if T ∈ PSn(R)
for a complex symmetric operator R, then T is decomposable modulo a closed set S ⊂ C if and only if R has
the Bishop’s property (β) modulo S.

2. Examples and basic properties

Let C be a fixed conjugation on H . For a complex symmetric operator R with respect to a conjugation
C, we set PSn(R) = {T ∈ L(H) : Tn is similar to Rn

} for some positive integer n and PS(R) = ∪∞n=1PSn(R).
In this section, we investigate examples of an operator T which belongs to PSn(R) and basic properties of
such operators. Even if R is complex symmetric, then T ∈ PSn(R) may not be complex symmetric. In the
following example, we know that complex symmetry is not invariant under power similarity.
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Example 2.1. Let R =

(
0 1
0 0

)
⊕ λI on C3 for some nonzero λ ∈ C. Then R is a complex symmetric operator

from [4, Example 6]. Since σ(
(
0 1
0 0

)
) ∩ σ(λI) = ∅ from [16, Corollary 0.15], it follows that R is similar to

T =

0 1 1
0 0 0
0 0 λ

 by [6, Corollary 3.22]. Therefore T belongs to PS1(R). But T is not complex symmetric from

[19, Lemma 2.16].

Example 2.2. Let R =

(
0 A
I 0

)
where A is a complex symmetric operator with a conjugation C. Then R2 is a

complex symmetric operator with a conjugation C⊕C. If T ∈ PS2(R) such that T2 = X∗R2X for some unitary
operator X, then T2 is a complex symmetric operator with a conjugation X∗(C ⊕ C)X.

In general, if C is a conjugation on H , then U∗CU is a conjugation where U is unitary from [4]. But,
X−1CX may not be a conjugation as in the following example.

Example 2.3. On C2, define X : C2
→ C2 as X(a, b) = (2a, b). Define C : C2

→ C2 as C(a, b) = (b, a). Then X is
invertible and C is a conjugation on C2. Moreover, since

X−1CX(a, b) = X−1C(2a, b) = X−1(b, 2a) = (
1
2

b, 2a),

it follows that (X−1CX)2(a, b) = X−1CX( 1
2 b, 2a) = ( 1

2 2a, 2 1
2 b) = (a, b), which means that (X−1CX)2 = I. On the

other hand for x = (a, b) and y = (c, d), we have

〈(X−1CX)x, y〉 = 〈(X−1CX)(a, b), (c, d)〉 = 〈(
1
2

b, 2a), (c, d)〉 =
1
2

bc + 2ad

and
〈(X−1CX)y, x〉 = 〈(X−1CX)(c, d), (a, b)〉 = 〈(

1
2

d, 2c), (a, b)〉 =
1
2

da + 2cb.

Thus X−1CX is not isometric. Hence X−1CX is not a conjugation.

Now, we state some conditions for X−1CX to be a conjugation in the following lemma.

Lemma 2.4. Let C be a conjugation onH and X be an invertible operator. If X−1CX is isometric, i.e., 〈X−1CXx, y〉 =
〈X−1CXy, x〉 for all x, y ∈ H , then X−1CX is a conjugation onH .

Proof. Let C be a conjugation on H and X be an invertible operator. Then X−1CX is clearly antilinear and
(X−1CX)2 = X−1C2X = I. Since 〈X−1CXx, y〉 = 〈X−1CXy, x〉 for all x, y ∈ H , it follows that X−1CX is a
conjugation onH .

Example 2.5. On C2, define X : C2
→ C2 as X(a, b) = (λa, λb). Define C : C2

→ C2 as C(a, b) = (b, a). Then X
is invertible and X−1CX is a conjugation on C2. Indeed, since

X−1CX(a, b) = X−1C(λa, λb) = X−1(λb, λa) = (
λ
λ

b,
λ
λ

a),

it follows that (X−1CX)2(a, b) = (a, b), which means that (X−1CX)2 = I. On the other hand, for x = (a, b) and
y = (c, d), we have

〈(X−1CX)x, y〉 = 〈(X−1CX)(a, b), (c, d)〉 = 〈(
λ
λ

b,
λ
λ

a), (c, d)〉 =
λ
λ

bc +
λ
λ

ad
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and

〈(X−1CX)y, x〉 = 〈(X−1CX)(c, d), (a, b)〉 = 〈(
λ
λ

d,
λ
λ

c), (a, b)〉 =
λ
λ

da +
λ
λ

cb.

