Infinite system of Integral Equations in Two Variables of Hammerstein Type in c_{0} and ℓ_{1} spaces

Ishfaq Ahmad Malik ${ }^{\text {a }}$, Tanweer Jalal ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, National Institute of Technology, Srinagar

Abstract

The principal aim of this paper is to study the solvability of infinite system of integral equations in two variables of Hammerstein type in the Banach spaces c_{0} and ℓ_{1} using Meir-Keeler condensing operators and measure of noncompactness. In this study we give some examples.

1. Introduction

The theory of integral equations is an important branch of nonlinear functional analysis and has attracted the interest of many researchers. In 1895 Le Roux [16] introduced integral equations as a powerful tool in investigating partial differential equations. This theory has many applicabilities like in population dynamics, Economic theory, feedback systems, stability of nuclear reactors [9, 10, 20]. In this paper, our aim is to study the infinite system of Hammerstein type integral equations in two variables of the form

$$
\begin{equation*}
v_{n}(s, t)=\mathrm{r}_{n}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2} \tag{1}
\end{equation*}
$$

where $(s, t) \in[a, b] \times[a, b]$ in the Banach spaces c_{0} and ℓ_{1}. The solvability of (1) is studied using the idea of measure of noncompactness (MNC).

Introduced in 1930 by Kuratowski [15] the concept of measure of noncompactness was further extendend to general Banach space by Banaś and Goebel [6]. The classical Schauder fixed point theorem and Banach contraction principle were generalized by Darbo [11] for condensing operators using the idea of MNC. The method of fixed point arguments has been widely used to study the existence of solutions of functional equations, like Banach contraction principle in $[1,18]$ and Schauder's fixed point theorem in [14, 17]. But if compactness and Lipschitz condition are not satisfied these results can not be used.

The idea of MNC has been studied by many researcher and applied in various problems. Many properties of MNC in different sequence spaces can be found in $[1,8]$. Different types of infinite systems of integral equations in two variables had been studied in [4, 5, 12, 13] by making use of MNC.

[^0]
2. Preliminaries

Notation \mathbb{N} is used for set natural numbers, \mathbb{R} is used for set of real numbers and \mathbb{R}_{+}is used for set of positive real numbers, interval $[a, b]$ is denoted by I. By $C\left(I^{2}, \mathbb{R}\right)$ we denote the space of continuously differentiable functions on $I^{2}=[a, b] \times[a, b]$. The Hausdorff measure of noncompactness is used frequently in finding the existence of solutions of various functional equations and is defined as:
Definition 2.1. [6] Let (Ω, d) be a metric space and A be a bounded subset of Ω. Then the Hausdorff measure of noncompactness (the ball-measure of noncompactness) of the set A, denoted by $\chi(A)$ is defined to be the infimium of the set of all real $\epsilon>0$ such that A can be covered by a finite number of balls of radii $<\epsilon$, that is

$$
\chi(\varepsilon)=\inf \left\{\epsilon>0: A \subset \bigcup_{i=1}^{n} \bar{B}\left(x_{i}, R_{i}\right), x_{i} \in \Omega, R_{i}<\epsilon(i=1, \ldots, n), n \in \mathbb{N}\right\},
$$

where $\bar{B}\left(x_{i}, R_{i}\right)$ denotes ball of radius R_{i} centered at $x_{i} \in A$.
Let $(\mathrm{X},\|\cdot\|)$ be a Banach space, for any $E \subset \mathrm{X}, \bar{E}$ denotes closure of E and $\operatorname{conv}(E)$ denotes the closed convex hull of E. We denote the family of non-empty bounded subsets of X by M_{X} and family of non-empty and relatively compact subsets of X by N_{X}. The axiomatic definition of measures of noncompactness is

Definition 2.2. [8] A mapping $\mu: \mathrm{M}_{\mathrm{X}} \rightarrow \mathbb{R}_{+}$is said to be the measure of noncompactness if the following conditions hold:
(i) The family $\operatorname{Ker} \mu=\left\{E \in \mathrm{M}_{\mathrm{X}}: \mu(E)=0\right\}$ is non-empty and $\operatorname{Ker} \mu \subset \mathrm{N}_{\mathrm{X}}$;
(ii) $E_{1} \subset E_{2} \Rightarrow \mu\left(E_{1}\right) \leq \mu\left(E_{2}\right)$;
(iii) $\mu(\bar{E})=\mu(E)$;
(iv) $\mu($ conv $E)=\mu(E)$;
(v) $\mu\left[\lambda E_{1}+(1-\lambda) E_{2}\right] \leq \lambda \mu\left(E_{1}\right)+(1-\lambda) \mu\left(E_{2}\right)$ for $0 \leq \lambda \leq 1$;
(vi) If $\left(E_{n}\right)$ is a sequence of closed sets from M_{x} such that $E_{n+1} \subset E_{n}$ and $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0$ then the intersection set $E_{\infty}=\bigcap_{n=1}^{\infty} E_{n}$ is non-empty.

Definition 2.3. [3] Let X_{1} and X_{2} be two Banach spaces and μ_{1} and μ_{2} be the measures of noncompactness on X_{1} and X_{2} respectively. An operator T from X_{1} to X_{2} is called a $\left(\mu_{1}-\mu_{2}\right)$ condensing operator if it is continuous and $\mu_{2}(T(E))<\mu_{1}(E)$ for every bounded noncompact set $E \subset X_{1}$.
If $X_{1}=X_{2}$ and $\mu_{1}=\mu_{2}=\mu$ then T is called μ-condensing operator.

Lemma 2.4. [11, Darbo's fixed point theorem] Let E be a non-empty, bounded, closed, and convex subset of Banach space X and let $T: E \rightarrow E$ be a continuous mapping. Assume that there exists a constant $k \in[0,1)$ such that $\mu(T(E)) \leq k \mu(E)$. Then T has a fixed point in the set E.

