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Infinite system of Integral Equations in Two Variables of Hammerstein
Type in c0 and `1 spaces
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Abstract. The principal aim of this paper is to study the solvability of infinite system of integral equations in
two variables of Hammerstein type in the Banach spaces c0 and `1 using Meir-Keeler condensing operators
and measure of noncompactness. In this study we give some examples.

1. Introduction

The theory of integral equations is an important branch of nonlinear functional analysis and has attracted
the interest of many researchers. In 1895 Le Roux [16] introduced integral equations as a powerful tool
in investigating partial differential equations. This theory has many applicabilities like in population
dynamics, Economic theory, feedback systems, stability of nuclear reactors [9, 10, 20]. In this paper, our
aim is to study the infinite system of Hammerstein type integral equations in two variables of the form

vn(s, t) = rn(s, t) +

∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2 (1)

where (s, t) ∈ [a, b] × [a, b] in the Banach spaces c0 and `1. The solvability of (1) is studied using the idea of
measure of noncompactness (MNC).

Introduced in 1930 by Kuratowski [15] the concept of measure of noncompactness was further exten-
dend to general Banach space by Banaś and Goebel [6]. The classical Schauder fixed point theorem and
Banach contraction principle were generalized by Darbo [11] for condensing operators using the idea of
MNC. The method of fixed point arguments has been widely used to study the existence of solutions of
functional equations, like Banach contraction principle in [1, 18] and Schauder’s fixed point theorem in
[14, 17]. But if compactness and Lipschitz condition are not satisfied these results can not be used.

The idea of MNC has been studied by many researcher and applied in various problems. Many
properties of MNC in different sequence spaces can be found in [1, 8]. Different types of infinite systems of
integral equations in two variables had been studied in [4, 5, 12, 13] by making use of MNC.

2010 Mathematics Subject Classification. 45G15, 47H08, 46A45, 46E30
Keywords. Infinite system of integral equations in two variables, measures of noncompactness, Darbo’s fixed point theorem,

equicontinuous sets, Meir-Keeler condensing operator
Received: 31 December 2018; Revised: 28 March 2019; Accepted: 31 March 2019
Communicated by Eberhard Malkowsky
Email addresses: ishfaq 2phd15@nitsri.net (Ishfaq Ahmad Malik), tjalal@nitsri.net (Tanweer Jalal)



I. A. Malik, T. Jalal / Filomat 33:11 (2019), 3441–3455 3442

2. Preliminaries

Notation N is used for set natural numbers, R is used for set of real numbers and R+ is used for set
of positive real numbers, interval [a, b] is denoted by I. By C(I2,R) we denote the space of continuously
differentiable functions on I2 = [a, b] × [a, b]. The Hausdorff measure of noncompactness is used frequently
in finding the existence of solutions of various functional equations and is defined as:

Definition 2.1. [6] Let (Ω, d) be a metric space and A be a bounded subset of Ω. Then the Hausdorff measure of
noncompactness (the ball-measure of noncompactness) of the set A, denoted by χ(A) is defined to be the infimium of
the set of all real ε > 0 such that A can be covered by a finite number of balls of radii < ε, that is

χ(ε) = inf

ε > 0 : A ⊂
n⋃

i=1

B̄(xi,Ri), xi ∈ Ω,Ri < ε (i = 1, . . . ,n) ,n ∈N

 ,
where B̄(xi,Ri) denotes ball of radius Ri centered at xi ∈ A.

Let (X, ‖ · ‖) be a Banach space, for any E ⊂ X, Ē denotes closure of E and conv(E) denotes the closed
convex hull of E. We denote the family of non-empty bounded subsets of X by MX and family of non-empty
and relatively compact subsets of X by NX. The axiomatic definition of measures of noncompactness is

Definition 2.2. [8] A mapping µ : MX → R+ is said to be the measure of noncompactness if the following conditions
hold:

(i) The family Ker µ = {E ∈ MX : µ(E) = 0} is non-empty and Ker µ ⊂ NX;
(ii) E1 ⊂ E2 ⇒ µ(E1) ≤ µ(E2);

(iii) µ(Ē) = µ(E);
(iv) µ(convE) = µ(E);
(v) µ [λE1 + (1 − λ)E2] ≤ λµ(E1) + (1 − λ)µ(E2) for 0 ≤ λ ≤ 1;

(vi) If (En) is a sequence of closed sets from MX such that En+1 ⊂ En and lim
n→∞

µ(En) = 0 then the intersection set

E∞ =

∞⋂
n=1

En is non-empty.

Definition 2.3. [3] Let X1 and X2 be two Banach spaces and µ1 and µ2 be the measures of noncompactness on X1
and X2 respectively. An operator T from X1 to X2 is called a (µ1 − µ2) condensing operator if it is continuous and
µ2 (T(E)) < µ1(E) for every bounded noncompact set E ⊂ X1.
If X1 = X2 and µ1 = µ2 = µ then T is called µ-condensing operator.

Lemma 2.4. [11, Darbo’s fixed point theorem] Let E be a non-empty, bounded, closed, and convex subset of Banach
space X and let T : E → E be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that
µ (T(E)) ≤ kµ(E). Then T has a fixed point in the set E.