Thus X−1CX is isometric. Hence X−1CX is a conjugation.

Proposition 2.6. Let R ∈ L(H) be a complex symmetric operator with a conjugation C. If T ∈ PSn(R), that
is, Tn = X−1RnX for an invertible operator X, then (X−1CX)Tn(X−1CX) = (X∗X)−1Tn∗(X∗X). In particular, if
〈X−1CXx, y〉 = 〈X−1CXy, x〉 for all x, y ∈ H , then Tn is complex symmetric with the conjugation X−1CX if and only
if [Tn, |X|2] = 0 for all n ∈N.

Proof. Since R is a complex symmetric operator with a conjugation C, so is Rn with a conjugation C. Since
T ∈ PSn(R), there exists an integer n > 0 such that Tn is similar to Rn, i.e., Tn = X−1RnX for some invertible
X ∈ L(H). Then

(X−1CX)Tn(X−1CX) = X−1CX(X−1RnX)X−1CX
= X−1C(Rn)CX = X−1(Rn)∗X
= X−1(XTnX−1)∗X
= X−1((X−1)∗T∗nX∗)X
= (X∗X)−1Tn∗(X∗X). (1)

In particular, if 〈X−1CXx, y〉 = 〈X−1CXy, x〉 for all x, y ∈ H , then X−1CX is a conjugation from Lemma 2.4. If
[Tn, |X|2] = 0, then (1) gives that

(X−1CX)Tn(X−1CX) = (X∗X)−1Tn∗(X∗X) = (Tn)∗.

Similarly, the converse statement holds. Hence Tn is complex symmetric with the conjugation X−1CX if and
only if [Tn, |X|2] = 0 for all n ∈N.

For u, v ∈ H , let u ⊗ v denote the operator given by (u ⊗ v) f = 〈 f , v〉u for f ∈ H , which has rank one
when u, v , 0. Note that the operator R = u ⊗ v satisfies R = CR∗C if and only if R is a constant multiple of
u ⊗ Cu (see [4, Lemma 2]).

Example 2.7. Let T ∈ PS2(R) where R = u ⊗ Cu. Then

R2 = (u ⊗ Cu)(u ⊗ Cu) = 〈Cu,u〉(u ⊗ Cu)

and so R2 is clearly complex symmetric from [4, Lemma 2]. Since T2 = X−1R2X where X is invertible with
X−1 , CX∗C, we get that T2 = 〈Cu,u〉(X−1u ⊗ X∗Cu). On the other hand,

CT2 = 〈u,Cu〉(CX−1u ⊗ X∗Cu) and T∗2C = 〈u,Cu〉(X∗Cu ⊗ CX−1u).

Thus CT2 , T∗2C in general. So T2 is not complex symmetric.

Let R ∈ L(H) be a complex symmetric operator with a conjugation C. For some n ∈N, set

CPSn(R) := {T ∈ L(H) : Tn is similar to Rn and Tn is complex symmetric}.

Then from Examples 2.2 and 2.7, CPSn(R) is a nonempty proper subset of PSn(R).

Proposition 2.8. Let R ∈ L(H) be a complex symmetric operator with a conjugation C. If T ∈ CPSn(R), then the
following properties hold:
(i) T is left invertible if and only if T is right invertible. Hence T is left or right invertible if and only if T is invertible.
(ii) ker(T) is trivial if and only if ran(T) is dense inH .
(iii) If R is Fredholm, then T is Weyl. Conversely, if T is Fredholm, then R is Weyl.
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Proof. (i) If T is left invertible, then there exists an operator A ∈ L(H) such that AT = I. Thus AnTn = I, which
means that Tn is left invertible. Since Tn is a complex symmetric operator, it follows from [4, Proposition
1] that Tn is left invertible if and only if Tn is right invertible. Hence Tn is right invertible. Since there
exists an operator B ∈ L(H) such that T(Tn−1B) = TnB = I, it follows that T is right invertible. The converse
implication holds by similar methods.