We know state the fixed point theorem for Meir-Keeler condensing operator which we use in this paper to obtain the main results

Definition 2.5. [2] Let E be a non-empty subset of a Banach space X and μ be an arbitrary measure ofnoncompactness on E. An operator $T: E \rightarrow E$ is a Meir-Keeler condensing operator if for any $\epsilon>0$ there exists $\delta>0$ such that

$$
\epsilon \leq \mu(E)<\epsilon+\delta \Longrightarrow \mu[T(E)]<\epsilon
$$

for any bounded subset E of X.
Theorem 2.6. [2] Let E be a non-empty, bounded, closed and convex subset of a Banach space X and let μ be an arbitrary measure of noncompactness on X . If $T: E \rightarrow E$ is a continuous and Meir-Keeler condensing operator, then T has at least one fixed point and the set of all fixed points of T in E is compact.

In order to apply Lemma 2.4 in a given Banach space X, we need a formula expressing the measure of noncompactness by a simple formula. Such formulas are known only in a few spaces $[6,8]$.

The c_{0} sequence space is the set of all sequences converging to 0 . Norm $\|\cdot\|_{c_{0}}$, on c_{0} is defined as

$$
\left\|\left(a_{k}\right)\right\|_{c_{0}}=\sup _{k \geq 1}\left\{\left|a_{k}\right|\right\},\left(a_{k}\right) \in c_{0} .
$$

Under the norm $\|\cdot\|_{c_{0}}, c_{0}$ is a Banach space, and the Hausdorff measure of noncompactness in c_{0} is given by

$$
\begin{equation*}
\chi(E)=\lim _{n \rightarrow \infty}\left\{\sup _{u \in E}\left(\max _{k \geq n}\left|u_{k}\right|\right)\right\} \tag{2}
\end{equation*}
$$

where $u=\left(u_{j}\right)_{j=1}^{\infty} \in c_{0}$ and $E \in \mathrm{M}_{c_{0}}$.
The ℓ_{1} sequence space is the set of all sequences whose series is absolutely convergent. Norm $\|\cdot\|_{\ell_{1}}$ on ℓ_{1} is defined as

$$
\left\|\left(a_{k}\right)\right\|_{\ell_{1}}=\sum_{k=1}^{\infty}\left|a_{k}\right|, \quad\left(a_{k}\right) \in \ell_{1} .
$$

Under the norm $\|\cdot\|_{\ell_{1}}, \ell_{1}$ is a Banach space, and the Hausdorff measure of noncompactness in ℓ_{1} is given by

$$
\begin{equation*}
\chi(E)=\lim _{n \rightarrow \infty}\left\{\sup _{u \in E}\left(\sum_{k \geq n}\left|u_{k}\right|\right)\right\} \tag{3}
\end{equation*}
$$

where $u=\left(u_{j}\right)_{j=1}^{\infty} \in \ell_{1}$ and $E \in \mathrm{M}_{\ell_{1}}$.
The above formulas will be used in the sequel of the paper.

3. Solution in c_{0} space

In order to find the condition under which the system (1) has a solution in c_{0} we need the following assumptions:
$\left(A_{1}\right)$ Functions $\left(f_{j}\right)_{j=1}^{\infty}$ are real valued and continuous defined on the set $I^{2} \times \mathbb{R}^{\infty}$. The operator \mathbf{Q} defined on the space $I^{2} \times c_{0}$ as

$$
(s, t, v) \mapsto(Q v)(s, t)=\left(f_{1}(s, t, v), f_{2}(s, t, v), f_{3}(s, t, v), \ldots\right)
$$

maps $I^{2} \times c_{0}$ into c_{0}. The set of all such functions $\{(Q v)(s, t)\}_{(s, t) \in I^{2}}$ is equicontinuous at every point of the space c_{0}, that is given $\epsilon, \delta>0$

$$
\|u-v\|_{c_{0}} \leq \delta \Longrightarrow\|(\mathrm{Q} u)(s, t)-(\mathrm{Q} v)(s, t)\|_{c_{0}} \leq \epsilon
$$

$\left(A_{2}\right)$ For each fixed $(s, t) \in I^{2}, v(s, t)=\left(v_{j}(s, t)\right) \in C\left(I^{2}, c_{0}\right)$, the following inequality holds

$$
\left|f_{n}(s, t, v(s, t))\right| \leq p_{n}(s, t)+q_{n}(s, t) \sup _{j \geq n}\left\{\left|v_{j}\right|\right\} \quad n \in \mathbb{N},
$$

where $p_{j}(s, t)$ and $q_{j}(s, t)$ are real valued continuous functions on I^{2}. The function sequence $\left(q_{j}(s, t)\right)_{j \in \mathbb{N}}$ is equibounded on I^{2} and the function sequence $\left(p_{j}(s, t)\right)_{j \in \mathbb{N}}$ converges uniformly on I^{2} to a function vanishing identically on I^{2}.
$\left(A_{3}\right)$ The functions $K_{n}: I^{4} \rightarrow \mathbb{R}$ are continuous on $I^{4},(n=1,2, \ldots)$. Also these functions $K_{n}(s, t, x, y)$ are equicontinuous with respect to (s, t) that is, for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|K_{n}\left(s_{2}, t_{2}, x, y\right)-K_{n}\left(s_{1}, t_{1}, x, y\right)\right| \leq \epsilon \text { whenever }\left|s_{2}-s_{1}\right| \leq \delta,\left|t_{2}-t_{1}\right| \leq \delta
$$

for all $(x, y) \in I^{2}$. Also the function sequence $\left(K_{n}(s, t, x, y)\right)$ is equibounded on the set I^{4} and the constant K defined as

$$
\mathrm{K}=\sup \left\{\left|K_{n}(s, t, x, y)\right|:(s, t),(x, y) \in I^{2}, n=1,2, \ldots\right\},
$$

is finite.
$\left(A_{4}\right)$ Functions $r_{n}: I^{2} \rightarrow \mathbb{R}$ are continuous and the function sequence $\left(r_{n}\right)$ is uniformly convergent to zero on I^{2}. The constant R defined as

$$
\mathrm{R}=\sup \left\{\left|\mathrm{r}_{n}(s, t)\right|:(s, t) \in I^{2}: n=1,2, \ldots\right\},
$$

is finite.
Keeping assumption $\left(A_{2}\right)$ under consideration we define the following finite constants as

$$
\begin{aligned}
& Q=\sup \left\{q_{n}(s, t):(s, t) \in I^{2}, n \in \mathbb{N}\right\}, \\
& \mathcal{P}=\sup \left\{p_{n}(s, t):(s, t) \in I^{2}, n \in \mathbb{N}\right\} .
\end{aligned}
$$

Theorem 3.1. Under assumptions $\left(A_{1}\right)-\left(A_{4}\right)$, the infinite system of integral equations (1) has at least one solution $v(s, t)=\left(v_{j}(s, t)\right)_{j \in \mathbb{N}}$ in c_{0} for fixed $(s, t) \in I^{2}$, whenever $(b-a)^{2} \mathrm{~K} Q<1$.

