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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this paper, various kinds of reverse order laws for the Hirano inverse are characterized in a
ring with the unit 1. Under some of conditions aba = a2b, ab2 = bab, ahab2 = bahab, a2bbh = abbha instead of the
condition ab = ba, respectively, we present some equivalent conditions of the reverse order laws for Hirano
inverses.

1. Introduction

Let R be an associative ring with the unit 1. The set of all nilpotent elements of R will be denoted by N(R),
i.e. N(R) = {a ∈ R | ∃k ∈ Z+, ak = 0}. The commutator of a ∈ R is denoted by comm(a) = {x ∈ R | ax = xa}.
The double commutator of a ∈ R will be denoted by comm2(a) = {x ∈ R | yx = xy,∀y ∈ comm(a)}.

It is well known that (ab)−1 = b−1a−1 for invertible elements a, b ∈ R, we call it reverse order law for
the ordinary inverse. In general, the previous equality doesn’t hold when the ordinary inverse is replaced
by generalized inverse. Since the reverse order law for the generalized inverse is a useful computational
tool in applications and it is significant from the theoretical point of view, many papers characterized the
reverse order laws, such as [2–8, 10–24].

For the readers’ convenience, we first recall the definitions of Hirano inverse in [1] and Drazin inverse
in [9], respectively.

Definition 1.1. Let a ∈ R. If there exists b ∈ R such that

(2) bab = b, (5) ab = ba, (7) a2
− ab ∈ N(R),

then b is called the Hirano inverse of a, and a is Hirano invertible.

Remark 1. For a ∈ R, the set of elements satisfying the (i)th equation in Definition 1.1 is denoted by a{i}, where
i ∈ {2, 5, 7}. And the set of Hirano invertible elements in R is denoted by Rh.

Definition 1.2. Let a ∈ R. If there exists b ∈ R such that

(2) bab = b, (5) ab = ba, (7′) a − a2b ∈ N(R),

then b is called the Drazin inverse of a, and a is Drazin invertible.
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Research supported by the Education Department of Hubei province key project (No.D20122202), the Education Department

of Hubei Province Youth Project (No.B20122203). The second author is supported by China Postdoctoral Science Foundation (No.
2018M632385) and Research Project of Hubei Provincial Department of Education (No. B2019128).

Email addresses: chenyinlan621@163.com (Yinlan Chen), honglinzou@163.com (Honglin Zou)



Y.L. Chen, H.L. Zou / Filomat 33:11 (2019), 3487–3496 3488

If the Drazin inverse of a ∈ R exists, then it is unique and denoted by aD. The set of Drazin invertible
elements in R is denoted by RD. In [1], the authors gave the relations of the two types of inverses in a ring
R, that is Rh  RD.

Lemma 1.1. ([1, Corollary 2.2]) If a ∈ Rh, then a ∈ RD and the Hirano inverse of a is exactly the Drazin inverse of
a.

Remark 2. If the Hirano inverse of a exists, then it is unique and denoted by ah.

By Lemma 1.1 and [9, Theorem 1], we have ah
∈ comm2(a). Applying Definition 1.1, it is easy to get the

following remark, which is a useful result.

Remark 3. If a, b ∈ Rh and b ∈ comm(a), then bh
∈ comm(a) and b, bh

∈ comm(ah).

Lemma 1.2. ([1, Corollary 3.2]) If a ∈ Rh, then ah
∈ Rh, and (ah)h = a2ah.

The following lemma gives an equivalent condition of Hirano invertibility.

Lemma 1.3. ([1, Theorem 3.1]) If a ∈ R, then a ∈ Rh if and only if a − a3
∈ N(R).

Lemma 1.4. ([6, Lemma 1.2]) If a, b ∈ N(R) and ab = ba, then a + b ∈ N(R).

Lemma 1.5. ([1, Theorem 4.4]) If a, b ∈ Rh and ab = ba, then ab ∈ Rh and (ab)h = bhah.

The condition ab = ba in Lemma 1.5 is too strong, can we get the reverse order under some weaker
conditions? which is our main purpose of this paper.

If ab = ba, then aba = a2b and ab2 = bab, but in general the converse is not true. For example: let R = C2×2,

A =

(
0 0
1 0

)
and B =

(
0 0
0 1

)
∈ R, it is not difficult to check that ABA = A2B and AB2 = BAB, but AB , BA.

In this paper, we discuss some equivalent conditions related to reverse order laws for Hirano inverse under
several conditions, such as ab ∈ comm(a) and (or) ab ∈ comm(b).

2. Reverse order laws for the Hirano Inverse

Firstly, we discuss the characterizations of reverse order laws for Hirano inverse under the condition
a, b, ab ∈ Rh.

Theorem 2.1. If a, b, ab ∈ Rh, then the following statements are equivalent:
(1) (ab)h = bhah;
(2) (ab)ha = bhaha and (ab)h = (ab)haah;
(3) b(ab)h = bbhah and (ab)h = bhb(ab)h.