(ii) Assume that ker(T) is trivial. Then ker(Tn) is trivial. Since Tn is a complex symmetric operator, it
follows from [4, Proposition 1] that ker(Tn) is trivial if and only if ran(Tn) is dense in H . Moreover, since
ran(Tn) ⊂ ran(T) ⊂ H , it follows that ran(T) is dense inH . Similarly, the converse implication holds.

(iii) Since R is Fredholm, Rn is also Fredholm. Moreover, since Tn = X−1RnX, it follows that Tn is
Fredholm. Hence T is Fredholm by [17, Theorem 3 (b)]. Since Tn is complex symmetric, ind(Tn) =
n · ind(T) = 0 by [4, Proposition 1]. Hence T is Weyl. Conversely, if T is Fredholm, then Tn is Fredholm.
Since T ∈ CPSn(R), Rn is Fredholm and so R is also Fredholm from [17]. Moreover, since R is a complex
symmetric operator, ind(R) = 0 from [4, Proposition 1]. Hence R is Weyl.

We next focus on the stability of complex symmetry for T ∈ PSn(R) for some symmetric operator R. Recall
that an operator T ∈ L(H) is said to be polynomially compact if p(T) is compact for some nonzero polynomial
p(z). In [15], C. L. Olsen proved that each polynomially compact operator is the sum of an algebraic operator
and a compact one. So, if T is polynomially compact, then σe(T) is finite. Let CSO denote the set of all
complex symmetric operators. Let R ∈ L(H) be a complex symmetric operator and let T ∈ PSn(R). If σ(R)
is connected, then the following theorem says that σ(Tn) is a singleton. Moreever, if T ∈ PSn(R),n ≥ 1 for
some complex symmetric operator R ∈ L(H) and σ(R) consists of two components, then T may not be an
algebraic operator of order 2. For example, if N is a normal operator with σ(N) = {z ∈ C : |z− 2| ≤ 1}. Define
T = R = N ⊕ (−N). Then T and R are complex symmetric, T ∈ PSn(R), and σ(T) = σ(R) consists of two
components. Hence T is not algebraic.

Proposition 2.9. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). If σ(R) is connected, then σ(Tn)
is a singleton.

Proof. We want to show that σ(Tn) is a singleton. If not, then σ(Tn) is an infinite connected set. Then ∂σ(Tn)
is infinite. By [3, Chapter XI. 6.8 and 6.9], σe(Tn) ⊃ ∂σ(T) is infinite. Then Tn is not polynomially compact
and so Rn is not polynomially compact. By [19, Lemma 2.18], Rn is not complex symmetric, which is a
contradiction. Since σ(Tn) is connected, it follows that σ(Tn) is a singleton.

3. Local spectral properties

In this section, we focus on the local spectral properties of operators T ∈ PSn(R) for a complex symmetric
operator R ∈ L(H). Recall an operator T ∈ L(H) has the single valued extension property, respectively,
Bishop’s property (β) modulo a closed set S ⊂ C if for all open subsets V ⊆ C \ S the mapping

O(V,H)→ O(V,H), f 7→ (T − z) f

is injective, respectively, injective with closed range on the spaceO(V,H) of all analytic functions on V with
values inH . Fix an arbitrary open set V ⊆ C \ S and let now X be the quotient of the space w(N,O(V,H))
of all sequences in O(V,H) modulo the subspace c0(N,O(V,H)) of all sequences that tend to 0 in O(V,H). If
these conditions are satisfied with S = ∅, the T will be said to possess the single valued extension property
or Bishop’s property (β), respectively. By Theorems 8 and 21 in [2], an operator T ∈ L(H) is decomposable
modulo a closed set S ⊆ C if and only if T and its adjoint T∗ ∈ L(H ∗) both have the Bishop’s property (β)
modulo S. Hence we get the following theorem.