Proof. We define the operator F on the space $\Gamma=C\left(I^{2}, c_{0}\right)$ by

$$
\begin{align*}
&(\mathrm{F} v)(s, t)=\left((\mathrm{F} v)_{n}(s, t)\right)=\mathrm{r}_{n}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2} \\
&=\left(\mathrm{r}_{1}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{1}\left(s, t, \tau_{1}, \tau_{2}\right) f_{1}\left(\tau_{1}, \tau_{2}, v_{1}\left(\tau_{1}, \tau_{2}\right), v_{2}\left(\tau_{1}, \tau_{2}\right), \ldots\right) d \tau_{1} d \tau_{2}\right. \tag{4}\\
&\left.\mathrm{r}_{2}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{2}\left(s, t, \tau_{1}, \tau_{2}\right) f_{2}\left(\tau_{1}, \tau_{2}, v_{1}\left(\tau_{1}, \tau_{2}\right), v_{2}\left(\tau_{1}, \tau_{2}\right), \ldots\right) d \tau_{1} d \tau_{2}, \ldots\right),
\end{align*}
$$

for all $(s, t) \in I^{2}$ and $v=\left(v_{j}\right)_{j \in \mathbb{N}} \in c_{0}$. We first show that F maps the space Γ into itself. Let $n \in \mathbb{N}$ and $(s, t) \in I^{2}$ then using assumptions $\left(A_{1}\right)$ and $\left(A_{3}\right)$ we have

$$
\begin{aligned}
\left|(\mathrm{F} v)_{n}(s, t)\right| & \leq\left|\mathbf{r}_{n}(s, t)\right|+\left|\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right| \\
& \leq\left|\mathbf{r}_{n}(s, t)\right|+\mathrm{K} \int_{a}^{b} \int_{a}^{b}\left|f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2}
\end{aligned}
$$

Thus, by assumption $\left(A_{4}\right)$ and the fact that $\left(f_{n}(s, t, v(s, t))\right)$ is in c_{0} space we have

$$
\lim _{n \rightarrow \infty}\left(\left|(F v)_{n}(s, t)\right|\right)=0
$$

Hence, $(\mathrm{F} v)(s, t) \in c_{0}$ for any arbitrarily fixed $(s, t) \in I^{2}$.
Then we have,

$$
\begin{aligned}
\|v(s, t)\|_{c_{0}} & =\max _{n \geq 1}\left|r_{n}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right| \\
& \leq \max _{n \geq 1}\left|r_{n}(s, t)\right|+\left|\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right| \\
& \leq \mathrm{R}+\max _{n \geq 1} \int_{a}^{b} \int_{a}^{b}\left|K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\right|\left|f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2} \\
& \leq \mathrm{R}+\mathrm{K} \int_{a}^{b} \int_{a}^{b} \max _{n \geq 1}\left(p_{n}\left(\tau_{1}, \tau_{2}\right)+q_{n}\left(\tau_{1}, \tau_{2}\right) \sup _{j \geq n}\left\{\left|v_{j}\left(\tau_{1}, \tau_{2}\right)\right|\right\}\right) d \tau_{1} d \tau_{2} \\
& \leq \mathrm{R}+\mathrm{K}(b-a)^{2}\left[\mathcal{P}+Q\|v(t, s)\|_{c_{0}}\right] .
\end{aligned}
$$

So we have

$$
\begin{align*}
{\left[1-(b-a)^{2} \mathrm{~K} Q\right]\|v(t, s)\|_{c_{0}} } & \leq \mathrm{R}+(b-a)^{2} \mathrm{~K} \mathcal{P} \\
\|v(t, s)\|_{c_{0}} & \leq \frac{\mathrm{R}+(b-a)^{2} \mathrm{KP}}{\left[1-(b-a)^{2} \mathrm{KQ}\right]}\left(=R_{0}\right) \tag{5}
\end{align*}
$$

Therefore, using (4) we conclude that F is a self mapping on Γ.
Also $\|(F v)(s, t)-0\| \leq R_{0}$, so the operator F maps $\mathrm{B}_{R_{0}}$ (ball of radius R_{0} centered at origin) in Γ into itself. We now show that F is continuous on $\mathrm{B}_{R_{0}}$. To do so fix $\epsilon>0$ and $v \in \mathrm{~B}_{R_{0}}$. Then for arbitrary $u \in \mathrm{~B}_{R_{0}}$ with $\|u-v\| \leq \epsilon$, arbitrary fixed $(s, t) \in I^{2}$ and $n \in \mathbb{N}$. We have
$|(F u)(s, t)-(F v)(s, t)|$

$$
\begin{align*}
& =\left|\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\left[f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right] d \tau_{1} d \tau_{2}\right| \tag{6}\\
& \leq \int_{a}^{b} \int_{a}^{b}\left|K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\right|\left|f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2}
\end{align*}
$$

Now, using the assumptions $\left(A_{1}\right)$, define the set $\delta(\epsilon)$ as

$$
\delta(\epsilon)=\sup \left\{\left|f_{n}(s, t, u)-f_{n}(s, t, v)\right|: u, v \in c_{0},\|u-v\|_{c_{0}}<\epsilon,(s, t) \in I^{2}, n=1,2, \ldots\right\}
$$

Then, $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$.
So, by (6) and assumption $\left(A_{3}\right)$ we have

$$
|(\mathrm{F} u)-(\mathrm{F} v)| \leq(b-a)^{2} \mathrm{~K} \delta(\epsilon)
$$

Hence, F is a continuous operator on $B_{R_{0}}$. We now show that F is a Meir-Keeler condensing operator, that is given $\epsilon>0$ and $\delta>0$

$$
\epsilon \leq \chi\left(\mathrm{B}_{R_{0}}\right)<\epsilon+\delta \Longrightarrow \chi\left(\mathrm{F}\left(\mathrm{~B}_{R_{0}}\right)\right)<\epsilon .
$$