Proof. (1)⇒ (2) : It is obvious.
(2) ⇒ (1): Using the assumptions (ab)ha = bhaha and (ab)h = (ab)haah, we conclude (ab)h = ((ab)ha)ah =

bhahaah = bhah.
(1)⇔ (3): It is similar to the proof of (1)⇔ (2). �

Next, in the case that only a ∈ Rh and ab ∈ comm(a), we characterize the mixed reverse order law
(ab)h = (ahab)hah as follows.

Theorem 2.2. If b ∈ R, a ∈ Rh, ab ∈ comm(a) , then the following statements are equivalent:
(1) ab, ahab ∈ Rh and (ab)h = (ahab)hah;
(2) ahab ∈ Rh and (ahab)hah

∈ (ab){7};
(3) ab, ahab ∈ Rh and (ahab)h = (ab)ha;
(4) ab ∈ Rh and (ab)ha ∈ (ahab){2};
(5) ab ∈ Rh and (ab)ha(1 − aha) = 0;
(6) aba ∈ Rh and (aba)h(ah)h

∈ (ab){7};
(7) ab, aba ∈ Rh and (ab)h = (aba)h(ah)h.
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Proof. (1) ⇒ (3): The assumptions ab, ahab ∈ Rh and (ab)h = (ahab)hah imply (ab)haah = (ahab)hahaah =
(ahab)hah = (ab)h. Then ((ab)ha)(ahab)((ab)ha) = (ab)hab(ab)ha = (ab)ha, i.e. (ab)ha ∈ (ahab){2}. Since ab ∈
comm(a), we know that ab ∈ comm(ah) by Remark 3, so (ahab)h

∈ comm(aha). Thus

(ahab)2
− (ahab)((ab)ha) = (ahab)2

− ahab(ahab)haha = (ahab)2
− ahabaha(ahab)h

= (ahab)2
− ahab(ahab)h

∈ N(R),

i.e. (ab)ha ∈ (ahab){7}. In addition, (ab)ha ∈ (ahab){5} is obvious. Hence, (ahab)h = (ab)ha.
(3)⇒ (2): By the hypothesis (ahab)h = (ab)ha, and note that ab ∈ comm(ah), hence (ahab)h

∈ comm(ab) by
Remark 3. Then using Lemma 1.2 and Definition 1.1, we obtain

(ab)2
− ab(ahab)hah = (ab)2

− (ahab)habah = (ab)2
− (ahab)hahab

= (ab)2
− aha(ahab)hb = (ab)2

− ahaahab((ahab)h)2b
= (ab)2

− ahab((ahab)h)2b = (ab)2
− (ahab)hb

= (ab)2
− (ab)hab = (ab)2

− ab(ab)h
∈ N(R).

(2)⇒ (1): We note that (ahab)hah(ab) = ahab(ahab)h = (ab)ah(ahab)h = (ab)(ahab)hah, that is (ahab)hah
∈ (ab){5}.

Obviously, (ahab)hah
∈ (ab){2}. And by the hypothesis (ahab)hah

∈ (ab){7}, we obtain ab ∈ Rh and (ab)h =
(ahab)hah.

(3)⇒ (4): It is obvious.
(4) ⇒ (5): By the hypotheses a, ab ∈ Rh and (ab)ha ∈ (ahab){2}, we get (ab)ha = (ab)haahab(ab)ha =

(ab)hab(ab)haaha = (ab)haaha, then (ab)ha(1 − aha) = (ab)ha − (abh)aaha = 0.
(5) ⇒ (3): By the hypothesis (ab)ha = (ab)haaha, we get (ab)haahab(ab)ha = (ab)hab(ab)ha = (ab)ha, i.e.

(ab)ha ∈ (ahab){2}.
Since ab ∈ comm(a) and a, ab ∈ Rh, we know (ab)ha ∈ (ahab){5} by Remark 3.
Because ab ∈ Rh, we have (ab)2

−ab(ab)h
∈ N(R). Since ab ∈ comm(a), we have (ab)2

−(ab)(ab)h
∈ comm(aah)

by Remark 3, thus aah((ab)2
− (ab)(ab)h) ∈ N(R).

Recall that ah
∈ Rh and ab ∈ comm(ah) , we have ((ah)2

− ah(ah)h)(ab)2
∈ N(R), and aah((ab)2

− (ab)(ab)h)
commutes with ((ah)2

− ah(ah)h)(ab)2. Using Lemma 1.2 and Lemma 1.4, we obtain that

(ahab)2
− ahab(ab)ha = (ahab)2

− aah(ab)2 + aah(ab)2
− ahab(ab)ha

= (ah)2(ab)2
− aha(ab)2 + aah((ab)2

− ab(ab)h)
= ((ah)2

− ahaaha)(ab)2 + aah((ab)2
− ab(ab)h)

= ((ah)2
− ah(ah)h)(ab)2 + aah((ab)2

− ab(ab)h) ∈ N(R),

i.e. (ab)ha ∈ (ahab){7}. Then (ab)ha = (ahab)h, the statement (3) is satisfied.
(6) ⇒ (2): By the assumption a, aba ∈ Rh, together with ab ∈ comm(a) and ab ∈ comm(ah), we deduce

that ahahaba ∈ Rh and (ahahaba)h = (aba)h(ah)h(ah)h by Lemma 1.5. Recall that ahahaba = ahab, then we obtain
ahab ∈ Rh. The assumption (aba)h(ah)h