Theorem 3.1. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). Then T is decomposable modulo a
closed set S ⊂ C if and only if R has the Bishop’s property (β) modulo S.
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Proof. We first show that if R has the Bishop’s property (β) modulo a closed set S ⊂ C, then T has. Suppose
that R has the Bishop’s property (β) modulo a closed set S ⊂ C. Let z0 ∈ C \ S and let G be an open set in
C \ S and let { fk}∞k=1 be anyH-valued analytic function on G such that

lim
k→∞
‖(T − z) fk(z)‖ = 0

uniformly on compact subsets K of G, which implies that

lim
k→∞
‖(Tn

− zn) fk(z)‖ = 0

uniformly on compact subsets K of G. Since Tn = X−1RnX, it follows that

lim
k→∞
‖(Rn

− zn)X fk(z)‖ = lim
k→∞
‖(R − z)Q(R, z)X fk(z)‖ = 0 (2)

uniformly on compact subsets K of G. Here, by the fundamental theorem of algebra,

Q(λ, z) = (λ − p1z) · · · (λ − pn−1z)

where p1z, · · · , pn−1z list the zeros of Q(λ, z) by multiplicities. Set pn = 1. Since each p j is nonzero, we obtain
from (2) that

lim
k→∞
‖

n∏
j=1

(
1
p j

R − z)X fk(z)‖ = 0 (3)

uniformly on compact subsets K of G.
We claim that it holds for r = 1, 2, · · · ,n that

lim
k→∞
‖

n∏
j=r

(
1
p j

R − z)X fk(z)‖ = 0 (4)

uniformly on compact subsets K of G. We will prove the induction on r. If r = 1, then the claim holds clearly
by (3). Suppose that (4) is true for some r = t < n, that is,

lim
k→∞
‖(

1
pt

R − z)
n∏

j=t+1

(
1
p j

R − z)X fk(z)‖ = 0

uniformly on compact subsets K of G. Since 1
pt

R has the Bishop’s property (β) modulo S,

lim
k→∞
‖

n∏
j=t+1

(
1
p j

R − z)X fk(z)‖ = 0 (5)

uniformly on compact subsets K of G.
From (4) with r = n, we have

lim
k→∞
‖(R − z)X fk(z)‖ = 0

uniformly on compact subsets K of G. Since R has the Bishop’s property (β) modulo S, it follows that
limk→∞ ‖X fk(λ)‖ = 0 uniformly on compact subsets K of G. Moreover, since X is invertible, it holds that

lim
k→∞
‖ fk(z)‖ = 0 (6)

uniformly on compact subsets K of G. Hence T has the Bishop’s property (β) modulo S. Since R is a complex
symmetric operator, R∗ has also the Bishop’s property (β) modulo S by [11, Theorem 2.1]. Therefore, T∗

has the Bishop’s property (β) modulo S. Hence T is decomposable modulo S from [13]. Conversely, if T
is decomposable modulo S, then T has the Bishop’s property (β) modulo S. Since T ∈ PSn(R), R has the
Bishop’s property (β) modulo S.
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Recall that a closed subspaceM ofH is called an invariant subspace for an operator T ∈ L(H) if TM ⊂M.
We say thatM ⊂ H is a hyperinvariant subspace for T ∈ L(H) ifM is an invariant subspace for every S ∈ L(H)
commuting with T. As some applications of Theorem 3.1, we provide several useful results.

Corollary 3.2. Let T ∈ PSn(R) for some operator R ∈ L(H) which has the Bishop’s property (β). If T , λ for any
λ ∈ C and σT(x) $ σ(T) for some x ∈ H \ {0}, then T and T∗ have a nontrivial hyperinvariant subspace.

Proof. Since R has the Bishop’s property (β), T is decomposable from Theorem 3.1. The proof follows from
similar arguments in [12].

An operator T in L(H) is called quasitriangular if T can be written as sum T = T0 + K, where T0 is a
triangular operator (i.e., there exists an orthonormal basis forH with respect to which the matrix for T0 has
upper triangular form) and K ∈ K (H). We say that T is biquasitriangular if both T and T∗ are quasitriangular
(see [14] for more details).

Corollary 3.3. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). Then the following statements
hold:
(i) If R has the single-valued extension property, then

σa(T∗) = σ(T∗) = σa(T)∗ = σ(T)∗ = σsu(T)∗ = σsu(T∗).

Moreover, in this case, T is biquasitriangular.
(ii) If R has finite ascent of order m(≥ 2), then T and T∗ are finite ascent of order n. Moreover, in this case,
ker(T) ∩ ran(Tn) = {0} and ker(T∗) ∩ ran(T∗n) = {0} for some n ∈N.

