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Available at: http://www.pmf.ni.ac.rs/filomat

Scalarization and Well-Posedness for Set Optimization Using
Coradiant Sets

Bin Yaoa,b, Sheng Jie Lia

aChongqing University, College of Mathematics and Statistics, Chongqing, China
bShihezi University, College of Science, Shihezi, China

Abstract. The aim of this paper is to study scalarization and well-posedness for a set-valued optimization
problem with order relations induced by a coradiant set. We introduce the notions of the set criterion
solution for this problem and obtain some characterizations for these solutions by means of nonlinear
scalarization. The scalarization function is a generalization of the scalarization function introduced by
Khoshkhabar-amiranloo and Khorram. Moveover, we define the pointwise notions of LP well-posedness,
strong DH-well-posedness and strongly B-well-posedness for the set optimization problem and characterize
these properties through some scalar optimization problem based on the generalized nonlinear scalarization
function respectively.

1. Introduction

In recent years, optimization problems with set-valued objective maps, have received an increasing
attention due to its extensive application in many fields such as economics, differential inclusions and
optimal control, see [1–3, 7]. There are two types of criteria of solutions for set-valued optimization
problems: the vector criterion and the set criterion. The vector criterion, introduced in [4, 8], consists
of looking for efficient points of the union of the image sets of the feasible region under the set-valued
objective map. In contrast to the vector criterion, the set criterion, also called set optimization, introduced
by Kuroiwa [9], bases on an order relation among sets and consists of looking for minimal elements of
the family of the image sets of the feasible region under the set-valued objective map. Therefore, the set
criterion seems to be more natural and interesting than the vector criterion, whenever one needs to consider
preferences over sets.

It is well known that well-posedness plays a crucial role in the stability theory for optimization problems.
The notion of well-posedness was first introduced by Tykhonov [10] for scalar optimization problems.
Since then, various notions of well-posedness have been introduced and studied for different kinds of
optimization problems, see [5] and the references there in. Zhang et al. [11] introduced three kinds
of well-posedness for set optimization problems and established the equivalent relations between these
well-posedness and the well-posedness of three kinds of scalar optimization problems respectively using
a generalized Gerstewitz’s function. Gutiérrez et al. [12] generalized some results of [11] on Tykhonov
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well-posed set optimization problems. Long and Peng [13] introduced three kinds of B-well-posedness for
set optimization problems and gave some characterizations for these properties. Long et al. [14] introduced
the notions of pointwise L-well-posedness and pointwise DH-well-posedness for set optimization problems
and obtained some relations among these well-posedness and pointwise B-well-posedness defined in [13].
Han and Huang [15] gave some characterizations for the generalized l-B-well-posedness and the generalized
u-B-well-posedness of set optimization problems. Khoshkhabar-amiranloo and Khorram [16] introduced
the pointwise notions of LP well-posedness, strongly DH-well-posedness and strongly B-well-posedness
and gave some characterizations for these properties using a new scalarization function introduced in [17].

The classical order relations among sets used in the set optimization are preorders induced by a convex
cone. However, there are many situations in practice, especially in economics [6, 18], where one has to
deal with order relations which are not necessarily preorders. This motivated many authors to consider
order relations which are not preorders for optimal solutions of set optimization, see [19–22]. Naturally, it
is meaning to study scalarization and well-posedness for these set optimization problems.

In this paper, we study a set-valued optimization problem with order relations induced by a coradiant
set. In general, these order relations are not preorders. First, we introduce the notions of the set criterion
solution for this problem and show that these concepts generalize the corresponding solution notions for
the classical set optimization problem. Then, using a generalization of the nonlinear scalarization function
introduced in [17], we give some characterizations for these solutions. Finally, we generalize three kinds of
well-posedness introduced in [16] to above set optimization problem and obtain some characterizations of
these properties through some scalar optimization problem respectively.

The rest of the paper is organized as follows: In Section 2, we give the main notions, lemmas and
propositions. In Section 3, we introduce the notions of the set criterion solution for a set-valued optimization
problem using coradiant sets and obtain some relations among these solutions. In Section 4, we give a
generalization of the nonlinear scalarization function introduced in [17] and obtain some characterizations of
the solutions defined in Section 3 by means of this generalized nonlinear scalarization function. In Section
5, we define the pointwise notions of LP well-posedness, strong DH-well-posedness, strongly B-well-
posedness for the set optimization problem using coradiant sets and characterize these properties through
some scalar optimization problem based on the generalized nonlinear scalarization function introduced in
Section 4 respectively.

2. Preliminaries

Let X and Y be two normed vector spaces, P(Y) be the family of all nonempty subsets of Y, M be a
nonempty subset of X. Given a set A ⊆ Y, we denote by clA, intA, Ac and diamA the topological closure, the
topological interior, the complement and the diameter of A respectively. Let f : X → R ∪ {+∞} be a lower
bounded function. Denote by argmin( f ,M) and inf

x∈M
f the set of minimal solutions and the infimum of f on

M. Let F : X ⇒ Y be a set-valued map. The effective domain of F is defined as dom(F) := {x ∈ X|F(x) , ∅}.
The distance from a point y ∈ Y to A is defined as d(y,A) := in f

a∈A
‖ y − a ‖, d(y, ∅) = +∞, where ‖ y ‖ denotes

the norm of y in Y. Also, Nr(y) (N̄r(y)) denotes the open (closed) ball with centre y and radius r > 0.

Definition 2.1. A set D ⊆ Y is called a coradiant set if αd ∈ D,∀d ∈ D,∀α > 1.

For a coradiant set D in Y, we denote D(ε) := εD,∀ε > 0 and D(0) :=
⋃
ε>0

D(ε) ∪ {0}. Clearly, D(0) is a

cone. We say that A ⊆ Y is D-closed if A + D is closed and D-bounded if for each neighbourhood U of zero
in Y there exists a constant t > 0 such that A ⊆ tU + D.

Lemma 2.2. [23] Let D be a convex coradiant set. Then

(i) D(ε) + D(δ) ⊆ D(ε), ∀ε, δ > 0.

(ii) D(ε) + D(0) = D(ε), ∀ε > 0.
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Remark 2.3. By Lemma 2.2, we can see that a coradiant set D is convex⇒ D + D(0) = D⇒ D + D ⊆ D. Moveover,
it is easy to check that for a convex coradiant set D, if 0 ∈ D, then D is a convex cone such that D = D(0), if 0 < D,
then D is an improvement set with respect to the convex cone D(0) (for more details about the improvement set see
[24]). Notice that the above conclusions may not hold if the convexity of D is replaced by D + D ⊆ D. For example,
if let D := {(y1, y2) ∈ R2

|y2 ≥ 1} ∪ {0}, then D is a coradiant set such that D + D ⊆ D and 0 ∈ D, but D is not a
convex cone, if let D := {(y1, y2) ∈ R2

|y1 ≥ 1, y2 ≥ 0, y1 ≥ y2} ∪ {(y1, y2) ∈ R2
|y1 ≥ 0, y2 ≥ 2, y1 ≤ y2}, then D is a

coradiant set such that D + D ⊆ D and 0 < D, but D is not an improvement set with respect to the convex cone D(0).