We know state the fixed point theorem for Meir-Keeler condensing operator which we use in this paper
to obtain the main results

Definition 2.5. [2] Let E be a non-empty subset of a Banach space X andµ be an arbitrary measure of noncompactness
on E. An operator T : E→ E is a Meir-Keeler condensing operator if for any ε > 0 there exists δ > 0 such that

ε ≤ µ(E) < ε + δ =⇒ µ [T(E)] < ε

for any bounded subset E of X.

Theorem 2.6. [2] Let E be a non-empty, bounded, closed and convex subset of a Banach space X and let µ be an
arbitrary measure of noncompactness on X. If T : E→ E is a continuous and Meir-Keeler condensing operator, then
T has at least one fixed point and the set of all fixed points of T in E is compact.
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In order to apply Lemma 2.4 in a given Banach space X, we need a formula expressing the measure of
noncompactness by a simple formula. Such formulas are known only in a few spaces [6, 8].

The c0 sequence space is the set of all sequences converging to 0. Norm ‖ · ‖c0 , on c0 is defined as

‖(ak)‖c0 = sup
k≥1
{|ak|} , (ak) ∈ c0.

Under the norm ‖ · ‖c0 , c0 is a Banach space, and the Hausdorff measure of noncompactness in c0 is given by

χ(E) = lim
n→∞

{
sup
u∈E

(
max

k≥n
|uk|

)}
(2)

where u =
(
u j

)∞
j=1
∈ c0 and E ∈ Mc0 .

The `1 sequence space is the set of all sequences whose series is absolutely convergent. Norm ‖ · ‖`1 on
`1 is defined as

‖(ak)‖`1 =

∞∑
k=1

|ak| , (ak) ∈ `1.

Under the norm ‖ · ‖`1 , `1 is a Banach space, and the Hausdorff measure of noncompactness in `1 is given by

χ(E) = lim
n→∞

sup
u∈E

∑
k≥n

|uk|


 (3)

where u =
(
u j

)∞
j=1
∈ `1 and E ∈ M`1 .

The above formulas will be used in the sequel of the paper.

3. Solution in c0 space

In order to find the condition under which the system (1) has a solution in c0 we need the following
assumptions:

(A1) Functions ( f j)∞j=1 are real valued and continuous defined on the set I2
× R∞. The operator Q defined

on the space I2
× c0 as

(s, t, v) 7→ (Qv) (s, t) =
(

f1(s, t, v), f2(s, t, v), f3(s, t, v), . . .
)

maps I2
× c0 into c0. The set of all such functions {(Qv) (s, t)}(s,t)∈I2 is equicontinuous at every point of

the space c0, that is given ε, δ > 0

‖u − v‖c0 ≤ δ =⇒ ‖(Qu)(s, t) − (Qv)(s, t)‖c0 ≤ ε.

(A2) For each fixed (s, t) ∈ I2, v(s, t) =
(
v j(s, t)

)
∈ C(I2, c0), the following inequality holds∣∣∣ fn(s, t, v(s, t))

∣∣∣ ≤ pn(s, t) + qn(s, t) sup
j≥n

{
|v j|

}
n ∈N,

where p j(s, t) and q j(s, t) are real valued continuous functions on I2. The function sequence
(
q j(s, t)

)
j∈N

is equibounded on I2 and the function sequence
(
p j(s, t)

)
j∈N

converges uniformly on I2 to a function

vanishing identically on I2.
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(A3) The functions Kn : I4
→ R are continuous on I4, (n = 1, 2, . . .). Also these functions Kn(s, t, x, y) are

equicontinuous with respect to (s, t) that is, for every ε > 0 there exists δ > 0 such that

|Kn(s2, t2, x, y) − Kn(s1, t1, x, y)| ≤ ε whenever |s2 − s1| ≤ δ, |t2 − t1| ≤ δ,

for all (x, y) ∈ I2. Also the function sequence (Kn(s, t, x, y)) is equibounded on the set I4 and the constant
K defined as

K = sup
{
|Kn(s, t, x, y)| : (s, t), (x, y) ∈ I2,n = 1, 2, . . .

}
,

is finite.
(A4) Functions rn : I2

→ R are continuous and the function sequence (rn) is uniformly convergent to zero
on I2. The constant R defined as

R = sup
{
|rn(s, t)| : (s, t) ∈ I2 : n = 1, 2, . . .

}
,

is finite.

Keeping assumption (A2) under consideration we define the following finite constants as

Q = sup
{
qn(s, t) : (s, t) ∈ I2,n ∈N

}
,

P = sup
{
pn(s, t) : (s, t) ∈ I2,n ∈N

}
.

Theorem 3.1. Under assumptions (A1) − (A4), the infinite system of integral equations (1) has at least one solution
v(s, t) =

(
v j(s, t)

)
j∈N

in c0 for fixed (s, t) ∈ I2, whenever (b − a)2KQ < 1.

Proof. We define the operator F on the space Γ = C(I2, c0) by

(Fv)(s, t) = ((Fv)n(s, t)) = rn(s, t) +

∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

=
(
r1(s, t) +

∫ b

a

∫ b

a
K1(s, t, τ1, τ2) f1(τ1, τ2, v1(τ1, τ2), v2(τ1, τ2), . . .)dτ1dτ2 ,

r2(s, t) +

∫ b

a

∫ b

a
K2(s, t, τ1, τ2) f2(τ1, τ2, v1(τ1, τ2), v2(τ1, τ2), . . .)dτ1dτ2 , . . .