Proof. (i) Since R is complex symmetric and it has the single-valued extension property, it follows from
Theorem 3.1 and [8] that T and T∗ have the single-valued extension property. Then σ(T∗) = σa(T∗) and
σ(T) = σa(T) (see [1] or [13]). For any T ∈ L(H), σa(T∗) = σsu(T)∗. Hence it holds that

σa(T∗) = σ(T∗) = σa(T)∗ = σ(T)∗ = σsu(T)∗ = σsu(T∗).

Moreover, since T and T∗ have the single-valued extension property, we conclude from [14] that T is
biquasitriangular.

(ii) Assume that ker(Rm) = ker(Rm+1) for some m ≥ 2. If T ∈ PSn(R), then Tn = X−1RnX for some positive
integer n. It suffices to show the inclusion ker(Tn+1) ⊂ ker(Tn). If x ∈ ker(Tn+1), then Tn+1x = 0, i.e.,
Tmnx = 0. Since T ∈ PSn(R), it follows that Tmn = X−1RmnX, which implies that Tmnx = X−1RmnXx = 0 and
so RmnXx = 0. Since mn ≥ n + 1, RnXx = 0 and so Tnx = 0. Hence x ∈ ker(Tn). Thus ker(Tn+1) ⊂ ker(Tn). So
T has finite ascent. Moreover, since R is a complex symmetric operator and R has finite ascent, it follows
that R∗ has also finite ascent by [11, Lemma 4.2]. Hence T∗ has finite ascent using the above similar way.

By the above statement, T has finite ascent. If y ∈ ker(T) ∩ ran(Tn), then Ty = 0 and y = Tnx for some
x ∈ H which implies that Tn+1x = Ty = 0. Since x ∈ ker(Tn+1) = ker(Tn), we have y = Tnx = 0. Hence
ker(T) ∩ ran(Tn) = {0}. Moreover, since T∗ has also finite ascent, we get that ker(T∗) ∩ ran(T∗n) = {0} using
the above similar method.

Recall that for T ∈ L(H), we define the Weyl spectrum σw(T) and the Browder spectrum σb(T) by

σw(T) = {λ ∈ C : T − λ is not Weyl}

and
σb(T) = {λ ∈ C : T − λ is not Browder}.

It is evident that
σe(T) ⊂ σw(T) ⊂ σb(T).
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We say that Weyl’s theorem holds for T if

σ(T) \ π00(T) = σw(T), or equivalently, σ(T) \ σw(T) = π00(T),

where π00(T) = {λ ∈ iso(σ(T)) : 0 < dimker(T − λ) < ∞} and iso(σ(T)) denotes the set of all isolated points of
σ(T).

We define the definitions of some spectra;

σea(T) := ∩{σa(T + K) : K ∈ K (H)}

is the essential approximate point spectrum, and

σab(T) := ∩{σa(T + K) : TK = KT and K ∈ K (H)}

is the Browder essential approximate point spectrum.
We say that

(i) a-Browder’s theorem holds for T if σea(T) = σab(T);

(ii) a-Weyl’s theorem holds for T if σa(T) \ σea(T) = πa
00(T),

where πa
00(T) := {λ ∈ iso σa(T) : 0 < dim ker(T − λ) < ∞}.

It is known that
Browder’s theorem⇐= a-Browder’s theorem

⇑ ⇑

Weyl’s theorem⇐= a-Weyl’s theorem.

Corollary 3.4. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). Suppose that R has the single-
valued extension property. Then the following statements hold:
(i) Weyl’s theorem holds for T if and only if a-Weyl’s theorem holds for T.
(ii) Weyl’s theorem holds for T∗ if and only if a-Weyl’s theorem holds for T∗.
(iii) Browder’s theorem holds for T and T∗.
(iv) a-Browder’s theorem holds for T and T∗.