∈ (ab){7} gives

(ab)2
− ab(ahab)hah = (ab)2

− ab(ahahaba)hah

= (ab)2
− ab(aba)h(ah)h(ah)hah

= (ab)2
− ab(aba)h(ah)h

∈ N(R),

that is, the statement (2) is satisfied.
(2)⇒ (6): From the proof of (2)⇒ (1), we know that ab ∈ Rh and (ab)h = (ahab)hah. Also, observe that

a ∈ Rh, we get aba ∈ Rh and (aba)h = ah(ab)h = ah(ahab)hah. Now, applying the assumption (ahab)hah
∈ (ab){7},

we obtain

(ab)2
− ab(aba)h(ah)h = (ab)2

− abah(ahab)hah(ah)h

= (ab)2
− ab(ahab)hahaha2ah

= (ab)2
− ab(ahab)hah

∈ N(R),
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that is, the statement (6) holds.
Now, the statements (1)–(6) are equivalent.
(7)⇒ (6): It is obvious.
(1) ⇒ (7): By the assumption a, ab ∈ Rh and together with ab ∈ comm(a), we deduce that aba ∈ Rh

and (aba)h = ah(ab)h by Lemma 1.5. Recall that (ahab)h = (ahahaba)h = (aba)h(ah)h(ah)h. The assumption
(ab)h = (ahab)hah gives (aba)h(ah)h = (aba)h(ah)h(ah)hah = (ahab)hah = (ab)h. Then statement (7) holds. �

If we replace the conditions a ∈ Rh, ab ∈ comm(a) in Theorem 2.2 by b ∈ Rh, ab ∈ comm(b), we get the
dual statements concerning (ab)h = bh(abbh)h and (abbh)h = b(ab)h.

Corollary 2.1. If a ∈ R, b ∈ Rh, ab ∈ comm(b), then the following statements are equivalent:
(1) ab, abbh

∈ Rh and (ab)h = bh(abbh)h;
(2) abbh

∈ Rh and bh(abbh)h
∈ (ab){7};

(3) ab, abbh
∈ Rh and (abbh)h = b(ab)h;

(4) ab ∈ Rh and b(ab)h
∈ (abbh){2};

(5) ab ∈ Rh and b(1 − bbh)(ab)h = 0;
(6) bab ∈ Rh and (bh)h(bab)h

∈ (ab){7};
(7) ab, bab ∈ Rh and (ab)h = (bh)h(bab)h.

In the following, we give some equivalent characterizations for (ab)h = bhah under certain conditions.

Theorem 2.3. If a, b, ab ∈ Rh, ab ∈ comm(a), then the following statements are equivalent:
(1) (ab)h = bhah;
(2) ahab ∈ Rh and (ahab)h = (ab)ha = bhaha;
(3) ahab ∈ Rh with (ahab)h = bhaha and (ab)h = (ahab)hah;
(4) aba ∈ Rh with (aba)h = bhahah and (ab)h = (aba)h(ah)h.

Proof. (2) ⇒ (3): Using the assumption (ahab)h = (ab)ha = bhaha, we obtain that (ab)bhah = abbhahaah =
ab(ab)haah = (ab)habaah = bhahabaah = bhahaahab = bhahab, i.e. bhah

∈ (ab){5}. Also, we have bhah(ab)bhah =
bhahabbhahaah = (ab)hab(ab)haah = (ab)haah = bhahaah = bhah, i.e. bhah

∈ (ab){2}, and (ab)2
− (ab)bhah = (ab)2

−

bhahab = (ab)2
− (ab)hab ∈ N(R), i.e. bhah

∈ (ab){7}. Thus (ab)h = bhah. So (ahab)hah = bhahaah = bhah = (ab)h.
(3)⇒ (1): It is obvious.
(1)⇒ (2): By (ab)h = bhah, we obtain (bhaha)(ahab)(bhaha) = bhahabbhaha = (ab)hab(ab)ha = (ab)ha = bhaha , i.e.

bhaha ∈ (ahab){2}. Also,

(bhaha)(ahab) = bhahab = (ab)hab = ab(ab)h = abbhah = abbhahaah = abbhahaha
= ab(ab)haha = ahab(ab)ha = (ahab)(bhaha),

i.e. bhaha ∈ (ahab){5}.
Since ab ∈ comm(a) and ab ∈ comm(ah), then (ah)2((ab)2

− ab(ab)h) commutes with ((ah)2
− ah(ah)h)ab(ab)h.

Note that

(ahab)2
− (ahab)(bhaha) = (ah)2(ab)2

− ahab(ab)ha
= (ah)2(ab)2

− (ah)2ab(ab)h + (ah)2ab(ab)h
− ahaab(ab)h

= (ah)2((ab)2
− ab(ab)h) + ((ah)2

− aha)ab(ab)h

= (ah)2((ab)2
− ab(ab)h) + ((ah)2

− ahaaha)ab(ab)h

= (ah)2((ab)2
− ab(ab)h) + ((ah)2

− aha2ah)ab(ab)h

= (ah)2((ab)2
− ab(ab)h) + ((ah)2

− ah(ah)h)ab(ab)h.