)
,

(4)

for all (s, t) ∈ I2 and v =
(
v j

)
j∈N
∈ c0. We first show that F maps the space Γ into itself. Let n ∈ N and

(s, t) ∈ I2 then using assumptions (A1) and (A3) we have

|(Fv)n(s, t)| ≤ |rn(s, t)| +

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
≤ |rn(s, t)| + K

∫ b

a

∫ b

a
| fn(τ1, τ2, v(τ1, τ2))|dτ1dτ2.

Thus, by assumption (A4) and the fact that ( fn(s, t, v(s, t))) is in c0 space we have

lim
n→∞

(|(Fv)n(s, t)|) = 0.
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Hence, (Fv)(s, t) ∈ c0 for any arbitrarily fixed (s, t) ∈ I2.
Then we have,

‖v(s, t)‖c0 = max
n≥1

∣∣∣∣∣∣rn(s, t) +

∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
≤ max

n≥1
|rn(s, t)| +

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
≤ R + max

n≥1

∫ b

a

∫ b

a
|Kn(s, t, τ1, τ2)|

∣∣∣ fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

≤ R + K
∫ b

a

∫ b

a
max
n≥1

pn(τ1, τ2) + qn(τ1, τ2) sup
j≥n

{
|v j(τ1, τ2)|

} dτ1dτ2

≤ R + K(b − a)2[P + Q‖v(t, s)‖c0 ].

So we have

[1 − (b − a)2KQ]‖v(t, s)‖c0 ≤ R + (b − a)2KP

‖v(t, s)‖c0 ≤
R + (b − a)2KP
[1 − (b − a)2KQ]

(= R0).
(5)

Therefore, using (4) we conclude that F is a self mapping on Γ.
Also ‖(Fv)(s, t) − 0‖ ≤ R0, so the operator F maps BR0 (ball of radius R0 centered at origin) in Γ into itself.
We now show that F is continuous on BR0 . To do so fix ε > 0 and v ∈ BR0 . Then for arbitrary u ∈ BR0 with
‖u − v‖ ≤ ε, arbitrary fixed (s, t) ∈ I2 and n ∈N. We have

|(Fu)(s, t) − (Fv)(s, t)|

=

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kn(s, t, τ1, τ2)

[
fn(τ1, τ2,u(τ1, τ2))dτ1dτ2 − fn(τ1, τ2, v(τ1, τ2))

]
dτ1dτ2

∣∣∣∣∣∣
≤

∫ b

a

∫ b

a
|Kn(s, t, τ1, τ2)|

∣∣∣ fn(τ1, τ2,u(τ1, τ2))dτ1dτ2 − fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

(6)

Now, using the assumptions (A1), define the set δ(ε) as

δ(ε) = sup
{
| fn(s, t,u) − fn(s, t, v)| : u, v ∈ c0, ‖u − v‖c0 < ε, (s, t) ∈ I2,n = 1, 2, . . .

}
Then, δ(ε)→ 0 as ε→ 0.
So, by (6) and assumption (A3) we have

|(Fu) − (Fv)| ≤ (b − a)2Kδ(ε).

Hence, F is a continuous operator on BR0 . We now show that F is a Meir-Keeler condensing operator, that
is given ε > 0 and δ > 0

ε ≤ χ
(
BR0

)
< ε + δ =⇒ χ

(
F
(
BR0

))
< ε.

Using the definition of measure of noncompactness in c0 (2) and the assumptions (A2), (A3) and (A3) we
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have

χ
(
F
(
BR0

))
= lim

n→∞

 sup
v(s,t)∈BR0

{
max

k≥n
|vk(t, s)|

}
≤ lim

n→∞

 sup
v(s,t)∈BR0

{
max

k≥n

(
|rk(s, t)| +

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kk(s, t, τ1, τ2) fk(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
)}

≤ lim
n→∞

 sup
v(s,t)∈BR0

{
max

k≥n

(
K

∫ b

a

∫ b

a

∣∣∣ fk(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

)}
≤ lim

n→∞

 sup
v(s,t)∈BR0

max
k≥n

K∫ b

a

∫ b

a

pk(τ1, τ2) + qk(τ1, τ2) sup
j≥k

{
|v j(τ1, τ2)|

} dτ1dτ2





≤ (b − a)2KQ χ
(
BR0

)
.

Thus,

χ
(
F
(
BR0

))
≤ (b − a)2KQ χ

(
BR0

)
< ε,=⇒ χ

(
BR0

)
<

ε

(b − a)2KQ
.

Taking, δ =
ε(1 − (b − a)2KQ)

(b − a)2KQ
we obtain ε ≤ χ

(
BR0

)
< ε + δ. Therefore F is a Meir-Keeler condensing

operator on BR0 ⊂ c0. Since F satisfies Theorem 2.6, F has a fixed point in BR0 . Therefore the system (1) has
a solution in c0.