Proof. (i) Since R has the single-valued extension property, it follows from Corollary 3.3 that σ(T) = σa(T)
and σ(T∗) = σa(T∗). Hence πa

00(T) = π00(T) and πa
00(T∗) = π00(T∗). Moreover, since T∗ has the single-valued

extension property by Theorem 3.1 and [8], it follows [1, Corollary 3.53] from that σw(T) = σea(T). If Weyl’s
theorem holds for T, then πa

00(T) = π00(T) = σ(T) \ σw(T) = σa(T) \ σea(T). Hence a-Weyl’s theorem holds for
T. The converse implication is trivial.

The statement (ii) holds by similar methods (i). The statement (iii) and (iv) hold by [1] and (i).

For an operator T ∈ L(H), the commutant of T, denoted by {T}′, is the collection of all S ∈ L(H)
commuting with T. We say that an operator T ∈ L(H) has the property (E) if there exist sequences
{Bn} ⊂ L(H) and {Kn} ⊂ K (H) such that ‖Bn − T‖ → 0, KnBn = BnKn for each n ∈ N and {Kn} is a
nontrivial sequence of compact operators. An operator T in L(H) will be said to have the property (PS) if
there exist sequences {Sn} ⊂ {T}

′

and {Kn} ⊂ K (H) such that ‖Sn −Kn‖ → 0 and {Kn} is a nontrivial sequence
of compact operators. An operator T ∈ L(H) is said to have the property (A) provided that for every (not
necessarily strict) contraction S, every operator X with dense range such that TX = XS, and every vector
x ∈ H , there exists a nonzero polynomial p(z) such that p(T)x belongs to ran(X). An operator T ∈ L(H) is
said to have the property (K) if for every λ ∈ σ(T) and for every ε > 0, there exists a unit vector xλ,ε inH such
that lim supn→∞ ‖(T − λ)nxλ,ε‖

1
n < ε (see [7] for more details).

Proposition 3.5. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). If R has the property P where P
is (E), (PS), or (K), then Tn and (Tn)∗ have the property P for some n ∈N.
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Proof. (i) If R has the property (E), then there exist sequences {B j} ⊂ L(H) and {K j} ⊂ K (H) such that
‖B j − R‖ → 0, K jB j = B jK j for each j ∈ N, and {K j} is a nontrivial sequence of compact operators. Since
T ∈ PSn(R), it follows that {X−1Bn

j X} ⊂ L(H) and {X−1Kn
j X} ⊂ K (H) such that (X−1Kn

j X)(X−1Bn
j X) =

(X−1Bn
j X)(X−1Kn

j X) for each j ∈N, and {X−1Kn
j X} is a nontrivial sequence of compact operators. Furthermore,

‖(X−1B jX)n
− Tn
‖ = ‖X−1Bn

j X − Tn
‖ → 0 (7)

as j→ 0. Hence Tn has the property (E).
(ii) If R has the property (PS), then there exist sequences {S j} ⊂ {R}

′

and {K j} ⊂ K (H) such that
‖S j − K j‖ → 0 for each j ∈ N, and {K j} is a nontrivial sequence of compact operators. Since T ∈ PSn(R), it
follows that {X−1Sn

j X} ⊂ {Tn
}
′

and {X−1Kn
j X} ⊂ K (H) such that

‖(X−1S jX)n
− (X−1K jX)n

‖ = ‖X−1Sn
j X − X−1Kn

j X‖ → 0 (8)

as j→ 0 and {X−1Kn
j X} is a nontrivial sequence of compact operators. Then we get that Tn has the property

(PS).
(iii) Suppose that R has the property (K). This means that for every λ ∈ σ(R) and every ε > 0, there exists

a unit vector xλ,ε inH such that

lim sup
j→∞

‖(R − λ) jxλ,ε‖
1
j < ε. (9)

For every µ ∈ σ(Tn) = σ(Rn) = σ(R)n and every ε > 0, there exists a λ ∈ σ(R) such that µ = λn. Since
T ∈ PSn(R), it follows that

‖(Tn
− µ) jyµ,ε‖ = ‖X−1(Rn

− µ) jXyµ,ε‖

≤
||X−1
||

||X−1xλ,ε||
‖(Rn

− µ) jxλ,ε‖ (10)

where yµ,ε := X−1xλ,ε
||X−1xλ,ε ||

is a unit vector. Hence

‖(Tn
− µ) jyµ,ε‖

1
j ≤

( ||X−1
||

||X−1xλ,ε||

) 1
j
‖(Rn

− λn) jxλ,ε‖
1
j

≤

( ||X−1
||

||X−1xλ,ε||

) 1
j
‖(

n−1∑
i=0

λn−1−iRi) j
‖

1
j ‖(R − λ) jxλ,ε‖

1
j . (11)