Applying Lemma 1.4, we have (ahab)2
− (ahab)(bhaha) ∈ N(R), i.e. bhaha ∈ (ahab){7}.

Thus (ahab)h = bhaha = (ab)ha.
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(2) ⇒ (4): Obviously, ab, ahab ∈ Rh and (ahab)h = (ab)ha yield aba ∈ Rh and (ab)h = (aba)h(ah)h by
Theorem 2.2. Also, using the assumptions a, ab ∈ Rh, ab ∈ comm(a) and (ab)ha = bhaha, we get that
(aba)h = (ab)hah = (ab)ha(ah)2 = bhaha(ah)2 = bhahah.

(4) ⇒ (2): The assumptions ab, aba ∈ Rh and (ab)h = (aba)h(ah)h imply ahab ∈ Rh and (ahab)h = (ab)ha by
Theorem 2.2. Also, from the assumption (aba)h = bhahah, we get that (ab)ha = (aba)h(ah)ha = bhahah(ah)ha =
bhahaha2aha = bhaha by Lemma 1.2, that is, (ahab)h = (ab)ha = bhaha. �

If we replace the condition ab ∈ comm(a) in Theorem 2.3 by ab ∈ comm(b), we get the following dual
statements.

Corollary 2.2. If a, b, ab ∈ Rh, ab ∈ comm(b), then the following statements are equivalent:
(1) (ab)h = bhah;
(2) abbh

∈ Rh and (abbh)h = b(ab)h = bbhah;
(3) abbh

∈ Rh with (abbh)h = bbhah and (ab)h = bh(abbh)h;
(4) bab ∈ Rh with (bab)h = bhbhah and (ab)h = (bh)h(bab)h.

Now, we discuss the equivalent characterizations for mixed reverse order law (ahabbh)h = b(ahab)h under
conditions a, b, ahab ∈ Rh, and ahab ∈ comm(b).

Theorem 2.4. If a, b, ahab ∈ Rh, ahab ∈ comm(b), then the following statements are equivalent:
(1) ahabbh

∈ Rh and (ahabbh)h = b(ahab)h;
(2) ahabbh

∈ Rh and bh(ahabbh)h
∈ (ahab){7};

(3) ahabbh
∈ Rh and (ahab)h = bh(ahabbh)h;

(4) b(ahab)h
∈ (ahabbh){2};

(5) b(1 − bhb)(ahab)h = 0.

Proof. (1)⇒ (4): It is obvious by Definition 1.1.
(4)⇒ (1): Because ahab ∈ comm(b), we know (ahab)h

∈ comm(b)∩ comm(bh). Therefore, ahabbh commutes
with b(ahab)h, i.e. b(ahab)h

∈ (ahabbh){5}. By Definition 1.1 and Lemma 1.2, we can see that both (bh)2
−bh(bh)h

∈

N(R) and (ahab)2
− ahab(ahab)h

∈ N(R), and (bh)h = b2bh. Using Lemma 1.4, we have

(ahabbh)2
− (ahabbh)b(ahab)h = (ahab)2(bh)2

− (ahab)2bh(bh)h + (ahab)2bh(bh)h
− (ahabbh)b(ahab)h

= (ahab)2((bh)2
− bh(bh)h) + ((ahab)2

− ahab(ahab)h)bhb ∈ N(R),

i.e. b(ahab)h
∈ (ahabbh){7}. And from the the assumption b(ahab)h

∈ (ahabbh){2}, we obtain that ahabbh
∈ Rh and

(ahabbh)h = b(ahab)h.
(4)⇔ (5): We have

b(ahab)h
∈ (ahabbh){2} ⇔ (b(ahab)h)(ahabbh)(b(ahab)h) = b(ahab)h

⇔ bbhb(ahab)hahab(ahab)h = b(ahab)h

⇔ bbhb(ahab)h = b(ahab)h

⇔ b(bhb − 1)(ahab)h = 0.

(2) ⇒ (3): Using the assumption ahab ∈ comm(b), we have (ahab)(bh(ahabbh)h) = bhahab(ahabbh)h =
bh(ahabbh)h(ahab), i.e. bh(ahabbh)h

∈ (ahab){5}. In addition, it is clear that (bh(ahabbh)h)(ahab)(bh(ahabbh)h) =
bh(ahabbh)h, so bh(ahabbh)h

∈ (ahab){2}. Note that the assumption bh(ahabbh)h
∈ (ahab){7}. Therefore, ahab ∈ Rh

and (ahab)h = bh(ahabbh)h.
(3)⇒ (2): It is obvious by Definition 1.1.
(3) ⇒ (5): Note that (ahab)h = bh(ahabbh)h, we conclude bbhb(ahab)h = bbhbbh(ahabbh)h = bbh(ahabbh)h =

b(ahab)h, i.e. b(1 − bhb)(ahab)h = 0.
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(1)⇒ (3): Combining the proofs of (1)⇔ (5) with Definition 1.1 and the assumption (ahabbh)h = b(ahab)h,
we obtain

(ahab)2
− (ahab)bh(ahabbh)h = (ahab)2

− ahabbhb(ahab)h

= (ahab)2
− ahab(ahab)h + ahab(ahab)h

− ahabbhb(ahab)h

= (ahab)2
− ahab(ahab)h + ahab(1 − bhb)(ahab)h

= (ahab)2
− ahab(ahab)h

∈ N(R).