Proposition 2.4. Let D be a proper (∅ , D , Y) coradiant set such that D + D ⊆ D. Then 0 ∈ clD iff D + D = D.

Proof. For the ’only if ’ part, it is enough to prove that D ⊆ D + D. Suppose that D * D + D, then there
exists d ∈ D such that d < D + D. Since D is a coradiant set, then (1 + 1

n )d ∈ D for any n ∈ N. It follows that
−

1
n d < D for any n ∈N, which means 0 < clD, a contradiction.

For the ’if ’ part, suppose that 0 < clD. Then there exists r > 0 such that Nr(0) ∩ clD = ∅. Let rmax :=
max{r > 0,Nr(0)∩ clD = ∅}, then for any r′ > rmax, Nr′ (0)∩D , ∅. It is clear that for any r > 0, (Y\Nr(0))∩D(0)
is a coradiant set. So D = D + D ⊆ ((Y\Nrmax (0)) ∩D(0)) + ((Y\Nrmax (0)) ∩D(0)) = (Y\N2rmax (0)) ∩D(0), which
means N2rmax (0) ∩D = ∅, a contradiction. �

Definition 2.5. Let D be a closed coradiant set. Then B ⊆ D is called a base of D if

D = {ty|y ∈ B, t ≥ 1}.

Proposition 2.6. Let D be a proper closed coradiant set such that D + D ⊆ D. If 0 ∈ D and D has a bounded base B,
then D = D(0).

Proof. It is enough to prove that D(0) ⊆ D. Suppose that D(0) * D, then there exists 0 < ε < 1 such that
∀0 < α ≤ ε, D(α) * D, that is to say there exist 0 < ε < 1 and d ∈ D such that ∀0 < α ≤ ε, αd < D. Since B
is a base of D, then, for d ∈ D, there exist t ≥ 1 and b ∈ B such that d = tb. Therefore, there exist 0 < ε < 1,
t ≥ 1 and b ∈ B such that ∀0 < α ≤ ε, αtb * D. Let α→ 0. Since D is closed and 0 ∈ D, then αtb < D implies
‖ b ‖→ +∞. A contradiction with B is bounded. �

Lemma 2.7. Let D be a proper solid coradiant set such that D + D ⊆ D. Then for any A ⊆ P(Y), e ∈ intD and
r, ε > 0, the following statements hold:

(i) cl(A + D) + D ⊆ cl(A + D).

(ii) (A + D)c
−D ⊆ (A + D)c.

(iii) (cl(A + D))c
−D ⊆ (cl(A + D))c.

Proof. (i) For any z ∈ cl(A + D) + D, there exist {an} ⊆ A, {dn} ⊆ D and d′ ∈ D such that an + dn + d′ → z. Let
{d′n} := {dn + d′ }. Since D + D ⊆ D, then {d′n} ⊆ D. Therefore, z ∈ cl(A + D).

(ii) Suppose that (A + D)c
−D * (A + D)c. Let z ∈ ((A + D)c

−D)\(A + D)c. So, by D + D ⊆ D, there exists
d′ ⊆ D such that z + d′ ∈ (A + D)c

∩ (A + D + d′ ) ⊆ (A + D)c
∩ (A + D), which is impossible.

(iii) Suppose that (cl(A + D))c
− D * (cl(A + D))c. Let z ∈ ((cl(A + D))c

−D)\(cl(A + D))c. So there exists
d′ ⊆ D such that z + d′ ∈ (cl(A + D))c

∩ (cl(A + D) + d′ ) ⊆ (cl(A + D))c
∩ (cl(A + D)) by part (i), which is

impossible. �

Lemma 2.8. Let D be a proper solid coradiant set such that D + D(0) ⊆ D. Then for any A ⊆ P(Y), e ∈ intD and
r, ε > 0, the following statements hold:

(i) cl(A + D) ⊆ A − re + D.

(ii) A + D ⊆ int(A − re + D).

(iii) cl(A + Nr(0) + D) ⊆ A + Nr+ε(0) + D.



B. Yao, S. J. Li / Filomat 33:11 (2019), 3457–3471 3460

Proof. (i) For any z ∈ cl(A + D), there exist {an} ⊆ A and {dn} ⊆ D such that an +dn → z. Since−re+ int(D(0)) is
a neighborhood of zero and D + D(0) ⊆ D, then for n large enough, z ∈ an + dn − re + int(D(0)) ⊆ A − re + D.

(ii) As −re + int(D(0)) is a neighborhood of zero and D + D(0) ⊆ D, then

A + D ⊆ A + D − re + int(D(0)) ⊆ int(A + D − re + D(0)) = int(A − re + D).

(iii) As D is a proper solid coradiant set, then 0 < intD. It follows that e , 0 from e ∈ intD. Let ε
′

= ε
2‖e‖ .

By part (i), cl(A + Nr(0) + D) ⊆ A + Nr(0) − ε
2‖e‖ e + D ⊆ A + Nr+ε(0) + D. �

3. Optimal solutions of set optimization using coradiant sets

Let D := {D ⊆ Y|D + D ⊆ D,D is a proper, closed, solid, pointed coradiant set}. Throughout this paper,
we assume that Y is ordered by a coradiant set D ∈ D .

Let us recall some definitions in the theory of vector optimization. It is known that the coradiant set D
induces the following order relations in Y. For any y, y′ ∈ Y, we write y ≤ y′ if y′ − y ∈ D and y � y′ if
y′ − y ∈ intD. Let a ∈ A, we say that a is a minimal (maximal) point of A with respect to D and we write
a ∈MinA (a ∈MaxA) if A∩ (a−D) ⊆ {a} (A∩ (a + D) ⊆ {a}). We say that a is a weak minimal (weak maximal)
point of A with respect to D and we write a ∈WMinA (a ∈WMaxA) if A∩ (a− intD) = ∅ (A∩ (a + intD) = ∅).
Clearly, MinA ⊆WMinA and MaxA ⊆WMaxA.

Assume that F : X ⇒ Y is a set-valued map and M ⊆ Dom(F). The general set-valued optimization
problem is defined by:

(SOP) min
x∈M

F(x).

Let F(M) :=
⋃

x∈M
F(x), the vector criterion solutions of (SOP) are defined as follows. It is said that an element

x0 ∈M is a minimal (maximal) solution of (SOP), denoted as x0 ∈Min(F,M) (x0 ∈Max(F,M)), if there exists
y0 ∈ F(x0) such that y0 ∈ MinF(M) (y0 ∈ MaxF(M)). In the same way, it is said that an element x0 ∈ M is a
weak minimal (weak maximal) solution of (SOP), denoted as x0 ∈ WMin(F,M) (x0 ∈ WMax(F,M)), if there
exists y0 ∈ F(x0) such that y0 ∈WMinF(M) (y0 ∈WMaxF(M)).