Taking limsup in both sides of (11),

lim sup
j→∞

‖(Tn
− µ) jyµ,ε‖

1
j ≤ lim sup

j→∞
‖(R − λ) jxλ,ε‖

1
j < ε

from (9). Hence Tn has the property (K).
For the remaining parts, if R is complex symmetric and it has the property P, then it follows that R∗

has the property P from [10, Proposition 3.12]. By similar arguments of (i)-(iii), we get that (Tn)∗ has the
property P.

Corollary 3.6. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). Then the following statements
hold.
(i) If R has the property (E), then there exist sequences {C j} ⊂ L(H) and {E j} ⊂ K (H) such that ‖C j − T‖ → 0,
E jC j = C jE j for each j ∈ N, and {E j} is a nontrivial sequence of compact operators where σ(Cn

j ) does not separate 0
from∞ for sufficiently large j. In this case, T has the property (E).
(ii) If R has the property (PS), then there exist sequences {D j} ⊂ L(H) and {E j} ⊂ K (H) such that ‖D j − E j‖ → 0
and {E j} is a nontrivial sequence of compact operators where σ(Dn

j ) does not separate 0 from∞ for sufficiently large j.
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Proof. (i) From (7) in Proposition 3.5, set C j = X−1B jX. Then we have

lim sup
j→∞

σ(Cn
j ) ⊂ σ(Tn).

For sufficiently large j, σ(Cn
j ) ⊂ (σ(Tn))ε where (σ(Tn))ε is an open set containing σ(Tn). Then σ(Cn

j ) and σ(Tn)
separate 0 from∞ for sufficiently large j. So we can define lo1(Cn

j ) and lo1(Tn) by using the Riesz-Dunford
functional calculus and choosing an analytic branch of the function lo1z. Furthermore, for t ≥ 0, the operator
Tt := etlo1(T) is well-defined. From (7), we get that

n‖lo1(C j) − lo1(T)‖ = ‖lo1(C j)n
− lo1(Tn)‖ → 0

as j → 0. Therefore ‖lo1(C j) − lo1(T)‖ → 0 as j → 0. Since ez is an entire function, it follows that ‖C j − T‖ =

‖elo1(C j) − elo1(T)
‖ → 0 as j → 0. Set E j = X−1K jX, it is clear that E jC j = C jE j for each j ∈ N, and {E j} is a

nontrivial sequence of compact operators. Thus T has the property (E).
(ii) From (8), set D j = X−1S jX and E j = X−1K jX, we have

lim sup
j→∞

σ(Dn
j ) ⊂ σ(En

j ).

For sufficiently large j, σ(Dn
j ) ⊂ (σ(En

j ))ε where (σ(En
j ))ε is an open set containing σ(En

j ). If (σ(En
j ))ε separates

0 from∞, then σ(Dn
j ) and σ(En

j ) separate 0 from∞ for sufficiently large j. From (8), we get that

n‖lo1(D j) − lo1(E j)‖ = ‖lo1(D j)n
− lo1(E j)n

‖ → 0

as j→ 0. Therefore ‖lo1(D j) − lo1(E j)‖ → 0 as j→ 0. Since ez is an entire function, it follows that ‖D j − E j‖ =

‖elo1(D j) − elo1(E j)‖ → 0 as j→ 0 for each j ∈N and {E j} is a nontrivial sequence of compact operators.

Corollary 3.7. Let T ∈ PSn(R) for some complex symmetric operator R ∈ L(H). Then the following statements
hold:
(i) If T , λ and R has the property (PS), then Tn and (Tn)∗ have nontrivial hyperinvariant subspace.
(ii) If R has either the property (PS) or (E), then Tn and (Tn)∗ have the property (A).

Proof. (i) It follows from Proposition 3.5 and [7, Theorem 1.4].
(ii) It follows from Proposition 3.5 and [7, Proposition 2.1].
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