In addition, it is clear that bh(ahabbh)h
∈ (ahab){2, 5} by ahab ∈ comm(b). Then we claim that the statement (3)

holds.
�

If we change the condition ahab ∈ comm(b) of Theorem 2.4 into abbh
∈ comm(a), we get the following

dual statements.

Corollary 2.3. If a, b, abbh
∈ Rh, abbh

∈ comm(a), then the following statements are equivalent:
(1) ahabbh

∈ Rh and (ahabbh)h = (abbh)ha;
(2) ahabbh

∈ Rh and (ahabbh)hah
∈ (abbh){7};

(3) ahabbh
∈ Rh and (abbh)h = (ahabbh)hah;

(4) (abbh)ha ∈ (ahabbh){2};
(5) (abbh)h(aah

− 1)a = 0.

In [16], D. Mosić and N.Č. Dinčić discussed the mixed reverse order law (ab)† = b†(a†abb†)†a† in rings
with involution. In the following result, we discuss the equivalent characterizations for the mixed reverse
order law (ab)h = bh(ahabbh)hah under conditions a, b ∈ Rh, ab ∈ comm(a) ∩ comm(b).

Theorem 2.5. If a, b ∈ Rh, ab ∈ comm(a) ∩ comm(b), then the following statements are equivalent:
(1) ab, ahabbh

∈ Rh and (ab)h = bh(ahabbh)hah;
(2) ab ∈ Rh and bhb(ab)h = (ab)haah = (ab)h;
(3) ab, ahabbh

∈ Rh, (ahabbh)h = b(ab)ha and bhb(ab)haah = (ab)h;
(4) ahabbh

∈ Rh and bh(ahabbh)hah
∈ (ab){7};

(5) ab, ahab, abbh
∈ Rh and (ab)h = (ahab)hah = bh(abbh)h;

(6) ab, ahab, abbh
∈ Rh, (ahab)h = (ab)ha and (abbh)h = b(ab)h;

(7) ab, aba, bab ∈ Rh and (ab)h = (aba)h(ah)h = (bh)h(bab)h;
(8) aba, bab ∈ Rh and (aba)h(ah)h, (bh)h(bab)h

∈ (ab){7}.
In addition, if any of the previous statements is valid, then ahabbh

∈ Rh and (ahabbh)h = b(ahab)h = (abbh)ha.

Proof. We know (7)⇔ (8) by Theorem 2.2 and Corollary 2.1, so we only need to prove the equivalence
of (1)–(7).

(1)⇒ (2): The assumption (ab)h = bh(ahabbh)hah implies bhb(ab)h = bhbbh(ahabbh)hah = bh(ahabbh)hah = (ab)h,
(ab)haah = bh(ahabbh)hahaah = bh(ahabbh)hah = (ab)h.

(2)⇒ (3): Using the assumption bhb(ab)h = (ab)haah = (ab)h, we get
(b(ab)ha)(ahabbh)(b(ab)ha) = b((ab)haah)ab(bhb(ab)h)a = b(ab)hab(ab)ha = b(ab)ha,

i.e. b(ab)ha ∈ (ahabbh){2}, and

(b(ab)ha)(ahabbh) = b(ab)habbh = bhb(ab)hab
= (ab)hab = ab(ab)haah = ahab(ab)ha = ahabbhb(ab)ha,

i.e. b(ab)ha ∈ (ahabbh){5}.
Since ab ∈ comm(a) ∩ comm(b) and a, b ∈ Rh, ahbh

∈ comm(ab) ∩ comm((ab)h), so ahbhab(ab)h =
ahabbh(ab)h = aha(ab)h = (ab)haah = (ab)h. Then applying Lemma 1.2, we have

ahbh(ab)h
− (ab)hba = ahbh(ab)hab(ab)h

− (ab)haahba = (ahbhab(ab)h)(ab)h
− (ab)hah(ab)a

= (ab)h(ab)h
− (ab)haahab = ((ab)h)2

− (ab)hab
= ((ab)h)2

− (ab)hab(ab)hab = ((ab)h)2
− (ab)h(ab)2(ab)h

= ((ab)h)2
− (ab)h((ab)h)h

∈ N(R),
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then by Definition 1.1 and Lemma 1.4, we have

(ahabbh)2
− (ahabbh)(b(ab)ha) = (ahbhab)2

− ahabbhb(ab)ha
= (ahbh)2((ab)2

− ab(ab)h) + (ahbh)2ab(ab)h
− ahabbhb(ab)ha

= (ahbh)2((ab)2
− ab(ab)h) + ahbh(ahbhab(ab)h) − (ahbhab(ab)h)ba

= (ahbh)2((ab)2
− ab(ab)h) + (ahbh(ab)h

− (ab)hba)
= (ahbh)2((ab)2

− ab(ab)h) + ((ab)h)2
− (ab)h((ab)h)h

∈ N(R),

which yields b(ab)ha ∈ (ahabbh){7}. Hence (ahabbh)h = b(ab)ha. We note that bhb(ab)h = (ab)haah = (ab)h, thus
bhb(ab)haah = (ab)haah = (ab)h.