Let A,B ⊆ P(Y), we denote by ≤l,�l, ≤u,�u, ∼l, ∼u the following set order relations on P(Y).

A ≤l B⇔ B ⊆ A + D,

A�l B⇔ B ⊆ A + intD,

A ≤u B⇔ A ⊆ B −D,

A�u B⇔ A ⊆ B − intD,

A ∼l B⇔ A ≤l B and B ≤l A,

A ∼u B⇔ A ≤u B and B ≤u A.

Remark 3.1. Since a cone is a coradiant set, then for any proper, closed, solid, pointed convex cone K ⊆ Y, we have
K ∈ D by Remark 2.3. Therefore, the above set order relations are generalization of the corresponding set order
relations defined in [25].

Remark 3.2. It is easy to prove that if A ∼l B (A ∼u B), then A + D = B + D (A − D = B − D). Notice that the
opposite conclusion does not hold in general, for example, let Y = R, A = [−2, 2], B = {−2} and D = [2,+∞). Then
D ∈ D and A + D = B + D = [0,+∞). Obviously, A /l B.

Proposition 3.3. The following statements hold:

(i) If A ∼l B, then MinA = MinB.
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(ii) If A ∼u B, then MaxA = MaxB.

Proof. (i) If MinA = MinB = ∅, the conclusion is true. Without loss of generality, suppose that MinA , ∅.
Let a1 ∈ MinA\MinB. Since B ≤l A, then there exists b1 ∈ B such that a1 ∈ b1 + D. Also, as A ≤l B, there
exists a2 ∈ A such that b1 ∈ a2 + D. In consequence, a2 ∈ b1 −D ⊆ a1 −D −D ⊆ a1 −D because D + D ⊆ D. If
a2 , a1, then a1 < MinA, a contradiction. Suppose that a2 = a1, then a1 = b1 and from a1 < MinB, we deduce
that there exists b2 ∈ B\A such that b2 ∈ a1 −D. Therefore, by A ≤l B again, there exists a3 ∈ A such that
b2 ∈ a3 + D. So a3 ∈ b2 −D ⊆ a1 −D −D ⊆ a1 −D, which contradicts with a1 ∈MinA and a3 , a1.

(ii) Similarly to the proof of (i). �

Definition 3.4. A set A ∈ P(Y) has the Min (Max) Property if for all x ∈ A there exists a ∈MinA (a ∈MaxA) such
that a ≤ x (x ≤ a).

We denote Ω (Θ) be the family of subsets of Y which has the Min (Max) Property.

Proposition 3.5. Let A,B ∈ Ω (Θ). If MinA = MinB (MaxA = MaxB), then A ∼l B (A ∼u B).

Proof. We only prove the situation of ∼l. Suppose that A /l B, without loss of generality, A �l B. Then
there exists b ∈ B such that b < a + D for all a ∈ A. In consequence A ∩ (b −D) = ∅. If b ∈ MinB = MinA,
we get a contradiction. If b < MinB. Since B has the Min Property, there exists b0 ∈ MinB such that
b ∈ b0 + D and b0 −D ⊆ b −D −D ⊆ b −D by D + D ⊆ D. Therefore A∩ (b0 −D) = ∅, which contradicts with
b0 ∈MinB = MinA. �

Now, we introduce the following notations of efficient set using the above set order relations, which are
generalizations of the notions of efficient set defined in [25] and [26] according to Remark 3.1.

Definition 3.6. Let A ⊆ P(Y). It is said that

(i) A ∈ A is an l-minimal set of A if for any B ∈ A such that B ≤l A implies A ≤l B. The family of l-minimal
sets of A is denoted by l-MinA .

(ii) A ∈ A is a weak l-minimal set of A if for any B ∈ A such that B�l A implies A�l B. The family of weak
l-minimal sets of A is denoted by l-WMinA .

(iii) A ∈ A is an u-minimal set of A if for any B ∈ A such that B ≤u A implies A ≤u B. The family of
u-minimal sets of A is denoted by u-MinA .

(iv) A ∈ A is a weak u-minimal set of A if for any B ∈ A such that B �u A implies A �u B. The family of
weak u-minimal sets of A is denoted by u-WMinA .

Remark 3.7. It is clear that if A ∈ A is an l-minimal (u-minimal) set of A and B ∈ A satisfies A ∼l B (A ∼u B),
then B is also an l-minimal (u-minimal) set of A .

We denote by F the family of all image sets under F, that is, {F(x)}x∈M. Using the above efficient sets,
the set criterion solutions of (SOP) are denoted as follows. We say that x0 ∈M is an l-minimal (u-minimal)
solution of (SOP), denoted as x0 ∈ l-Min(F,M) (x0 ∈ u-Min(F,M)), if F(x0) is an l-minimal (u-minimal) set of
F . In the same way, we say that x0 ∈M is a weak l-minimal (weak u-minimal) solution of (SOP), denoted as
x0 ∈ l-WMin(F,M) (x0 ∈ u-WMin(F,M)), if F(x0) is a weak l-minimal (weak u-minimal) set of F . Moveover,
we say that x0 ∈ M is a strict l-minimal (strict u-minimal) solution of (SOP) in the sense of [19], denoted
as x0 ∈ l-SMin(F,M) (x0 ∈ u-SMin(F,M)), if F(x) �l F(x0),∀x ∈M\{x0} (F(x) �u F(x0),∀x ∈M\{x0}). Clearly,
l-SMin(F,M) ⊆ l-Min(F,M) (u-SMin(F,M) ⊆ u-Min(F,M)).

Lemma 3.8. Let A ⊆ P(Y) and A ∈ A be a set with WMinA , ∅ (WMaxA , ∅). Then A ∈ l-WMinA
(A ∈ u-WMinA ) iff there is not a set B ∈ A such that B�l A (B�u A).
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Proof. We only proof the situation of weak l-minimal sets. Clearly, it is enough to prove the ’only if’ part.
Let a ∈WMinA. Suppose that there exists a set B ∈ A such that B�l A, then A�l B because A ∈ l-WMinA .
As D + D ⊆ D, so A ⊆ B + intD ⊆ A + intD + intD ⊆ A + int(D + D) ⊆ A + intD. Since a ⊆ A, then there exist
a′ ∈ A and d′ ∈ intD such that a = a′+d′ , it follows that a′ ∈ A ∩ (a − intD), a contradiction with a ∈WMinA.�

Proposition 3.9. Let A ⊆ P(Y). If D + D(0) = D, then

(i) l-MinA ⊆ l-WMinA .

(ii) u-MinA ⊆ u-WMinA .

Proof. (i) For any A ∈ l-MinA , suppose that B ∈ A and B�l A, i.e.,

A ⊆ B + intD (1)

It is clear that B ≤l A. Since A ∈ l-MinA , then A ≤l B, i.e.,

B ⊆ A + D (2)

and A ∼l B. Then, by Remark 3.2,

A + D = B + D (3)

From (1) and (2), we obtain

B ⊆ A + D ⊆ B + intD + D (4)

On the other hand, adding intD to equality (3), we have

A + D + intD = B + D + intD

So, by (4) and D + D(0) = D, we conclude that B ⊆ A + D + intD ⊆ A + D(0) + intD ⊆ A + int(D(0) + D) =
A + intD, i.e., A�l B. Therefore A ∈ l-WMinA .