Example 3.2. Consider the following infinite system of Hammerstein type integral equations in two variables

vn(s, t) =
1
n

arctan(s + t)n+

∫ 2

1

∫ 2

1
sin

( s + t + τ1 + τ2

n

)
ln

(
1 + 4n2 + (τ1 + τ2)2[4 + supk≥n{|vk(τ1, τ2)|}]

4[(τ1 + τ2)2 + n2]

)
dτ1dτ2

(7)

for (s, t) ∈ [1, 2] × [1, 2] and n = 1, 2, · · · .
Comparing (7) with (1) we have

rn(s, t) =
1
n

arctan(s + t)n , Kn(s, t, x, y) = sin
( s + t + x + y

n

)
,

fn(τ1, τ2, v(τ1, τ2)) = ln
(

1 + 4n2 + (τ1 + τ2)2[4 + supk≥n{|vk(τ1, τ2)|}]

4[(τ1 + τ2)2 + n2]

)
= ln

(
1 +

1 + (τ1 + τ2)2 supk≥n{|vk(τ1, τ2)|}

4[(τ1 + τ2)2 + n2]

)
.

Denoting, by I2 the interval [1, 2], we show that the assumptions of the Theorem 3.1 are satisfied. It is obvious that
the operator F1 defined by

(F1v) (s, t) =
(

fn(s, t, v(s, t))
)
,

transforms the space I2
2 × c0 into c0. Next we show that the family of functions {(F1v) (s, t)}(s,t)∈I2

2
is equicontinuous at
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an arbitrary point v ∈ c0. Fix ε > 0,n ∈N, v ∈ c0 and (s, t) ∈ I2
2, let u ∈ c0 such that ‖u − v‖c0 ≤ ε. Then,∣∣∣ fn(s, t, v) − fn(s, t,u)

∣∣∣
=

∣∣∣∣∣∣∣∣∣ln
1 +

1 + (τ1 + τ2)2sup
k≥n
{|vk(τ1, τ2)|}

4[(τ1 + τ2)2 + n2]

 − ln

1 +

1 + (τ1 + τ2)2sup
k≥n
{|uk(τ1, τ2)|}

4[(τ1 + τ2)2 + n2]


∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣ (τ1 + τ2)2

4[(τ1 + τ2)2 + n2]

[
sup
k≥n
{|vk(τ1, τ2)|} − sup

k≥n
{|uk(τ1, τ2)|}

]∣∣∣∣∣∣
≤

1
16

sup
k≥n
{|vk − uk|} .

Hence,
∥∥∥ fn(s, t, v) − fn(s, t,u)

∥∥∥ ≤ 1
16‖v − u‖c0 ≤

ε
16 , so the family of functions {(F1v) (s, t)}(s,t)∈I2

2
is equicontinuous.

Now, fix (s, t) ∈ I2
2, v ∈ c0 and n ∈N, then

∣∣∣ fn(s, t, v)
∣∣∣ =

∣∣∣∣∣∣∣∣∣ln
1 +

1 + (τ1 + τ2)2sup
k≥n
{|vk(τ1, τ2)|}

4[(τ1 + τ2)2 + n2]


∣∣∣∣∣∣∣∣∣

≤

1 + (τ1 + τ2)2sup
k≥n
{|vk(τ1, τ2)|}

4[(τ1 + τ2)2 + n2]

=
1

4[(τ1 + τ2)2 + n2]
+

(τ1 + τ2)2

4[(τ1 + τ2)2 + n2]
sup
k≥n
{|vk(τ1, τ2)|}

Letting, pn(s, t) =
1

4[(s + t)2 + n2]
and qn(s, t) =

(s + t)2

4[(s + t)2 + n2]
it is clear that pn(s, t) and qn(s, t) are real valued

functions and pn(s, t) converges uniformly to zero. Also |qn(s, t)| ≤
1
4

for all n = 1, 2, · · · .

Hence, P =
1
4

and Q = sup
s,t)∈I2

{qn(s, t)} =
1
4
.

The functions Kn(s, t, x, y) are continuous on I4
2 = [1, 2]×[1, 2]×[1, 2]×[1, 2] and the function sequence

(
Kn(s, t, x, y)

)
is equibounded on I4

2. Also

K = sup
{
|Kn(s, t, x, y)| : (s, t), (x, y) ∈ I2

2,n ∈N
}

= 1.

Now, fix ε > 0, (x, y) ∈ I2
2 and n ∈N then for arbitrary (s1, t1), (s2, t2) ∈ I2 with

|s2 − s1| ≤
ε
2
, |t2 − t1| ≤

ε
2
.

We have∣∣∣Kn(s2, t2, x, y) − Kn(s1, t1, x, y)
∣∣∣ ≤ ∣∣∣∣∣ s2 + t1 + x + y

n
−

s1 + t1 + x + y
n

∣∣∣∣∣
=

1
n
|(s2 − s1) + (t2 − t1)|

≤
1
n

(|s2 − s1| + |t2 − t1|)

≤ ε.

Therefore,
(
Kn(s, t, x, y)

)
is equicontinuous.

Also, rn(s, t), is continuous for all (s, t) ∈ I2
2 and for all n and rn(s, t) converges uniformly to zero.
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The value of the factor (b − a)2KQ =
1
4
< 1. Since the conditions in Theorem 3.1 are satisfied, the infinite system in

(7) has a solution in c0. This solution belongs to the ball BR0 ⊂ c0 where

R0 =
R + (b − a)2KQ
1 − (b − a)2KQ

=
arctan 4 + 1

4

1 − 1
4

=
4
3

arctan(4).