Using the definition of measure of noncompactness in $c_{0}(2)$ and the assumptions $\left(A_{2}\right),\left(A_{3}\right)$ and $\left(A_{3}\right)$ we
have

$$
\begin{aligned}
& \chi\left(\mathrm{F}\left(\mathrm{~B}_{R_{0}}\right)\right)=\lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{0}}}\left\{\max _{k \geq n}\left|v_{k}(t, s)\right|\right\}\right] \\
& \quad \leq \lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{0}}}\left\{\max _{k \geq n}\left(\left|\mathrm{r}_{k}(s, t)\right|+\left|\int_{a}^{b} \int_{a}^{b} K_{k}\left(s, t, \tau_{1}, \tau_{2}\right) f_{k}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right|\right)\right\}\right] \\
& \quad \leq \lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{0}}}\left\{\max _{k \geq n}\left(\mathrm{~K} \int_{a}^{b} \int_{a}^{b}\left|f_{k}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2}\right)\right\}\right] \\
& \quad \leq \lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{0}}}\left\{\max _{k \geq n}\left(\mathrm{~K} \int_{a}^{b} \int_{a}^{b}\left(p_{k}\left(\tau_{1}, \tau_{2}\right)+q_{k}\left(\tau_{1}, \tau_{2}\right) \sup _{j \geq k}\left\{\left|v_{j}\left(\tau_{1}, \tau_{2}\right)\right|\right\}\right) d \tau_{1} d \tau_{2}\right)\right\}\right] \\
& \quad \leq(b-a)^{2} \mathrm{KQ} \chi\left(\mathrm{~B}_{R_{0}}\right) .
\end{aligned}
$$

Thus,

$$
\chi\left(\mathrm{F}\left(\mathrm{~B}_{R_{0}}\right)\right) \leq(b-a)^{2} \mathrm{~K} Q \chi\left(\mathrm{~B}_{R_{0}}\right)<\epsilon, \Longrightarrow \chi\left(\mathrm{B}_{R_{0}}\right)<\frac{\epsilon}{(b-a)^{2} \mathrm{~K} Q} .
$$

Taking, $\delta=\frac{\epsilon\left(1-(b-a)^{2} \mathrm{~K} Q\right)}{(b-a)^{2} \mathrm{KQ}}$ we obtain $\epsilon \leq \chi\left(\mathrm{B}_{R_{0}}\right)<\epsilon+\delta$. Therefore F is a Meir-Keeler condensing operator on $B_{R_{0}} \subset c_{0}$. Since F satisfies Theorem 2.6, F has a fixed point in $B_{R_{0}}$. Therefore the system (1) has a solution in c_{0}.

Example 3.2. Consider the following infinite system of Hammerstein type integral equations in two variables

$$
\begin{align*}
v_{n}(s, t)=\frac{1}{n} \arctan (s+t)^{n}+ & \int_{1}^{2} \int_{1}^{2} \sin \left(\frac{s+t+\tau_{1}+\tau_{2}}{n}\right) \\
& \ln \left(\frac{1+4 n^{2}+\left(\tau_{1}+\tau_{2}\right)^{2}\left[4+\sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}\right]}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right) d \tau_{1} d \tau_{2} \tag{7}
\end{align*}
$$

for $(s, t) \in[1,2] \times[1,2]$ and $n=1,2, \cdots$.
Comparing (7) with (1) we have

$$
\begin{aligned}
\mathrm{r}_{n}(s, t) & =\frac{1}{n} \arctan (s+t)^{n}, K_{n}(s, t, x, y)=\sin \left(\frac{s+t+x+y}{n}\right), \\
f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) & =\ln \left(\frac{1+4 n^{2}+\left(\tau_{1}+\tau_{2}\right)^{2}\left[4+\sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}\right]}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right) \\
& =\ln \left(1+\frac{1+\left(\tau_{1}+\tau_{2}\right)^{2} \sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right) .
\end{aligned}
$$

Denoting, by I_{2} the interval $[1,2]$, we show that the assumptions of the Theorem 3.1 are satisfied. It is obvious that the operator F_{1} defined by

$$
\left(F_{1} v\right)(s, t)=\left(f_{n}(s, t, v(s, t))\right),
$$

transforms the space $I_{2}^{2} \times c_{0}$ into c_{0}. Next we show that the family of functions $\left\{\left(F_{1} v\right)(s, t)\right\}_{(s, t) \in I_{2}}$ is equicontinuous at
an arbitrary point $v \in c_{0}$. Fix $\epsilon>0, n \in \mathbb{N}, v \in c_{0}$ and $(s, t) \in I_{2}^{2}$, let $u \in c_{0}$ such that $\|u-v\|_{c_{0}} \leq \epsilon$. Then,

$$
\begin{aligned}
& \left|f_{n}(s, t, v)-f_{n}(s, t, u)\right| \\
& =\left|\ln \left(1+\frac{1+\left(\tau_{1}+\tau_{2}\right)^{2} \sup _{k \geq n}\left\{v_{k}\left(\tau_{1}, \tau_{2}\right) \mid\right\}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right)-\ln \left(1+\frac{1+\left(\tau_{1}+\tau_{2}\right)^{2} \sup _{k \geq n}\left\{\left|u_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right)\right| \\
& \leq\left|\frac{\left(\tau_{1}+\tau_{2}\right)^{2}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\left[\sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}-\sup _{k \geq n}\left\{\left|u_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}\right]\right| \\
& \leq \frac{1}{16} \sup _{k \geq n}\left\{\left|v_{k}-u_{k}\right|\right\} .
\end{aligned}
$$