(ii) Similarly to the proof of (i). �

Proposition 3.10. If D + D(0) = D, then

(i) WMin(F,M) ⊆ l-WMin(F,M).

(ii) WMax(F,M) ⊆ u −WMin(F,M).

Proof. (i) Let x0 ∈ M be a weak minimal solution of (SOP), then there exists y0 ∈ F(x0) such that y0 ∈

WMinF(M). Suppose that x0 is not a weak l-minimal solution of (SOP). Then, by Lemma 3.8, there exists
x′ ∈ M such that F(x′ ) � F(x0), i.e., F(x0) ⊆ F(x′ ) + intD. In particular y0 ∈ F(x′ ) + intD, which contradicts
with y0 ∈WMinF(M).

(ii) Similarly to the proof of (i). �
Let Λ be a property of sets in Y, then we say that F is Λ-valued on M if F(x) has the property Λ for each

x ∈M.

Definition 3.11. Let M be a nonempty convex subset of X. A set-valued mapping G : X⇒ Y is said to be

(i) strictly lower D-convex on M if for any x1, x2 ∈M with x1 , x2 and for any t ∈ (0, 1), one has

tG(x1) + (1 − t)G(x2) ⊆ G(tx1 + (1 − t)x2) + intD.

(ii) strictly upper D-convex on M if for any x1, x2 ∈M with x1 , x2 and for any t ∈ (0, 1), one has
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G(tx1 + (1 − t)x2) ⊆ tG(x1) + (1 − t)G(x2) − intD.

Proposition 3.12. Assume that M is convex, D + D(0) = D and F is strictly lower D-convex on M with nonempty
compact values. Then l-WMin(F,M) = l-Min(F,M) = l-SMin(F,M).

Proof. By Proposition 3.9, it is enough to prove l-WMinF(M) ⊆ l-SMinF(M). For any x0 ∈ l-WMin(F,M) and
any x′ ∈M such that F(x′ ) ≤l F(x0), i.e.,

F(x0) ⊆ F(x
′

) + D. (5)

Suppose that x′ , x0. Since F is strictly lower D-convex on M, then

tF(x0) + (1 − t)F(x
′

) ⊆ F(tx0 + (1 − t)x
′

) + intD,∀t ∈ (0, 1). (6)

By (5), (6) and D + D(0) = D, we have

F(x0) ⊆ tF(x0) + (1 − t)F(x0) ⊆ tF(x0) + (1 − t)F(x
′

) + (1 − t)D

⊆ F(tx0 + (1 − t)x
′

) + intD + (1 − t)D ⊆ F(tx0 + (1 − t)x
′

) + intD + D(0)

⊆ F(tx0 + (1 − t)x
′

) + intD,∀t ∈ (0, 1).

So F(tx0 +(1−t)x′ )�l F(x0),∀t ∈ (0, 1). Since F(x0) is compact and MinF(x0) ⊆WMinF(x0), then WMinF(x0) ,
∅. According to Lemma 3.8, we can get that x0 < l-WMin(F,M), a contradiction. Therefore, x′ = x0 and so
x0 ∈ l-SMin(F,M). �

Proposition 3.13. Assume that M is convex, D + D(0) = D and F is strictly upper D-convex on M with nonempty
compact convex values. Then u-WMinF(M) = u-MinF(M) = u-SMinF(M).

Proof. By Proposition 3.9, it is enough to prove u-WMinF(M) ⊆ u-SMinF(M). For any x0 ∈ u-WMinF(M)
and any x′ ∈M such that F(x′ ) ≤u F(x0), i.e.,

F(x
′

) ⊆ F(x0) −D. (7)

Suppose that x′ , x0. Since F is strictly upper D-convex on M, then

F(tx0 + (1 − t)x
′

) ⊆ tF(x0) + (1 − t)F(x
′

) − intD,∀t ∈ (0, 1). (8)

From (7) and (8), we obtain

F(tx0 + (1 − t)x′ ) ⊆ tF(x0) + (1 − t)F(x0) − (1 − t)D − intD,∀t ∈ (0, 1).

By the convexity of F(x0) and D + D(0) = D, it follows that

F(tx0 + (1 − t)x′ ) ⊆ F(x0) −D(0) − intD ⊆ F(x0) − intD,∀t ∈ (0, 1).

So F(tx0+(1−t)x′ )�u F(x0),∀t ∈ (0, 1). Since F(x0) is compact and MaxF(x0) ⊆WMaxF(x0), then WMaxF(x0) ,
∅. According to Lemma 3.8, we can get that x0 < u-WMinF(M), a contradiction. Therefore, x′ = x0 and so
x0 ∈ u-SMinF(M). �

Remark 3.14. By Remark 2.2 and taking into account a cone is a radiant set, we can see that

(i) Propositions 3.3 and 3.5 are generalizations of Propositions 8 and 11 in [27] respectively.

(ii) Lemma 3.8, Propositions 3.9 and 3.10 are generalizations of Lemma 2.6, Propositions 2.7 and 2.10 in [26]
respectively.

(iii) Propositions 3.12 and 3.13 are generalizations of Propositions 2.1 and 2.2 in [15] respectively.
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Similar to the proof of Propositions 2.3 and 2.4 in [15], we can get the following proposition.

Proposition 3.15. Assume that M is closed and D + D(0) = D. Then the following statements hold:

(i) If F is u.s.c. on M with nonempty compact values, then l-WMin(F,M) is closed.

(ii) If F is l.s.c. on M with nonempty compact values, then u-WMinF(M) is closed.

From Propositions 3.12, 3.13 and 3.15, we can get the following proposition.

Proposition 3.16. Assume that M is convex and closed, and D + D(0) = D. Then the following statements hold:

(i) If F is u.s.c. and strictly lower D-convex on M with nonempty compact values, then l-SMin(F,M) is closed.

(ii) If F is l.s.c. and strictly upper D-convex on M with nonempty compact convex values, then u-SMinF(M) is
closed.

4. Scalarization of set optimization using coradiant sets

In this section, we first give a generalization of a nonlinear scalarization function introduced in [17] and
provide some properties of this function.

Let B ∈ P(Y). Consider the function ρl
B : P(Y)→ R+ ∪ {+∞} given by

ρl
B(A) = sup

b∈B
d(b,A + D).

Definition 4.1. [28]

(i) A function T : P(Y)→ R ∪ {+∞} is said to be ≤l increasing iff

A1,A2 ∈ P(Y),A1 ≤
l A2 ⇒ T(A1) ≤ T(A2).