4. Solution in `1 space

In this section we consider the system of equations (1). The existence of solution for the system (1) is
found in `1 space keeping the following assumptions under consideration:

(C1) Functions ( f j)∞j=1 are real valued and continuous defined on the set I2
× R∞. The operator Q defined

on the space I2
× `1 as

(s, t, v) 7→ (Qv) (s, t) =
(

f1(s, t, v), f2(s, t, v), f3(s, t, v), . . .
)
,

maps I2
× `1 into `1. The set of all such functions {(Qv) (s, t)}(s,t)∈I2 is equicontinuous at every point of

the space `1, that is given ε, δ > 0

‖u − v‖`1 ≤ δ =⇒ ‖(Qu)(s, t) − (Qv)(s, t)‖`1 ≤ ε.

(C2) For fixed (s, t) ∈ I2, v(s, t) =
(
v j(s, t)

)
∈ C(I2, `1), the following inequality holds∣∣∣ fn(s, t, v(s, t))

∣∣∣ ≤ an(s, t) + dn(s, t)|vn|, n = 1, 2, 3, . . .

where a j(s, t) and d j(s, t) are real valued continuous functions on I2. The function series
∞∑

n=1

an(s, t) is

uniformly convergent on I2 and the function sequence
(
d j(s, t)

)
j∈N

is equibounded on I2. The function

a(s, t) given by a(s, t) =

∞∑
n=1

an(s, t) is continuous on I2 and the constants D , A defined as

D = sup
{
dn(s, t) : (s, t) ∈ I2 , n ∈N

}
,

A = max
{
a(s, t) : (s, t) ∈ I2

}
,

are finite.
(C3) The functions Kn : I4

→ R are continuous on I4, (n = 1, 2, . . .). Also these functions Kn(s, t, x, y) are
equicontinuous with respect to (s, t) that is for all ε > 0 there exists a δ > 0 such that

|Kn(s2, t2, x, y) − Kn(s1, t1, x, y)| ≤ ε whenever |s2 − s1| ≤ δ, |t2 − t1| ≤ δ,

for all (x, y) ∈ I2. Also the function sequence (Kn(s, t, x, y)) is equibounded on the set I4 and the constant
K defined as

K = sup
{
|Kn(s, t, x, y)| : (s, t), (x, y) ∈ I2,n = 1, 2, . . .

}
,

is finite.
(C4) Functions rn : I2

→ R are continuous and the function sequence (rn) ∈ C(I2, `1).
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Remark 4.1. Since I2 = [a, b] × [a, b] is a compact subset of R2, so the assumption of continuity in (C4) implies that
rn : I2

→ R is uniformly continuous, which implies that the function sequence (rn(s, t)) is equicontinuous on I2, as
for every ε > 0 there is a δ > 0, such that for all (s1, t1), (s2, t2) ∈ I2,

‖ (rn(s1, t1)) − (rn(s2, t2)) ‖`1 ≤

∞∑
n=1

|rn(s2, t2) − rn(s2, t2)|

≤ ε,

(8)

whenever, |(s1, t1) − (s2, t2)| < δ. Also from inequality (8) it is clear that the function series
∞∑

n=1

rn(s, t) is convergent

on I2 and the function r(s, t) defined as

r(s, t) =

∞∑
n=1

rn(s, t),

is continuous on I2. Further the constant given by

R = max{r(s, t) : (s, t) ∈ I2
},

is finite.

Theorem 4.2. Under assumptions (C1) − (C4), the infinite system of integral equations (1) has at least one solution
v(s, t) =

(
v j(s, t)

)
j∈N

in `1 for fixed (s, t) ∈ I2, whenever (b − a)2KD < 1.

Proof. We define the operator G on the space Γ1 = C(I2, `1) by

(Gv)(s, t) = ((Gv)n(s, t)) = rn(s, t) +

∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

=
(
r1(s, t) +

∫ b

a

∫ b

a
K1(s, t, τ1, τ2) f1(τ1, τ2, v1(τ1, τ2), v2(τ1, τ2), . . .)dτ1dτ2 ,

r2(s, t) +

∫ b

a

∫ b

a
K2(s, t, τ1, τ2) f2(τ1, τ2, v1(τ1, τ2), v2(τ1, τ2), . . .)dτ1dτ2 , . . .

)
,

(9)

for all (s, t) ∈ I2 and v =
(
v j

)
j∈N
∈ `1. We first show that G maps the space Γ1 into itself. Let n ∈ N and

(s, t) ∈ I2 then assumptions (C1) and (C3) give

∞∑
n=1

|(Gv)n(s, t)|

≤

∞∑
n=1

|rn(s, t)| +
∞∑

n=1

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
≤ R +

∞∑
n=1

∫ b

a

∫ b

a
|Kn(s, t, τ1, τ2)|

∣∣∣ fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

≤ R + K
∞∑

n=1

∫ b

a

∫ b

a
[an(τ1, τ2) + dn(τ1, τ2)|v j(τ1, τ2)|]dτ1dτ2

≤ R + K
∞∑

n=1

(∫ b

a

∫ b

a
an(τ1, τ2)dτ1dτ2

)
+ KD

∞∑
n=1

(∫ b

a

∫ b

a
|v j(τ1, τ2)|

)
dτ1dτ2.
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Using, Lebesgue monotone convergence theorem [19] we obtain

∞∑
n=1

|(Gv)n(s, t)| ≤ R + K
∫ b

a

∫ b

a
a(τ1, τ2)dτ1dτ2 + KD

∫ b

a

∫ b

a

∞∑
n=1

|v j(τ1, τ2)|

 dτ1dτ2

≤ R + KA(b − a)2 + KD(b − a)2 sup{‖v(s, t)‖`1 : (s, t) ∈ I2
}

≤ R + KA(b − a)2 + KD(b − a)2
‖v‖Γ1

< ∞.