Hence, $\left\|f_{n}(s, t, v)-f_{n}(s, t, u)\right\| \leq \frac{1}{16}\|v-u\|_{c_{0}} \leq \frac{\epsilon}{16}$, so the family of functions $\left\{\left(\mathrm{F}_{1} v\right)(s, t)\right\}_{(s, t) \in I_{2}^{2}}$ is equicontinuous. Now, fix $(s, t) \in I_{2}^{2}, v \in c_{0}$ and $n \in \mathbb{N}$, then

$$
\begin{aligned}
\left|f_{n}(s, t, v)\right| & =\left|\ln \left(1+\frac{1+\left(\tau_{1}+\tau_{2}\right)^{2} \sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}\right)\right| \\
& \leq \frac{1+\left(\tau_{1}+\tau_{2}\right)^{2} \sup _{k \geq n}\left\{v_{k}\left(\tau_{1}, \tau_{2}\right) \mid\right\}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]} \\
& =\frac{1}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]}+\frac{\left(\tau_{1}+\tau_{2}\right)^{2}}{4\left[\left(\tau_{1}+\tau_{2}\right)^{2}+n^{2}\right]} \sup _{k \geq n}\left\{\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right\}
\end{aligned}
$$

Letting, $p_{n}(s, t)=\frac{1}{4\left[(s+t)^{2}+n^{2}\right]}$ and $q_{n}(s, t)=\frac{(s+t)^{2}}{4\left[(s+t)^{2}+n^{2}\right]}$ it is clear that $p_{n}(s, t)$ and $q_{n}(s, t)$ are real valued functions and $p_{n}(s, t)$ converges uniformly to zero. Also $\left|q_{n}(s, t)\right| \leq \frac{1}{4}$ for all $n=1,2, \cdots$.
Hence, $\mathcal{P}=\frac{1}{4}$ and $\mathcal{Q}=\sup _{s, t) \in \mathbb{I}^{2}}\left\{q_{n}(s, t)\right\}=\frac{1}{4}$.
The functions $K_{n}(s, t, x, y)$ are continuous on $I_{2}^{4}=[1,2] \times[1,2] \times[1,2] \times[1,2]$ and the function sequence $\left(K_{n}(s, t, x, y)\right)$ is equibounded on I_{2}^{4}. Also

$$
\mathrm{K}=\sup \left\{\left|K_{n}(s, t, x, y)\right|:(s, t),(x, y) \in I_{2}^{2}, n \in \mathbb{N}\right\}=1
$$

Now, fix $\epsilon>0,(x, y) \in I_{2}^{2}$ and $n \in \mathbb{N}$ then for arbitrary $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in I^{2}$ with

$$
\left|s_{2}-s_{1}\right| \leq \frac{\epsilon}{2},\left|t_{2}-t_{1}\right| \leq \frac{\epsilon}{2} .
$$

We have

$$
\begin{aligned}
\left|K_{n}\left(s_{2}, t_{2}, x, y\right)-K_{n}\left(s_{1}, t_{1}, x, y\right)\right| & \leq\left|\frac{s_{2}+t_{1}+x+y}{n}-\frac{s_{1}+t_{1}+x+y}{n}\right| \\
& =\frac{1}{n}\left|\left(s_{2}-s_{1}\right)+\left(t_{2}-t_{1}\right)\right| \\
& \leq \frac{1}{n}\left(\left|s_{2}-s_{1}\right|+\left|t_{2}-t_{1}\right|\right) \\
& \leq \epsilon .
\end{aligned}
$$

Therefore, $\left(K_{n}(s, t, x, y)\right)$ is equicontinuous.
Also, $r_{n}(s, t)$, is continuous for all $(s, t) \in I_{2}^{2}$ and for all n and $r_{n}(s, t)$ converges uniformly to zero.

The value of the factor $(b-a)^{2} \mathrm{KQ}=\frac{1}{4}<1$. Since the conditions in Theorem 3.1 are satisfied, the infinite system in (7) has a solution in c_{0}. This solution belongs to the ball $B_{R_{0}} \subset c_{0}$ where

$$
R_{0}=\frac{\mathrm{R}+(b-a)^{2} \mathrm{KQ}}{1-(b-a)^{2} \mathrm{KQ}}=\frac{\arctan 4+\frac{1}{4}}{1-\frac{1}{4}}=\frac{4}{3} \arctan (4)
$$

4. Solution in ℓ_{1} space

In this section we consider the system of equations (1). The existence of solution for the system (1) is found in ℓ_{1} space keeping the following assumptions under consideration:
$\left(C_{1}\right)$ Functions $\left(f_{j}\right)_{j=1}^{\infty}$ are real valued and continuous defined on the set $I^{2} \times \mathbb{R}^{\infty}$. The operator Q defined on the space $I^{2} \times \ell_{1}$ as

$$
(s, t, v) \mapsto(Q v)(s, t)=\left(f_{1}(s, t, v), f_{2}(s, t, v), f_{3}(s, t, v), \ldots\right),
$$

maps $I^{2} \times \ell_{1}$ into ℓ_{1}. The set of all such functions $\{(Q v)(s, t)\}_{(s, t) \in I^{2}}$ is equicontinuous at every point of the space ℓ_{1}, that is given $\epsilon, \delta>0$

$$
\|u-v\|_{\ell_{1}} \leq \delta \Longrightarrow\|(\mathrm{Q} u)(s, t)-(\mathrm{Q} v)(s, t)\|_{\ell_{1}} \leq \epsilon .
$$

$\left(C_{2}\right)$ For fixed $(s, t) \in I^{2}, v(s, t)=\left(v_{j}(s, t)\right) \in C\left(I^{2}, \ell_{1}\right)$, the following inequality holds

$$
\left|f_{n}(s, t, v(s, t))\right| \leq a_{n}(s, t)+d_{n}(s, t)\left|v_{n}\right|, \quad n=1,2,3, \ldots
$$

where $a_{j}(s, t)$ and $d_{j}(s, t)$ are real valued continuous functions on I^{2}. The function series $\sum_{n=1}^{\infty} a_{n}(s, t)$ is uniformly convergent on I^{2} and the function sequence $\left(d_{j}(s, t)\right)_{j \in \mathbb{N}}$ is equibounded on I^{2}. The function $a(s, t)$ given by $a(s, t)=\sum_{n=1}^{\infty} a_{n}(s, t)$ is continuous on I^{2} and the constants D, A defined as

$$
\begin{aligned}
& \mathrm{D}=\sup \left\{d_{n}(s, t):(s, t) \in I^{2}, n \in \mathbb{N}\right\} \\
& A=\max \left\{a(s, t):(s, t) \in I^{2}\right\}
\end{aligned}
$$