(ii) A function T : P(Y)→ R ∪ {+∞} is said to be convex iff

T(λA1 + (1 − λ)A2) ≤ λT(A1) + (1 − λ)T(A2),∀A1,A2 ∈ P(Y), λ ∈ [0, 1].

T is said to be concave if −T is convex.

Proposition 4.2. Let A,B ∈ P(Y) and k ∈ Y. The following statements hold:

(i) If D + D(0) = D, then

ρl
B+D(A) ≤ ρl

B+D(0)(A) = ρl
B(A) = ρl

clB(A) = ρl
B(clA) = ρl

B(A + D(0)) ≤ ρl
B(A + D).

(ii) ρl
B(A + k) ≤ ρl

B(A)+ ‖ k ‖.

(iii) If D + D(0) = D and B is D(0)-bounded, then ρl
B(A) < +∞.

(iv) If A is D-closed, then A ≤l B⇔ ρl
B(A) = 0.

(v) ρl
B(A) ≤ r⇔ B ⊆ cl(A + D) + N̄r(0).

(vi) ρl
B(A) < r⇒ A + Nr(0) ≤l B.

(vii) ρl
B is ≤l increasing.

(viii) If D is convex, then ρl
B is convex.
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Proof. (i) By the definition of ρl
B(A) and D + D(0) = D, it is easy to see that

ρl
B(A) = ρl

clB(A) = ρl
B(clA) = ρl

B(A + D(0)).

Since 0 ∈ D(0) and D ⊆ D(0), then ρl
B+D(A) ≤ ρl

B+D(0)(A), ρl
B+D(0)(A) ≥ ρl

B(A) and ρl
B(A + D(0)) ≤ ρl

B(A + D).
Therefore, it is enough to prove ρl

B+D(0)(A) ≤ ρl
B(A). Indeed, for each b ∈ B and e ∈ D(0), we have

d(b,A + D) = inf
a∈A,d∈D

‖ a + d − b ‖= inf
a∈A,d∈D

‖ a + d + e − (b + e) ‖

≥ inf
a∈A,d′∈D

‖ a + d
′

− (b + e) ‖ = d(b + e,A + D).

because d′ = d + e ∈ D + D(0) = D. Then

ρl
B+D(0)(A) = sup

b∈B,e∈D(0)
d(b + e,A + D) ≤ sup

b∈B
d(b,A + D) = ρl

B(A).

(ii)

ρl
B(A + k) = sup

b∈B
d(b,A + k + D) = sup

b∈B
inf

a∈A,d∈D
‖ b − a − d − k ‖

≤ sup
b∈B

inf
a∈A,d∈D

(‖ b − a − d ‖ + ‖ k ‖) ≤ ρl
B(A)+ ‖ k ‖ .

(iii) Suppose that B is D(0)-bounded, then there exists t > 0 such that B ⊆ tN1(0) + D(0). Let a ∈ A. By
the definition of ρl

B(A) and part (i) (ii), we have

ρl
B(A) ≤ ρl

tN1(0)+D(0)(A) = ρl
tN1(0)(A) ≤ ρl

tN1(0)(a) ≤ t+ ‖ a ‖ < +∞.

(iv) If A ≤l B, then B ⊆ A + D and so ρl
B(A) = 0. Conversely, suppose that A �l B. Then there exists b ∈ B

such that b * A + D = cl(A + D) because A is D-closed. Therefore d(b,A + D) > 0 and thus ρl
B(A) > 0. A

contradiction with ρl
B(A) = 0.

(v) It is clear from the definition of ρl
B(A).

(vi)

ρl
B(A) < r⇒ ∀b ∈ B, d(b,A + D) < r⇒ ∀b ∈ B,∃zb ∈ A + D, d(b, zb) < r

⇒ B ⊆ A + D + Nr(0)⇒ A + Nr(0) ≤l B.

(vii)

A1 ≤
l A2 ⇒ A2 ⊆ A1 + D⇒ A2 + D ⊆ A1 + D + D ⊆ A1 + D

⇒ ∀b ∈ B, d(b,A1 + D) ≤ d(b,A2 + D)⇒ ρl
B(A1) ≤ ρl

B(A2).

(viii) Let A1,A2 ⊆ P(Y) and 0 ≤ λ ≤ 1. If ρl
B(A1) = +∞ or ρl

B(A2) = +∞, it is nothing to prove. Let
r1 := ρl

B(A1) < +∞ and r2 := ρl
B(A2) < +∞. By part (iv), we have

B ⊆ cl(A1 + D) + N̄r1 (0) and B ⊆ cl(A2 + D) + N̄r2 (0).

Since D is convex, then

B ⊆ λB + (1 − λ)B
⊆ λcl(A1 + D) + (1 − λ)cl(A2 + D) + λN̄r1 (0) + (1 − λ)N̄r2 (0)
⊆ cl(λA1 + (1 − λ)A2 + λD + (1 − λ)D) + N̄λr1+(1−λ)r2 (0)
= cl(λA1 + (1 − λ)A2 + D) + N̄λr1+(1−λ)r2 (0).

Then, by part (iv) again,
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ρl
B(λA1 + (1 − λ)A2) ≤ λr1 + (1 − λ)r2 = λρl

B(A1) + (1 − λ)ρl
B(A2).

�

Definition 4.3.

(i) A set-valued map F : M⇒ Y is said to be upper D-semicontinuous at x0 ∈ M iff for each neighbourhood V
of F(x0) in Y, there exists a neighbourhood U of x0 such that F(x) ⊆ V + D for all x ∈ U ∩M. F is said to be
upper D-semicontinuous on M iff it is upper D-semicontinuous at all x ∈M.

(ii) A set-valued map F : M ⇒ Y is said to be lower D-semicontinuous at x0 ∈ M iff for any y ∈ F(x0), any
neighbourhood V of y in Y, there exists a neighbourhood U of x0 such that F(x)∩ (V + D) , ∅ for all x ∈ U ∩M.
F is said to be lower D-semicontinuous on M iff it is lower D-semicontinuous at all x ∈M.

(iii) A set-valued map F : M ⇒ Y is said to be D-semicontinuous on M iff it is upper D-semicontinuous and
lower D-semicontinuous on M.

If D is a convex cone K, then we get the definition of upper K-continuty and lower K-continuty for
set-valued maps, see Definition 7.1 in [4]. Moveover, setting D = {0} in above definition, we get the
definition of upper continuous and lower continuous for set-valued maps and when Y = R and D = R+, the
D-semicontinuous (−D-semicontinuous) for single-valued maps collapse to the usual lower semicontinuity
(upper semicontinuity) for real-valued functions.

Proposition 4.4. The following statements hold:

(i) If D + D(0) = D and F is lower −D(0)-semicontinuous on M, then ρl
B ◦ F is upper semicontinuous on M for

each B ∈ P(Y).

(ii) If F is upper D-semicontinuous on M, then ρl
B ◦ F is lower semicontinuous on M for each B ∈ P(Y).