(3) ⇒ (1): Using the assumptions (ahabbh)h = b(ab)ha and bhb(ab)haah = (ab)h, we have bh(ahabbh)hah =
bhb(ab)haah = (ab)h.

(1)⇒ (4): It is obvious using Definition 1.1.
(4)⇒ (1): Only to prove that bh(ahabbh)hah

∈ (ab){2, 5}. Obviously,
(bh(ahabbh)hah)(ab)(bh(ahabbh)hah) = (bh(ahabbh)h(ahabbh)(ahabbh)hah = bh(ahabbh)hah, i.e. bh(ahabbh)hah

∈

(ab){2}.
Since ab ∈ comm(a) ∩ comm(b), ab ∈ comm(ah) ∩ comm(bh), so (ahabbh) ∈ comm(ab), and then (ahabbh)h

∈

comm(ab), therefore, bh(ahabbh)hah
∈ comm(ab), i.e. bh(ahabbh)hah

∈ (ab){5}.
(5)⇔ (6): It follows directly from Theorem 2.2 (1)(3) and Corollary 2.1(1)(3).
(1) ⇒ (6): By the hypothesis (ab)h = bh(ahabbh)hah, we have ((ab)ha)(ahab)((ab)ha) = (ab)hab(ab)haaha =

(ab)haaha = bh(ahabbh)hahaaha = bh(ahabbh)haha = (ab)ha, i.e. (ab)ha ∈ (ahab){2}.
Since ab ∈ comm(a), then (ab)haahab = ah(ab)haab = ahab(ab)ha, i.e. (ab)ha ∈ (ahab){5}.
Note that ab ∈ comm(a), by Definition 1.1 and Lemma 1.4, we have
(ahab)2

− (ahab)((ab)ha) = (ah)2((ab)2
− ab(ab)h) + ((ah)2

− ah(ah)h)ab(ab)h
∈ N(R),

i.e. (ab)ha ∈ (ahab){7}.
Hence, ahab ∈ Rh and (ahab)h = (ab)ha hold. Then abbh

∈ Rh and (abbh)h = b(ab)h follow in the similar way.
(6) ⇒ (4): Using ab, ahab, abbh

∈ Rh, (ahab)h = (ab)ha and (abbh)h = b(ab)h, we have b(ahab)h = b(ab)ha =
(abbh)ha.

Now we want to prove that ahabbh
∈ Rh and (ahabbh)h = b(ahab)h = (abbh)ha.

Since ab ∈ comm(bbh), and abbh, (abbh)h
∈ comm(bbh), so

bbhb(ahab)h = bbhb(ab)ha = bbh(abbh)ha = ((abbh)h)2abbhbbha = ((abbh)h)2abbha
= (abbh)ha = b(ahab)h,

therefore,

ahabbhb(ahab)h = ahab(ahab)h = ahab(ab)ha = aha(ab)hab
= aha(ahab)hb = ahaahab((ahab)h)2b = ahab((ahab)h)2b
= (ahab)hb = (ab)hab.

The equalities (abbh)haaha = (abbh)ha and (abbh)haahabbh = (ab)hab follow in the similar way. Then b(ahab)hahabbh =
b(ab)haahabbh = (abbh)haahabbh = (ab)hab, thus b(ahab)h

∈ (ahabbh){5}.
Using bbhb(ahab)h = b(ahab)h, we have

(b(ahab)h)(ahabbh)(b(ahab)h) = b(ahab)haha(bbhb(ahab)h) = b(ahab)hahab(ahab)h = b(ahab)h,

i.e. b(ahab)h
∈ (ahabbh){2}.

In order to prove b(ahab)h
∈ (ahabbh){7}, first we have

ahbhab(ab)h = ahab(ab)hbh = aha(ab)hbbh = aha(ab)hab(ab)hbbh

= (aha(ahab)h)((abbh)hbbh) = (ahab)h(abbh)h = (ab)hab(ab)h = (ab)h.
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Then,

(ab)hahbh
− (ab)hab = ahabbh((ab)h)2

− (ab)h(ab)h(ab)2

= ahabbh((ab)h)2
− ahabbh(ab)h(ab)h(ab)2

= ahabbh(((ab)h)2
− (ab)h(ab)2(ab)h)

= ahabbh(((ab)h)2
− (ab)h((ab)h)h) ∈ N(R).