(10)

Thus, (Gv)(s, t) belongs to `1 space for arbitrarily fixed (s, t) ∈ I2.
Further,

‖v(s, t)‖`1 =

∞∑
n=1

∣∣∣∣∣∣rn(s, t) +

∫ b

a

∫ b

a
Kn(s, t, τ1, τ2) fn(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
≤ R + KA(b − a)2 + KD(b − a)2

‖v‖`1 . using (10)

As, KD(b − a)2 < 1 so we get

[1 − (b − a)2KD]‖v(t, s)‖`1 ≤ R + (b − a)2KA

‖v(t, s)‖`1 ≤
R + (b − a)2KA

[1 − (b − a)2KD]
(= R1)

(11)

Therefore, using (9) we conclude that G is a self mapping on Γ1.
Also, ‖(Gv)(s, t) − 0‖ ≤ R1, so the operator G maps BR1 (ball of radius R1 centered at the origin) into itself.
We now show that G is continuous on BR1 . To do so fix ε > 0 and v ∈ BR1 . Then for arbitrary u ∈ BR1 with
‖u − v‖`1 ≤ ε, arbitrary fixed (s, t) ∈ I2 and n ∈N.

‖(Gu)(s, t) − (Gv)(s, t)‖`1

=

∞∑
n=1

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kn(s, t, τ1, τ2)

[
fn(τ1, τ2,u(τ1, τ2)) − fn(τ1, τ2, v(τ1, τ2))

]
dτ1dτ2

∣∣∣∣∣∣
≤

∞∑
n=1

∫ b

a

∫ b

a
|Kn(s, t, τ1, τ2)|

∣∣∣ fn(τ1, τ2,u(τ1, τ2)) − fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

≤ K
∞∑

n=1

∫ b

a

∫ b

a

∣∣∣ fn(τ1, τ2,u(τ1, τ2)) − fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2.

(12)

Now, using the assumptions (C1), define the set δ(ε) as

δ(ε) = sup
{
| fn(s, t,u) − fn(s, t, v)| : u, v ∈ BR1 , ‖u − v‖`1 < ε, (s, t) ∈ I2,n = 1, 2, . . .

}
.

Then, δ(ε)→ 0 as ε→ 0.
So, by assumption (C3) using Lebesgue monotone convergence theorem [19], we obtained from inequality
(12)

‖(Gu)(s, t) − (Gv)(s, t)‖`1
≤ K

∫ b

a

∫ b

a

∞∑
n=1

∣∣∣ fn(τ1, τ2,u(τ1, τ2)) − fn(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

≤ K
∫ b

a

∫ b

a
‖ fn(τ1, τ2,u) − fn(τ1, τ2, v)‖`1 dτ1dτ2

≤ (b − a)2Kδ(ε).

(13)
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As, (13) holds for arbitrary fixed (s, t) ∈ I2, so

‖Gu −Gv‖`1
≤ sup

(s,t)∈I2

{
‖(Gu)(s, t) − (Gv)(s, t)‖`1

}
≤ (b − a)2Kδ(ε).

Hence, G is a continuous operator on BR1 .
We now show that G is a Meir-Keeler condensing operator, that is given ε > 0 and δ > 0

ε ≤ χ
(
BR1

)
< ε + δ =⇒ χ

(
G

(
BR1

))
< ε.

Using, the definition of measure of noncompactness in `1 (3) and the assumptions (C2), (C3) and (C4) we
have

χ
(
G

(
BR1

))
= lim

n→∞

 sup
v(s,t)∈BR1

∑
k≥n

|vk(t, s)|




≤ lim
n→∞

 sup
v(s,t)∈BR1

∑
k≥n

(
|rk(s, t)| +

∣∣∣∣∣∣
∫ b

a

∫ b

a
Kk(s, t, τ1, τ2) fk(τ1, τ2, v(τ1, τ2))dτ1dτ2

∣∣∣∣∣∣
)


≤ lim

n→∞

 sup
v(s,t)∈BR1

∑
k≥n

(
|rk(s, t)| + K

∫ b

a

∫ b

a

∣∣∣ fk(τ1, τ2, v(τ1, τ2))
∣∣∣ dτ1dτ2

)


≤ lim
n→∞

∑
k≥n

|rk(s, t)| + K sup
v(s,t)∈BR1

∑
k≥n

(∫ b

a

∫ b

a
ak(τ1, τ2) + dk(τ1, τ2)|vk(τ1, τ2)|dτ1dτ2

)
 .