Proof. (i) It is enough to show that the set {x ∈M : ρl
B ◦F(x) ≥ r} is closed for all B ∈ P(Y) and r ≥ 0. Suppose

that there exist B ∈ P(Y), r > 0, x̄ ∈ M and {xn} ⊆ M such that xn → x̄, ρl
B ◦ F(xn) ≥ r and ρl

B ◦ F(x̄) < r.
Then there exists 0 < ε < r such that ρl

B ◦ F(xn) > r − ε
2 and ρl

B ◦ F(x̄) < r − ε. So by Proposition 4.2 (vi),
we have B * F(xn) + Nr− ε2 (0) + D and B ⊆ F(x̄) + Nr−ε(0) + D. Since D + D(0) = D, it follows that F(x̄) *
F(xn) + N ε

2
(0) + D(0). That is F(x̄) ∩ (F(xn) + N ε

2
(0) + D(0))c , ∅ and so F(x̄) ∩ (cl(F(xn) + N ε

4
(0) + D(0)))c , ∅.

On the other hand, by F(xn) ⊆ cl(F(xn) + N ε
4
(0) + D(0)) and Lemma 2.7, we have

F(xn) ∩ ((cl(F(xn) + N ε
4
(0) + D(0)))c

−D(0)) = F(xn) ∩ (cl(F(xn) + N ε
4
(0) + D(0)))c = ∅,

which contradicts with the lower −D(0)-semicontinuity of F at x̄.
(ii) To prove this part, we show that the set {x ∈M : ρl

B ◦ F(x) > r} is open for all B ∈ P(Y) and r ≥ 0. Let
B ∈ P(Y). Suppose that r ≥ 0 and x̄ ∈M such that ρl

B ◦ F(x̄) > r. Then by Proposition 4.2 (vi), we have

ρl
B ◦ F(x̄) > r⇒ ∃ε > 0, ρl

B ◦ F(x̄) > r + ε

⇒ B * F(x̄) + Nr+ε(0) + D
⇒ ∃b ∈ B, b < F(x̄) + Nr+ε(0) + D
⇒ ∃b ∈ B,F(x̄) ∩ (b −Nr+ε(0) −D) = ∅

⇒ ∃b ∈ B,F(x̄) ⊆ (b −Nr+ε(0) −D)c
⊆ (cl(b −Nr+ ε

2
(0) −D))c.

Since F is upper D-semicontinuity at x̄, then, there exists a neighbourhood U of x̄ such that

F(x) ⊆ (cl(b −Nr+ ε
2
(0) −D))c + D,∀x ∈ U ∩M.
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It follows from Lemma 2.7 and Proposition 4.2 (vi) that for any x ∈ U ∩M,

F(x) ⊆ (cl(b −Nr+ ε
2
(0) −D))c

⇒ F(x) ∩ (b −Nr+ ε
2
(0) −D) = ∅

⇒ b < F(x) + Nr+ ε
2
(0) + D

⇒ ρl
b ◦ F(x) ≥ r +

ε
2
> r.

So ρl
B ◦ F(x) > r for any x ∈ U ∩M. �

Theorem 4.5. Let x̄ ∈M and F be D-closed-valued on M. If {x ∈M : ρl
F(x̄) ◦ F(x) = 0} , ∅, then

(i) x̄ ∈ l-Min(F,M) iff argmin(ρl
F(x̄) ◦ F,M) = {x ∈M : F(x) ∼l F(x̄)}.

(ii) x̄ ∈ l-SMin(F,M) iff argmin(ρl
F(x̄) ◦ F,M) = {x̄}.

Proof. By Proposition 4.2 (iv) and {x ∈M : ρl
F(x̄) ◦ F(x) = 0} , ∅, we have

{x ∈M : F(x) ≤l F(x̄)} = {x ∈M : ρl
F(x̄) ◦ F(x) = 0} = argmin(ρl

F(x̄) ◦ F,M). (9)

(i) Let x̄ ∈ l-Min(F,M). Clearly, {x ∈ M : F(x) ∼l F(x̄)} ⊆ {x ∈M : F(x) ≤l F(x̄)} = argmin(ρl
F(x̄) ◦ F,M). For

the reverse inclusion, suppose that x ∈ argmin(ρl
F(x̄) ◦ F,M), then F(x) ≤l F(x̄) by (9). Since x̄ ∈ l-Min(F,M), it

follows that F(x̄) ≤l F(x) and F(x) ∼l F(x̄). Therefore argmin(ρl
F(x̄) ◦ F,M) ⊆ {x ∈M : F(x) ∼l F(x̄)}. Conversely,

by the assumption and (9), we have {x ∈ M : F(x) ≤l F(x̄)} = {x ∈ M : F(x) ∼l F(x̄)}, which means
x̄ ∈ l-Min(F,M).

(ii) The result is a direct consequence of the definition of l-SMin(F,M) and equality (9). �
Similar to the proof of Theorem 3.2 in [16], we can get the following theorem.

Theorem 4.6. Let B ∈ P(Y). If argmin(ρl
B ◦ F,M) = {x̄}, then x̄ ∈ l-SMin(F,M).

5. Well-posedness of set optimization using coradiant sets

Consider the following scalar optimization problem:

(OP) min
x∈M

f (x)

where f : X→ R ∪ {+∞} is a lower bounded function.
We first recall the notions of well-posedness for (OP).

Definition 5.1. [5] (OP) is called:

(i) LP well-posed iff argmin( f ,M) is a singleton and every LP-minimizing sequence (i.e. {xn} ⊆ X, d(xn,M)→
0, f (xn)→ inf

x∈M
f (x)) converges to argmin( f ,M).

(ii) Generalized LP well-posed iff argmin( f ,M) , ∅ and for every LP-minimizing sequence, there exists a
subsequence that converges to an element of argmin( f ,M).

Theorem 5.2. [16] If f is lower semicontinuous on a compact set M ⊆ X, then (OP) is generalized LP well-posed.

Given A,B ∈ P(Y), define

e(A,B) = sup
a∈A

d(a,B).
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We say that A is the upper (lower) limit of {An} in the sense of Hausdorff iff lim
n→∞

e(An,A) = 0 ( lim
n→∞

e(A,An) = 0).

Note that e(B,A + D) = ρl
B(A).

In the following definitions, we introduce the notions of minimizing sequence and well-posedness for
(SOP).

Definition 5.3. A sequence {xn} ⊆ X is said to be a LP-minimizing sequence for (SOP) at x̄ ∈ l-Min(F,M) iff there
exists {dn} ⊆ D(0)\{0} with dn → 0 such that d(xn,M)→ 0 and F(xn) ≤l F(x̄) + dn.

Definition 5.4. (SOP) is said to be:

(i) LP well-posed at x̄ ∈ l-Min(F,M) iff any LP-minimizing sequence for (SOP) at x̄ converges to x̄.

(ii) Strongly DH-well-posed at x̄ ∈ l-Min(F,M) iff inf
α>0

diamLM(x̄, d, α) = 0 for all d ∈ D(0), where LM(x̄, d, α) :=

{x ∈ X : d(x,M) ≤ α,F(x) ≤l F(x̄) + αd}.