By Definition 1.1 and Lemma 1.4, we obtain

(ahabbh)2
− (ahabbh)(b(ahab)h) = ahabbhahabbh

− (ab)hab
= ahbh(ab)2ahbh

− ahbhab(ab)hahbh + (ab)hahbh
− (ab)hab

= (ahbh)2((ab)2
− ab(ab)h) + ((ab)hahbh

− (ab)hab) ∈ N(R).

So, (ahabbh)h = b(ahab)h = b(ab)ha = (abbh)ha.
Now, we prove that bh(ahabbh)hah

∈ (ab){7}. Since ab, ahab ∈ Rh, (ahab)h = (ab)ha, we obtain that (ahab)hah =
(ab)h by (1)⇔ (3) in Theorem 2.2. We also note that (abbh)hbbh = ((abbh)h)2abbhbbh = ((abbh)h)2abbh = (abbh)h.
Then

abbh(ahabbh)hah = abbh(abbh)haah = a(abbh)hbbhaah = a(abbh)haah = ab(ahab)hah = ab(ab)h,

thus (ab)2
− abbh(ahabbh)hah = (ab)2

− ab(ab)h
∈ N(R).

Then we have proved the equivalence of the statements (1)–(6). By (3) and (6), we have ahabbh
∈ Rh and

(ahabbh)h = b(ahab)h = (abbh)ha.
Now, we will prove the equivalence of (2) and (7).
(2)⇒ (7): It is easy to obtain aba, bab ∈ Rh by the hypotheses a, b, ab ∈ Rh, ab ∈ comm(a) ∩ comm(b). From

the assumption bhb(ab)h = (ab)haah = (ab)h, we deduce that (aba)h(ah)h = (ab)haha2ah = (ab)haah = (ab)h and
(bh)h(bab)h = b2bhbh(ab)h = bhb(ab)h = (ab)h by Lemma 1.2 and Lemma 1.5.

(7)⇒ (2): Using the assumptions (ab)h = (aba)h(ah)h = (bh)h(bab)h, we get (ab)h = (aba)h(ah)h = ah(ab)ha2ah =
(ab)haha2ah = (ab)haah, (ab)h = (bh)h(bab)h = b2bh(ab)hbh = bhb2bh(ab)h = bhb(ab)h, we claim that the statement
(2) holds. �

Combining the statements of Theorem 2.2 and Corollary 2.1, and applying Theorem 2.5, we obtain more
equivalent conditions for (ab)h = bhah. When ab ∈ comm(a) ∩ comm(b), we also give characterizations of the
reverse order law (ab)h = bhah, which involve the Hirano inverse (ahabbh)h.

Theorem 2.6. If a, b ∈ Rh, ab ∈ comm(a) ∩ comm(b), then (ab)h = bhah if and only if ahabbh
∈ Rh, (ahabbh)h = bbhaha

and any one of the following statements equivalent statements holds:
(1) ab ∈ Rh and (ab)h = bh(ahabbh)hah;
(2) ab ∈ Rh and bhb(ab)h = (ab)haah = (ab)h;
(3) ab ∈ Rh and (ahabbh)h = b(ab)ha and bhb(ab)haah = (ab)h;
(4) bh(ahabbh)hah

∈ (ab){7};
(5) ab, ahab, abbh

∈ Rh and (ab)h = (ahab)hah = bh(abbh)h;
(6) ab, ahab, abbh

∈ Rh, (ahab)h = (ab)ha and (abbh)h = b(ab)h;
(7) ab ∈ Rh and (ab)h = (aba)h(ah)h = (bh)h(bab)h;
(8) ab ∈ Rh and (aba)h(ah)h, (bh)h(bab)h

∈ (ab){7}.

Proof. ⇒: The assumption (ab)h = bhah implies that

(bbhaha)(ahabbh)(bbhaha) = bbhahabbhaha = b(ab)hab(ab)ha = b(ab)ha = bbhaha,

i.e. bbhaha ∈ (ahabbh){2}.
Since ab ∈ comm(a) ∩ comm(b), we have ab, (ab)h

∈ comm(ah) ∩ comm(bh), so

ahabbhbbhaha = ahabbhaha = abah(ab)ha = (ab)(ab)haah = (ab)bhahaah = abbhah = ab(ab)h
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and
bbhahaahabbh = bbhahabbh = b(ab)habbh = bhb(ab)hab = bhbbhahab = bhahab = (ab)hab,

i.e. bbhaha ∈ (ahabbh){5}.
Using (ab)h = bhah, we get

(ab)h = bhah = bhahaah = (ab)haah, and (ab)h = bhah = bhbbhah = bbh(ab)h.

Then we have

(ahbh)2ab(ab)h
− ahabbhaha = ahbhahbhab(ab)h

− ahab(ab)ha
= ah(ab)hbhab(ab)h

− ab(ab)haah = ah(ab)habbh(ab)h
− ab(ab)h

= ah(ab)ha(ab)h
− ab(ab)h = (ab)haah(ab)h

− ab(ab)h

= ((ab)h)2
− ab(ab)hab(ab)h = ((ab)h)2

− (ab)h((ab)2(ab)h)
= ((ab)h)2

− (ab)h((ab)h)h
∈ N(R).