are finite.
$\left(C_{3}\right)$ The functions $K_{n}: I^{4} \rightarrow \mathbb{R}$ are continuous on $I^{4},(n=1,2, \ldots)$. Also these functions $K_{n}(s, t, x, y)$ are equicontinuous with respect to (s, t) that is for all $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|K_{n}\left(s_{2}, t_{2}, x, y\right)-K_{n}\left(s_{1}, t_{1}, x, y\right)\right| \leq \epsilon \text { whenever }\left|s_{2}-s_{1}\right| \leq \delta_{,}\left|t_{2}-t_{1}\right| \leq \delta
$$

for all $(x, y) \in I^{2}$. Also the function sequence $\left(K_{n}(s, t, x, y)\right)$ is equibounded on the set I^{4} and the constant K defined as

$$
\mathrm{K}=\sup \left\{\left|K_{n}(s, t, x, y)\right|:(s, t),(x, y) \in I^{2}, n=1,2, \ldots\right\},
$$

is finite.
$\left(C_{4}\right)$ Functions $r_{n}: I^{2} \rightarrow \mathbb{R}$ are continuous and the function sequence $\left(r_{n}\right) \in C\left(I^{2}, \ell_{1}\right)$.

Remark 4.1. Since $I^{2}=[a, b] \times[a, b]$ is a compact subset of \mathbb{R}^{2}, so the assumption of continuity in $\left(C_{4}\right)$ implies that $\mathrm{r}_{n}: I^{2} \rightarrow \mathbb{R}$ is uniformly continuous, which implies that the function sequence $\left(\mathrm{r}_{n}(\mathrm{~s}, t)\right)$ is equicontinuous on I^{2}, as for every $\epsilon>0$ there is a $\delta>0$, such that for all $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in I^{2}$,

$$
\begin{align*}
\left\|\left(r_{n}\left(s_{1}, t_{1}\right)\right)-\left(r_{n}\left(s_{2}, t_{2}\right)\right)\right\|_{\ell_{1}} & \leq \sum_{n=1}^{\infty}\left|r_{n}\left(s_{2}, t_{2}\right)-r_{n}\left(s_{2}, t_{2}\right)\right| \tag{8}\\
& \leq \epsilon
\end{align*}
$$

whenever, $\left|\left(s_{1}, t_{1}\right)-\left(s_{2}, t_{2}\right)\right|<\delta$. Also from inequality (8) it is clear that the function series $\sum_{n=1}^{\infty} r_{n}(s, t)$ is convergent on I^{2} and the function $r(s, t)$ defined as

$$
\mathrm{r}(s, t)=\sum_{n=1}^{\infty} \mathrm{r}_{n}(s, t)
$$

is continuous on I^{2}. Further the constant given by

$$
R=\max \left\{\mathrm{r}(s, t):(s, t) \in I^{2}\right\},
$$

is finite.
Theorem 4.2. Under assumptions $\left(C_{1}\right)-\left(C_{4}\right)$, the infinite system of integral equations (1) has at least one solution $v(s, t)=\left(v_{j}(s, t)\right)_{j \in \mathbb{N}}$ in ℓ_{1} for fixed $(s, t) \in I^{2}$, whenever $(b-a)^{2} \mathrm{KD}<1$.

Proof. We define the operator G on the space $\Gamma_{1}=C\left(I^{2}, \ell_{1}\right)$ by

$$
\begin{align*}
(\mathrm{G} v)(s, t)= & \left((\mathrm{G} v)_{n}(s, t)\right)=\mathrm{r}_{n}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2} \\
= & \left(\mathrm{r}_{1}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{1}\left(s, t, \tau_{1}, \tau_{2}\right) f_{1}\left(\tau_{1}, \tau_{2}, v_{1}\left(\tau_{1}, \tau_{2}\right), v_{2}\left(\tau_{1}, \tau_{2}\right), \ldots\right) d \tau_{1} d \tau_{2}\right. \tag{9}\\
& \left.\mathrm{r}_{2}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{2}\left(s, t, \tau_{1}, \tau_{2}\right) f_{2}\left(\tau_{1}, \tau_{2}, v_{1}\left(\tau_{1}, \tau_{2}\right), v_{2}\left(\tau_{1}, \tau_{2}\right), \ldots\right) d \tau_{1} d \tau_{2}, \ldots\right)
\end{align*}
$$

for all $(s, t) \in I^{2}$ and $v=\left(v_{j}\right)_{j \in \mathbb{N}} \in \ell_{1}$. We first show that G maps the space Γ_{1} into itself. Let $n \in \mathbb{N}$ and $(s, t) \in I^{2}$ then assumptions $\left(C_{1}\right)$ and $\left(C_{3}\right)$ give

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|(\mathrm{G} v)_{n}(s, t)\right| \\
& \quad \leq \sum_{n=1}^{\infty}\left|\mathrm{r}_{n}(s, t)\right|+\sum_{n=1}^{\infty}\left|\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right| \\
& \quad \leq R+\sum_{n=1}^{\infty} \int_{a}^{b} \int_{a}^{b}\left|K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\right|\left|f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2} \\
& \quad \leq R+\mathrm{K} \sum_{n=1}^{\infty} \int_{a}^{b} \int_{a}^{b}\left[a_{n}\left(\tau_{1}, \tau_{2}\right)+d_{n}\left(\tau_{1}, \tau_{2}\right)\left|v_{j}\left(\tau_{1}, \tau_{2}\right)\right|\right] d \tau_{1} d \tau_{2} \\
& \quad \leq R+\mathrm{K} \sum_{n=1}^{\infty}\left(\int_{a}^{b} \int_{a}^{b} a_{n}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2}\right)+\mathrm{KD} \sum_{n=1}^{\infty}\left(\int_{a}^{b} \int_{a}^{b}\left|v_{j}\left(\tau_{1}, \tau_{2}\right)\right|\right) d \tau_{1} d \tau_{2}
\end{aligned}
$$