(iii) Strongly B-well-posed at x̄ ∈ l-Min(F,M) iff the set-valued map Φx̄ : R+ ⇒ X defined as

Φx̄(α) = LM(x̄, e, α) = {x ∈ X : d(x,M) ≤ α,F(x) ≤l F(x̄) + αe},

where e ∈ intD(0) such that ‖ e ‖= 1, is upper semicontinuous at α = 0.

Consider a particular case of (OP) as follows:

(OPB) min
x∈M

ρl
B ◦ F(x)

where B ∈ P(Y).
Now, we give some characterations of LP well-posedness for (SOP).

Theorem 5.5. Let B ∈ P(Y). If M = Dom(F), (OPB) is LP well-posed and argmin(ρl
B ◦ F,M) = {x̄}, then (SOP) is

LP well-posed at x̄.

Proof. By Theorem 4.6, x̄ ∈ l-Min(F,M). Suppose that the sequence {xn} ⊆ X is a LP-minimizing sequence
for (SOP) at x̄. Then there exists dn ∈ D(0)\{0} with dn → 0 such that d(xn,M) → 0 and F(xn) ≤l F(x̄) + dn.
From M = Dom(F), it follows that xn ∈M. Since x̄ is a minimal solution of (OPB) and ρl

B is ≤l increasing, we
have

ρl
B ◦ F(x̄) ≤ ρl

B ◦ F(xn) ≤ ρl
B ◦ (F(x̄) + dn) ≤ ρl

B ◦ F(x̄)+ ‖ dn ‖.

So, ρl
B ◦ F(xn)→ ρl

B ◦ F(x̄). It follows that xn → x̄ because (OPB) is LP well-posed. �

Theorem 5.6. Let x̄ ∈ l-Min(F,M). If M = Dom(F), D + D(0) = D and ρl
F(x̄) ◦ F(x̄) = 0, then (OPF(x̄)) is LP

well-posed iff (SOP) is LP well-posed at x̄.

Proof. By the definition of ρl
F(x̄), we have ρl

F(x̄) ◦ F(x) ≥ 0,∀x ∈M. Since ρl
F(x̄) ◦ F(x̄) = 0, then x̄ ∈

argmin(ρl
F(x̄) ◦ F,M) and inf

x∈M
ρl

F(x̄)◦F(x) = 0. Suppose that (OPF(x̄)) is LP well-posed, then argmin(ρl
F(x̄)◦F,M) =

{x̄}. So, according to Theorem 5.5, (SOP) is LP well-posed at x̄.
Conversely, suppose that (SOP) is LP well-posed at x̄. We first show that argmin(ρl

F(x̄) ◦ F,M) = {x̄}. Let
e ∈ intD. If there exists a x̂ ∈ M\{x̄} such that ρl

F(x̄) ◦ F(x̂) = 0, then, by Proposition 4.2 (v) and D + D(0) = D,
we have F(x̄) ⊆ cl(F(x̂) + D) ⊆ F(x̂) + D − εe + D(0) = F(x̂) − εe + D for all ε > 0. Let xn = x̂ and {εn} ⊆ R+\{0}
such that εn → 0. It holds that F(xn) ≤l F(x̄) + εne,∀n ∈N, that is to say {xn} is a LP-minimizing sequence
for (SOP) at x̄. Since (SOP) is LP well-posed at x̄, then xn → x̄, a contradiction. Now suppose that {xn} ⊆ X,
d(xn,M) → 0 and ρl

F(x̄) ◦ F(xn) → 0. It is clear that ρl
F(x̄) ◦ F(xn) < εn := ρl

F(x̄) ◦ F(xn) + 1
n . Taking into account

Proposition 4.2 (vi) and −εne + intD(0) is a neighbourhood of zero, then, for some tn > 0, it holds that
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F(x̄) ⊆ F(xn) + Nεn (0) + D ⊆ F(xn) + tn(−εne + intD(0)) + D ⊆ F(xn) − tnεne + D.

Since εn → 0, we can choose a bounded sequence {tn} such that dn := tnεne ∈ intD(0) and dn → 0. Therefore
F(xn) ≤l F(x̄) + dn. So {xn} is a LP-minimizing sequence for (SOP) at x̄. Thus xn → x̄ by the assumption,
which means (OPF(x̄)) is LP well-posed. �

Proposition 5.7. Suppose that F is D-closed-valued and upper D-semicontinuous on a compact set M. If M =
Dom(F) and ρl

F(x̄) ◦ F(x̄) = 0, then (SOP) is LP well-posed at x̄ ∈ l-SMin(F,M).

Proof. According to Proposition 4.4 (ii), ρl
F(x̄) ◦ F is lower semicontinuous on M. Hence, by Theorem 5.2,

(OPF(x̄)) is generalized LP well-posed. Moreover, according to Theorem 4.5 (ii), argmin(ρl
F(x̄) ◦ F,M) = {x̄}.

So (OPF(x̄)) is LP well-posed. Taking into account Theorem 5.5, (SOP) is LP well-posed at x̄. �

Proposition 5.8. Let e ∈ intD(0). If D + D(0) = D, then

inf
α>0

diamLM(x̄, d, α) = 0,∀d ∈ D(0)⇔ inf
α>0

diamLM(x̄, e, α) = 0.

Proof. It is clear that LM(x̄, e, α) ⊆
⋃

d∈D(0)
LM(x̄, d, α). Let d ∈ D(0). Since −e + intD(0) is a neighbourhood of

zero, then there exists t > 0 such that −d ∈ t(−e + intD(0)). By D + D(0) = D, we have

F(x) ≤l F(x̄) + αd⇔ F(x̄) + αd ⊆ F(x) + D⇔ F(x̄) ⊆ F(x) − αd + D
⇒ F(x̄) ⊆ F(x) − tαe + intD(0) + D⇒ F(x̄) ⊆ F(x) − tαe + D

⇔ F(x) ≤l F(x̄) + tαe.

So, LM(x̄, d, α) ⊆ LM(x̄, te, α) = LM(x̄, e, tα). This completes the proof. �
For any α > 0, define the LP α-approximating solution set for (OP) as follows:

α-argmin( f ,M) := {x ∈ X : d(x,M) ≤ α, f (x) ≤ inf
x∈M

f (x) + α}.

Theorem 5.9. [29] Assume that argmin( f ,M) , ∅. If inf
α>0

diam(α-argmin( f ,M)) = 0, then (OP) is LP well-posed.

The following theorem gives a full characterization of strongly DH-well-posedness for (SOP).

Theorem 5.10. Let x̄ ∈ l-Min(F,M). If D + D(0) = D and ρl
F(x̄) ◦ F(x̄) = 0, then (SOP) is strongly DH-well-posed

at x̄ iff inf
α>0

diam(α-argmin(ρl
F(x̄) ◦ F,M)) = 0.