Using, Lebesgue dominated convergence theorem gives

χ
(
G

(
BR1

))
≤ lim

n→∞

[∑
k≥n

|rk(s, t)| + K
{∫ b

a

∫ b

a

∑
k≥n

ak(τ1, τ2)dτ1dτ2+

D
∫ b

a

∫ b

a
sup

v(s,t)∈BR1

∑
k≥n

|vk(τ1, τ2)|

 dτ1dτ2

}]
≤ KD

∫ b

a

∫ b

a
lim
n→∞

 sup
v(s,t)∈BR1

∑
k≥n

|vk(τ1, τ2)|

 dτ1dτ2


≤ (b − a)2KD χ

(
BR1

)
.

Therefore,
χ
(
G

(
BR1

))
≤ (b − a)2KD χ

(
BR1

)
< ε,=⇒ χ

(
BR1

)
<

ε

(b − a)2KD
.

Taking, δ =
ε(1 − (b − a)2KD)

(b − a)2KD
we obtained ε ≤ χ

(
BR1

)
< ε + δ. Therefore G is a Meir-Keeler condensing

operator on BR1 ⊂ `1. As G satisfies all the conditions of Theorem 2.6, so G has a fixed point in BR1 . Therefore
the system (1) has a solution in `1.

We now give an example to support the result

Example 4.3. Consider the following infinite system of Hammerstein type integral equations in two variables

vn(s, t) =
α
n2 ln[(s + t) + n]+

∫ 2

1

∫ 2

1
arctan(s + t + τ1 + τ2 + n)

(
(τ1 + τ2)2e−n(τ1+τ2)

+
sin n(τ1 + τ2)
(τ1 + τ2)2 + n3 ·

v2
n(τ1, τ2)

1 + v2
1(τ1, τ2) + · · · + v2

n(τ1, τ2)

)
dτ1dτ2

(14)
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for (s, t) ∈ [1, 2] × [1, 2], α > 0 a constant.
Comparing the system with (1) we have

rn(s, t) =
α

n2 ln[(s + t) + n],

Kn(s, t, x, y) = arctan(s + t + x + y + n),

fn(s, t, v1, v2, . . .) = (s + t)2e−n(s+t) +
sin n(s + t)
(s + t)2 + n3 ·

v2
n(s, t)

1 + v2
1(s, t) + · · · + v2

n(s, t)
.

for (s, t), (τ1, τ2) ∈ [1, 2] × [1, 2] and n = 1, 2, · · · .
Clearly, rn(s, t) is continuous on I2

1 = [1, 2] × [1, 2].
Moreover, for fixed (s1, t1), (s2, t2) ∈ I2

1, we see that∥∥∥∥∥ (rn) (s1, t1)− (rn) (s2, t2)
∥∥∥∥∥ =

∞∑
n=1

|rn(s1, t1) − rn(s2, t2)|

= α
∞∑

n=1

1
n2 | ln[(s1 + t1) + n] − ln[(s2 + t2) + n]|

= α
∞∑

n=1

1
n2

∣∣∣∣∣ln (
1 +

s1 + t1 − s2 − t2

s2 + t2 + n

)∣∣∣∣∣
≤ α

∞∑
n=1

1
n3 |s1 + t1 − s2 − t2|

≤ α[|s1 − s2| + |t1 − t2|]ζ(3).

where, ζ(s) denotes Riemann zeta function.
Choosing δ =

ε
αζ(3)

, so that |s1 − s2| < δ
2 , |t1 − t2| < δ

2 , we obtain

‖ (rn) (s1, t1) − (rn) (s2, t2)‖ < ε.

Also, for every (s, t) ∈ I2
1 we have

rn(s, t) ≤
α

n2 ln(4 + n) ≤
α

n2

√

4 + n ≤ α
( 2

n2 +
1

n3/2

)
.

Hence,

R = max{
∞∑

n=1

rn(s, t) : (s, t) ∈ I2
1}

= α(2ζ(2) + ζ(1.5)).

(15)

which is finite. Thus, assumption (C4) and Remark 4.1 are satisfied.
Then, the function Kn(s, t, x, y) is continuous in I4

1 and

Kn(s, t, x, y) = | arctan(s + t + x + y + n)|

≤
π
2
.

Thus, the function sequence (Kn) is equibounded on I4
1. Also, for fixed (s1, t1), (s2, t2) ∈ I2

1 and n ∈ N then for
(x, y) ∈ I2

1 we have

|Kn(s1, t1, x, y)−Kn(s2, t2, x, y)|
= | arctan(s1 + t1 + x + y + n) − arctan(s2 + t2 + x + y + n)|
≤ |s1 − s2| + |t1 − t2|.
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Therefore, the function sequence Kn(s, t, x, y) is equicontinuous with respect to (s, t) ∈ I2
1 uniformly with respect to

(x, y) ∈ I2
1, the value of the constant K given as

K = sup{Kn(s, t, x, y) : (s, t), (x, y) ∈ I2
1,n ∈N}

=
π
2
.

(16)

Hence, all assumptions of (C3) are satisfied.
Again,

| fn(s, t, v)| ≤ (s + t)2e−n(s+t) +

∣∣∣∣∣∣ sin n(s + t)
(s + t)2 + n3 ·

v2
n

1 + v2
1 + · · · + v2

n

∣∣∣∣∣∣
≤ (s + t)2e−n(s+t) +

1
(s + t)2 + n3 ·

∣∣∣∣∣∣ v2
n

1 + v2
1 + · · · + v2

n

∣∣∣∣∣∣
≤ (s + t)2e−n(s+t) +

1
(s + t)2 + n3 ·

|vn|

1 + v2
n

(|vn|)

≤ (s + t)2e−n(s+t) +
1

2[(s + t)2 + n3]
|vn|.