By Lemma 1.4, we have

(ahabbh)2
− (ahabbh)(bbhaha) = (ahbh)2(ab)2

− ahabbhaha
= (ahbh)2((ab)2

− ab(ab)h) + ((ahbh)2ab(ab)h
− ahabbhaha)

= (ahbh)2((ab)2
− ab(ab)h) + ((ab)h)2

− (ab)h((ab)h)h
∈ N(R),

i.e. bbhaha ∈ (ahabbh){7}. Then ahabbh
∈ Rh, and (ahabbh)h = bbhaha. Moreover, (ab)h = bhah = bhbbhahaah =

bh(ahabbh)hah. So the the statement (1) holds.
Applying Theorem 2.5, we note that the statements (1) − (8) are equivalent.
⇐: If ab, ahabbh

∈ Rh, (ahabbh)h = bbhaha and (ab)h = bh(ahabbh)hah, then (ab)h = bhbbhahaah = bhah. �

Removing the conditions ahab, abbh
∈ Rh in Theorem 2.4 and Corollary 2.3, we have the following

equivalent characterizations of the mixed reverse order law (ahabbh)h = bbhaha.

Theorem 2.7. If a, b ∈ Rh, ahab ∈ comm(b) and abbh
∈ comm(a), then the following statements are equivalent:

(1) ahabbh
∈ Rh and (ahabbh)h = bbhaha;

(2) ahabbh
∈ Rh and bh(ahabbh)hah = bhah;

(3) bbhaha ∈ (ahabbh){2}.

Proof. (1)⇒ (2): Using the assumption (ahabbh)h = bbhaha, we deduce bh(ahabbh)hah = bhbbhahaah = bhah.
(2)⇒ (3): By bh(ahabbh)hah = bhah we have that (bbhaha)(ahabbh)(bbhaha) = bbhahabbhaha = bbh(ahabbh)hahabbh(ahabbh)haha =

bbh(ahabbh)haha = bbhaha, i.e. bbhaha ∈ (ahabbh){2}.
(3)⇒ (1): Since ahab ∈ comm(b) and abbh

∈ comm(a), we get that ahab ∈ comm(bh) and abbh
∈ comm(ah),

so (ahabbh)(bbhaha) = bhbahabbhaha = (bbhaha)(ahabbh), i.e. bbhaha ∈ (ahabbh){5}. Note that

(ahabbh)2
− (ahabbh)(bbhaha) = (ahabbh)(ahabbh) − ahabbhaha

= ahahaabbhbbh
− ahahaabbh = ahabbh

− ahabbh = 0.

i.e. bbhaha ∈ (ahabbh){7}. By the assumption bbhaha ∈ (ahabbh){2}, we claim that the statement (1) holds. �

Finally, we discuss equivalent characterizations of the reverse order law (ab)h = bhah under the conditions
ahab ∈ comm(b) and abbh

∈ comm(a).

Theorem 2.8. If a, b ∈ Rh, ahab ∈ comm(b) and abbh
∈ comm(a), then the following statements are equivalent:

(1) ab ∈ Rh and (ab)h = bhah;
(2) ab, ahabbh

∈ Rh, (ab)h = bh(ahabbh)hah and (ahabbh)h = bbhaha;
(3) ahabhah = bhah and bhah

∈ (ab){7};
(4) bhahbbh = bhah and bhah

∈ (ab){7}.
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Proof. (1)⇒ (2): Using the assumption (ab)h = bhah, we conclude that
(bbhaha)(ahabbh)(bbhaha) = bbhahabbhaha = b(ab)hab(ab)ha = b(ab)ha = bbhaha,

i.e. bbhaha ∈ (ahabbh){2}. Then we have ahabbh
∈ Rh and (ahabbh)h = bbhaha by Theorem 2.7. Moreover,

bh(ahabbh)hah = bhbbhahaah = bhah = (ab)h.
(2)⇒ (1): It is obvious.
(1)⇒ (3): Using the assumption (ab)h = bhah, together with Definition 1.1, we get bhah

∈ (ab){7}. Since
ahab ∈ comm(b) and abbh

∈ comm(a), we have ahabhah = ahabbhbhah = bhahabbhah = (ab)hab(ab)h = (ab)h = bhah.
(3)⇒ (1): Suppose ahabhah = bhah and bhah

∈ (ab){7}, we only need to prove that bhah
∈ (ab){2, 5}.

Since ahab ∈ comm(b) and abbh
∈ comm(a), we have (ab)(bhah) = ahabbh = bhahab = (bhah)(ab), i.e.

bhah
∈ (ab){5}. In addition, (bhah)(ab)(bhah) = bh(ahab)bhah = ahabbhbhah = ahabhah = bhah, i.e. bhah

∈ (ab){2}.
(1) ⇒ (4): Using the assumption (ab)h = bhah and Definition 1.1, we know bhah

∈ (ab){7}. Since ahab ∈
comm(b) and abbh

∈ comm(a), we have bhahbbh = bhahahabbh = bhahbhahab = (ab)h(ab)hab = (ab)h = bhah.
(4)⇒ (1): It is similar to the proof of (3)⇒ (1). �
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