Using, Lebesgue monotone convergence theorem [19] we obtain

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|(\mathrm{G} v)_{n}(s, t)\right| & \leq R+\mathrm{K} \int_{a}^{b} \int_{a}^{b} a\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2}+\mathrm{KD}\left(\int_{a}^{b} \int_{a}^{b} \sum_{n=1}^{\infty}\left|v_{j}\left(\tau_{1}, \tau_{2}\right)\right|\right) d \tau_{1} d \tau_{2} \\
& \leq R+\mathrm{KA}(b-a)^{2}+\mathrm{KD}(b-a)^{2} \sup \left\{\|v(s, t)\|_{\ell_{1}}:(s, t) \in I^{2}\right\} \tag{10}\\
& \leq R+\mathrm{KA}(b-a)^{2}+\mathrm{KD}(b-a)^{2}\|v\|_{r_{1}} \\
& <\infty
\end{align*}
$$

Thus, $(\mathrm{G} v)(s, t)$ belongs to ℓ_{1} space for arbitrarily fixed $(s, t) \in I^{2}$.
Further,

$$
\begin{aligned}
\|v(s, t)\|_{\ell_{1}} & =\sum_{n=1}^{\infty}\left|\mathrm{r}_{n}(s, t)+\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right) f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right| \\
& \leq R+\operatorname{KA}(b-a)^{2}+\operatorname{KD}(b-a)^{2}\|v\|_{\ell_{1}} .
\end{aligned}
$$

As, $\mathrm{KD}(b-a)^{2}<1$ so we get

$$
\begin{align*}
{\left[1-(b-a)^{2} \mathrm{KD}\right]\|v(t, s)\|_{\ell_{1}} } & \leq R+(b-a)^{2} \mathrm{KA} \\
\|v(t, s)\|_{\ell_{1}} & \leq \frac{R+(b-a)^{2} \mathrm{KA}}{\left[1-(b-a)^{2} \mathrm{KD}\right]}\left(=R_{1}\right) \tag{11}
\end{align*}
$$

Therefore, using (9) we conclude that G is a self mapping on Γ_{1}.
Also, $\|(\mathrm{Gv})(s, t)-0\| \leq R_{1}$, so the operator G maps $\mathrm{B}_{R_{1}}$ (ball of radius R_{1} centered at the origin) into itself. We now show that G is continuous on $\mathrm{B}_{R_{1}}$. To do so fix $\epsilon>0$ and $v \in \mathrm{~B}_{R_{1}}$. Then for arbitrary $u \in \mathrm{~B}_{R_{1}}$ with $\|u-v\|_{\ell_{1}} \leq \epsilon$, arbitrary fixed $(s, t) \in I^{2}$ and $n \in \mathbb{N}$.

$$
\begin{align*}
& \|(\mathrm{G} u)(s, t)-(\mathrm{G} v)(s, t)\|_{\ell_{1}} \\
& =\sum_{n=1}^{\infty}\left|\int_{a}^{b} \int_{a}^{b} K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\left[f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right)-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right] d \tau_{1} d \tau_{2}\right| \\
& \leq \sum_{n=1}^{\infty} \int_{a}^{b} \int_{a}^{b}\left|K_{n}\left(s, t, \tau_{1}, \tau_{2}\right)\right|\left|f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right)-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2} \tag{12}\\
& \leq \mathrm{K} \sum_{n=1}^{\infty} \int_{a}^{b} \int_{a}^{b}\left|f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right)-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2}
\end{align*}
$$

Now, using the assumptions $\left(C_{1}\right)$, define the set $\delta(\epsilon)$ as

$$
\delta(\epsilon)=\sup \left\{\left|f_{n}(s, t, u)-f_{n}(s, t, v)\right|: u, v \in \mathrm{~B}_{R_{1}},\|u-v\|_{\ell_{1}}<\epsilon,(s, t) \in I^{2}, n=1,2, \ldots\right\} .
$$

Then, $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$.
So, by assumption $\left(C_{3}\right)$ using Lebesgue monotone convergence theorem [19], we obtained from inequality (12)

$$
\begin{align*}
\|(\mathrm{G} u)(s, t)-(\mathrm{G} v)(s, t)\|_{\ell_{1}} & \leq \mathrm{K} \int_{a}^{b} \int_{a}^{b} \sum_{n=1}^{\infty}\left|f_{n}\left(\tau_{1}, \tau_{2}, u\left(\tau_{1}, \tau_{2}\right)\right)-f_{n}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2} \\
& \leq \mathrm{K} \int_{a}^{b} \int_{a}^{b}\left\|f_{n}\left(\tau_{1}, \tau_{2}, u\right)-f_{n}\left(\tau_{1}, \tau_{2}, v\right)\right\|_{\ell_{1}} d \tau_{1} d \tau_{2} \tag{13}\\
& \leq(b-a)^{2} \mathrm{~K} \delta(\epsilon) .
\end{align*}
$$

As, (13) holds for arbitrary fixed $(s, t) \in I^{2}$, so

$$
\begin{aligned}
\|\mathrm{G} u-\mathrm{G} v\|_{\ell_{1}} & \leq \sup _{(s, t) \in I^{2}}\left\{\|(\mathrm{G} u)(s, t)-(\mathrm{G} v)(s, t)\|_{\ell_{1}}\right\} \\
& \leq(b-a)^{2} \mathrm{~K} \delta(\epsilon) .
\end{aligned}
$$

Hence, G is a continuous operator on $B_{R_{1}}$.
We now show that G is a Meir-Keeler condensing operator, that is given $\epsilon>0$ and $\delta>0$

$$
\epsilon \leq \chi\left(\mathrm{B}_{R_{1}}\right)<\epsilon+\delta \Longrightarrow \chi\left(\mathrm{G}\left(\mathrm{~B}_{R_{1}}\right)\right)<\epsilon
$$