Proof. It clear that ρl
F(x̄) ◦ F(x) ≥ 0,∀x ∈M. Since ρl

F(x̄) ◦ F(x̄) = 0, then inf
x∈M

ρl
F(x̄) ◦ F(x) = 0. Let e ∈ intD(0) such

that ‖ e ‖= 1 and α > 0. By Proposition 4.2 (ii), we have

LM(x̄, e, α) = {x ∈ X : d(x,M) ≤ α,F(x) ≤l F(x̄) + αe}

⊆ {x ∈ X : d(x,M) ≤ α, ρl
F(x̄) ◦ F(x) ≤ ρl

F(x̄) ◦ F(x̄) + α‖ e ‖}

= α-argmin(ρl
F(x̄) ◦ F,M).

On the other hand, since −αe + intD(0) is a neighbourhood of zero, then there exists t > 0 such that
N̄α(0) ⊆ t(−αe + intD(0)). So, by Proposition 4.2 (v) and Lemma 2.8 (i), we have

α-argmin(ρl
F(x̄) ◦ F,M) = {x ∈ X : d(x,M) ≤ α, ρl

F(x̄) ◦ F(x) ≤ α}

⊆ {x ∈ X : d(x,M) ≤ α,F(x̄) ⊆ cl(F(x) + D) + N̄α(0)}
⊆ {x ∈ X : d(x,M) ≤ α,F(x̄) ⊆ F(x) − εαe + D + N̄α(0)}
⊆ {x ∈ X : d(x,M) ≤ α,F(x̄) ⊆ F(x) − (t + ε)αe + D + intD(0)}
⊆ {x ∈ X : d(x,M) ≤ α,F(x̄) ⊆ F(x) − (t + ε)αe + D}

= {x ∈ X : d(x,M) ≤ α,F(x) ≤l F(x̄) + t1αe}
= LM(x̄, e, t1α),
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where ε > 0 and t1 := t + ε. So LM(x̄, e, α) ⊆ α-argmin(ρl
F(x̄) ◦ F,M) ⊆ LM(x̄, e, t1α). Taking into account

Proposition 5.8, this completes the proof. �

Proposition 5.11. Let x̄ ∈M. If {x ∈M : ρl
F(x̄) ◦ F(x) = 0} , ∅, then (OPF(x̄)) is LP well-posed iff

inf
α>0

diam(α-argmin(ρl
F(x̄) ◦ F,M)) = 0.

Proof. Since {x ∈M : ρl
F(x̄) ◦ F(x) = 0} , ∅, then argmin(ρl

F(x̄) ◦ F,M) , ∅ and inf
x∈M

ρl
F(x̄) ◦ F(x) = 0. Suppose that

inf
α>0

diam(α-argmin(ρl
F(x̄) ◦ F,M)) = 0. Then, according to Theorem 5.9, (OPF(x̄)) is LP well-posed. Conversely,

suppose that inf
α>0

diam(α-argmin(ρl
F(x̄) ◦ F,M)) > 0. Then there exists ε > 0 such that inf

α>0
diam(α-argmin(ρl

F(x̄) ◦

F,M)) > ε. Let α > 0 be arbitrary. It is possible to find some xα, yα ∈ α-argmin(ρl
F(x̄) ◦ F,M) such that

d(xα, yα) > ε. This implies that

d(xα,M) ≤ α, d(yα,M) ≤ α, 0 ≤ ρl
F(x̄) ◦ F(xα) ≤ α, 0 ≤ ρl

F(x̄) ◦ F(yα) ≤ α.

Setting α→ 0, by LP well-posedness of (OPF(x̄)), there exists a x̂ ∈M such that argmin(ρl
F(x̄) ◦ F,M) = {x̂} and

xα → x̂, yα → x̂, a contradiction. �

Corollary 5.12. Let x̄ ∈ l-Min(F,M). If D + D(0) = D and ρl
F(x̄) ◦ F(x̄) = 0, then (SOP) is strongly DH-well-posed

at x̄ iff (OPF(x̄)) is LP well-posed.

Proof. It follows from Theorem 5.10 and Proposition 5.11. �

Let x̄ ∈M, define the set-valued maps H,G : R+ ⇒ X as follows:

H(α) = α-argmin( f ,M),∀α > 0, H(0) = argmin( f ,M),

G(α) = α-argmin(ρl
F(x̄) ◦ F,M),∀α > 0, G(0) = argmin(ρl

F(x̄) ◦ F,M).

Next, we give some characterizations of strongly B-well-posedness for (SOP).

Theorem 5.13. Let x̄ ∈ l-Min(F,M). If D + D(0) = D and ρl
F(x̄) ◦ F(x̄) = 0, then (SOP) is strongly B-well-posed at

x̄ iff G(α) is upper semicontinuous at 0.

Proof. Let e ∈ intD(0) such that ‖ e ‖= 1. From the proof of Theorem 5.10, there exists t1 > 0 such that
Φx̄(α) ⊆ G(α), G(α) ⊆ Φx̄(t1α). This completes the proof. �

Theorem 5.14. [29] (OP) is generalized LP well-posed iff H(α) is upper semicontinuous and compact at 0.

Corollary 5.15. Let D + D(0) = D and x̄ ∈ l-Min(F,M) such that ρl
F(x̄) ◦F(x̄) = 0. If (OPF(x̄)) is LP well-posed, then

(SOP) is strongly B-well-posed at x̄. The converse is true if F is D-closed-valued on M and x̄ ∈ l-SMin(F,M).

Proof. The first part of the result follows from Theorems 5.13 and 5.14. The second part of the result follows
from Theorems 4.5, 5.13 and 5.14. �

Remark 5.16. According to Remark 2.3, we can see that Theorems 5.5, 5.6, 5.10 and 5.13 are generalizations of
Theorems 5.1, 5.2, 5.3 and 5.4 in [16] respectively.

We conclude this section by giving an example to illustrate the effectiveness of Theorems 5.6, 5.10 and
5.13.

Example 5.17. Consider (SOP) with X = Y = R, M = [0, 1], D = [1,+∞) and

F(x) =


(−∞, 0] x = 0,
(0, 1) 0 < x ≤ 1,
∅ otherwise.
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Let x̄ = 0. It is not difficult to check that x̄ ∈ l-Min(F,M), M = Dom(F), D + D(0) = D,

ρl
F(x̄) ◦ F(x) =

{
0 x = 0,
+∞ otherwise.

and for all α ≥ 0, α-argmin(ρl
F(x̄) ◦ F,M) = {0}.

(i) According to Definition 5.1, it is easy to see that (OPF(x̄)) is LP well-posed, so by Theorem 5.6, (SOP)
is LP well-posed at x̄.

(ii) Since inf
α>0

diam(α-argmin(ρl
F(x̄) ◦ F,M)) = 0, then by Theorem 5.10, (SOP) is strongly DH-well-posed at

x̄.
(iii) As G(α) = α-argmin(ρl

F(x̄) ◦ F,M) ≡ {0} is upper semicontinuous at 0, so by Theorem 5.13, (SOP) is
strongly B-well-posed at x̄.
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