Taking, an(s, t) = (s + t)2e−n(s+t) and dn(s, t) =
1

2[(s + t)2 + n3]
gives

| fn(s, t, v)| ≤ an(s, t) + dn(s, t)|vn|.

Obviously, the functions an(s, t) are continuous on I2
1, for any (s, t) ∈ I2

1 we have |an(s, t)| ≤
4
n3 e−2, and the function

series a(s, t) =

∞∑
n=1

an(s, t) =
(s + t)2

es+t − 1
, is uniformly convergent on the interval I2

1.

Also,

|dn(s, t)| =
1

2[(s + t)2 + n3]
≤

1
2n3 ≤

1
2
,

for all n ∈N. Hence, the function sequence (hn(s, t))is equibounded on I2
1. The value of the constants A, D are

A = max
{
a(s, t) : (s, t) ∈ I2

1

}
=

16
e2 − 1

; D =
1
2
, (17)

and (b − a)2KD =
π
8

. Using (11), (15), (16), (17) we obtain

R1 =
α (2ζ(2) + ζ(3)) + (2 − 1)2

×
1
2 ×

16
e2−1

1 − π
8

≈ 1.84 for α = 0.10

(18)

Finally, we check whether the assumption (C1) is satisfied. Fix v = (vn) ∈ BR1 ⊂ `1 and ε > 0, then for any
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u = (un) ∈ BR1 with ‖u − v‖`1 ≤ ε, then for fixed (s, t) ∈ I2
1, we have∥∥∥∥∥ (Qu) (s, t) − (Qv) (s, t)

∥∥∥∥∥
`1

=

∞∑
n=1

∣∣∣ fn(s, t,u) − fn(s, t, v)
∣∣∣

≤

∞∑
n=1

∣∣∣∣∣ sin n(s + t)
(s + t)2 + n3

∣∣∣∣∣
∣∣∣∣∣∣ u2

n

1 + u2
1 + · · · + u2

n
−

v2
n

1 + v2
1 + · · · + v2

n

∣∣∣∣∣∣
≤

∞∑
n=1

1
n3 |u

2
n(1 + v2

1 + · · · + v2
n) − v2

n(1 + u2
1 + · · · + u2

n)|

≤

∞∑
n=1

1
n3

[
|u2

n − v2
n| + |u

2
n(v2

1 + · · · + v2
n) − u2

n(u2
1 + · · · + u2

n)|

+ |u2
n(u2

1 + · · · + u2
n) − v2

n(u2
1 + · · · + u2

n)|
]

≤

∞∑
n=1

1
n3

[
|u2

n − v2
n| + u2

n(|v2
1 − u2

1| + · · · + |v
2
n − u2

n|) + |u2
n − v2

n|(u
2
1 + · · · + u2

n)
]
.

Since, vn,un ∈ BR1 ,n ∈N so |vn| ≤ R1, |un| < R1 so∥∥∥∥∥ (Qu) (s, t) − (Qv) (s, t)
∥∥∥∥∥
`1

≤

∞∑
n=1

1
n3

(
|un − vn|(|un| + |vn|)(1 + u2

1 + · · · + u2
n)+

u2
n(|v1 − u1|(|v1| + |u1|) + · · · + |vn − un|(|vn| + |un|)

)
< 2R1

∞∑
n=1

 1
n3 |un − vn|(1 + nR2

1) + R2
1

 n∑
i=1

|vi − ui|




= 2R1‖u − v‖`1

∞∑
n=1

1
n3

[
(1 + nR2

1) + R2
1

]
= 2R1‖u − v‖`1

(
[1 + R2

1]ζ(3) + R2
1ζ(2)

)
.

Thus, choose δ =
ε

2R1

(
[1 + R2

1]ζ(3) + R2
1ζ(2)

) , then for ‖u − v‖`1 < δ we have

∥∥∥∥∥ (Qu) (s, t) − (Qv) (s, t)
∥∥∥∥∥
`1

< ε.

Hence the assumption (C1) is also satisfied, therefore by Theorem 4.2 we conclude that the system in (14) has a solution
in BR1 ⊂ `1 where R1 is given by (18).

Acknowledgement: The authors are grateful to the anonymous referees for their careful reading of the
manuscript and their valuable suggestions, which improved the presentation of the paper.
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[11] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84–92.
[12] A. Das, B. Hazarika, R. Arab and M. Mursaleen, Solvability of the infinite system of integral equations in two variables in the sequence

spaces c0 and `1, J. Comput. Appl. Math. 326 (2017), 183–192.
[13] A. Das, B. Hazarika and M. Mursaleen, Application of measure of noncompactness for solvability of the infinite system of integral equations

in two variables in `p(1 < p < ∞) , Rev. R. Acad. Cienc. Exactas Fı̀s. Nat. Ser. A Mat. 113(1) (2017), 31–40.
[14] J. Klamka, Schauder’s fixed-point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), 153–165.
[15] C. Kuratowski, Sur les espaces complets, Fund. Math. 1(15) (1930), 301–309.
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