Using, the definition of measure of noncompactness in $\ell_{1}(3)$ and the assumptions $\left(C_{2}\right),\left(C_{3}\right)$ and $\left(C_{4}\right)$ we have

$$
\begin{aligned}
& \chi\left(\mathrm{G}\left(\mathrm{~B}_{R_{1}}\right)\right)=\lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left\{\sum_{k \geq n}\left|v_{k}(t, s)\right|\right\}\right] \\
& \leq \lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left\{\sum_{k \geq n}\left(| |_{k}(s, t)\left|+\left|\int_{a}^{b} \int_{a}^{b} K_{k}\left(s, t, \tau_{1}, \tau_{2}\right) f_{k}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right) d \tau_{1} d \tau_{2}\right|\right)\right\}\right]\right. \\
& \leq \lim _{n \rightarrow \infty}\left[\sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left\{\sum_{k \geq n}\left(\left|r_{k}(s, t)\right|+\mathrm{K} \int_{a}^{b} \int_{a}^{b}\left|f_{k}\left(\tau_{1}, \tau_{2}, v\left(\tau_{1}, \tau_{2}\right)\right)\right| d \tau_{1} d \tau_{2}\right)\right\}\right] \\
& \leq \lim _{n \rightarrow \infty}\left[\sum_{k \geq n}\left|r_{k}(s, t)\right|+\mathrm{K} \sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left\{\sum_{k \geq n}\left(\int_{a}^{b} \int_{a}^{b} a_{k}\left(\tau_{1}, \tau_{2}\right)+d_{k}\left(\tau_{1}, \tau_{2}\right)\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right| d \tau_{1} d \tau_{2}\right)\right\}\right] .
\end{aligned}
$$

Using, Lebesgue dominated convergence theorem gives

$$
\begin{aligned}
& \chi\left(\mathrm{G}\left(\mathrm{~B}_{R_{1}}\right)\right) \leq \lim _{n \rightarrow \infty}\left[\sum_{k \geq n}\left|\mathrm{r}_{k}(s, t)\right|+\mathrm{K}\left\{\int_{a}^{b} \int_{a}^{b} \sum_{k \geq n} a_{k}\left(\tau_{1}, \tau_{2}\right) d \tau_{1} d \tau_{2}+\right.\right. \\
&\left.\left.\mathrm{D} \int_{a}^{b} \int_{a}^{b} \sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left(\sum_{k \geq n}\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right) d \tau_{1} d \tau_{2}\right\}\right] \\
& \leq \mathrm{KD} \int_{a}^{b} \int_{a}^{b} \lim _{n \rightarrow \infty}\left\{\sup _{v(s, t) \in \mathrm{B}_{R_{1}}}\left(\sum_{k \geq n}\left|v_{k}\left(\tau_{1}, \tau_{2}\right)\right|\right) d \tau_{1} d \tau_{2}\right\} \\
& \leq(b-a)^{2} \mathrm{KD} \chi\left(\mathrm{~B}_{R_{1}}\right) .
\end{aligned}
$$

Therefore,

$$
\chi\left(\mathrm{G}\left(\mathrm{~B}_{R_{1}}\right)\right) \leq(b-a)^{2} \mathrm{KD} \chi\left(\mathrm{~B}_{R_{1}}\right)<\epsilon, \Longrightarrow \chi\left(\mathrm{B}_{R_{1}}\right)<\frac{\epsilon}{(b-a)^{2} \mathrm{KD}}
$$

Taking, $\delta=\frac{\epsilon\left(1-(b-a)^{2} \mathrm{KD}\right)}{(b-a)^{2} \mathrm{KD}}$ we obtained $\epsilon \leq \chi\left(\mathrm{B}_{R_{1}}\right)<\epsilon+\delta$. Therefore G is a Meir-Keeler condensing operator on $B_{R_{1}} \subset \ell_{1}$. As G satisfies all the conditions of Theorem 2.6 , so G has a fixed point in $B_{R_{1}}$. Therefore the system (1) has a solution in ℓ_{1}.

We now give an example to support the result
Example 4.3. Consider the following infinite system of Hammerstein type integral equations in two variables

$$
\begin{align*}
v_{n}(s, t)=\frac{\alpha}{n^{2}} \ln [(s+t)+n]+ & \int_{1}^{2} \int_{1}^{2} \arctan \left(s+t+\tau_{1}+\tau_{2}+n\right)\left(\left(\tau_{1}+\tau_{2}\right)^{2} e^{-n\left(\tau_{1}+\tau_{2}\right)}\right. \\
& \left.+\frac{\sin n\left(\tau_{1}+\tau_{2}\right)}{\left(\tau_{1}+\tau_{2}\right)^{2}+n^{3}} \cdot \frac{v_{n}^{2}\left(\tau_{1}, \tau_{2}\right)}{1+v_{1}^{2}\left(\tau_{1}, \tau_{2}\right)+\cdots+v_{n}^{2}\left(\tau_{1}, \tau_{2}\right)}\right) d \tau_{1} d \tau_{2} \tag{14}
\end{align*}
$$

for $(s, t) \in[1,2] \times[1,2], \alpha>0$ a constant.
Comparing the system with (1) we have

$$
\begin{aligned}
\mathrm{r}_{n}(s, t) & =\frac{\alpha}{n^{2}} \ln [(s+t)+n] \\
K_{n}(s, t, x, y) & =\arctan (s+t+x+y+n) \\
f_{n}\left(s, t, v_{1}, v_{2}, \ldots\right) & =(s+t)^{2} e^{-n(s+t)}+\frac{\sin n(s+t)}{(s+t)^{2}+n^{3}} \cdot \frac{v_{n}^{2}(s, t)}{1+v_{1}^{2}(s, t)+\cdots+v_{n}^{2}(s, t)} .
\end{aligned}
$$

for $(s, t),\left(\tau_{1}, \tau_{2}\right) \in[1,2] \times[1,2]$ and $n=1,2, \cdots$.
Clearly, $r_{n}(s, t)$ is continuous on $I_{1}^{2}=[1,2] \times[1,2]$.
Moreover, for fixed $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in I_{1}^{2}$, we see that

$$
\begin{aligned}
\|\left(r_{n}\right)\left(s_{1}, t_{1}\right)- & \left(r_{n}\right)\left(s_{2}, t_{2}\right) \|=\sum_{n=1}^{\infty}\left|r_{n}\left(s_{1}, t_{1}\right)-\mathrm{r}_{n}\left(s_{2}, t_{2}\right)\right| \\
& =\alpha \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left|\ln \left[\left(s_{1}+t_{1}\right)+n\right]-\ln \left[\left(s_{2}+t_{2}\right)+n\right]\right| \\
& =\alpha \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left|\ln \left(1+\frac{s_{1}+t_{1}-s_{2}-t_{2}}{s_{2}+t_{2}+n}\right)\right| \\
& \leq \alpha \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left|s_{1}+t_{1}-s_{2}-t_{2}\right| \\
& \leq \alpha\left[\left|s_{1}-s_{2}\right|+\left|t_{1}-t_{2}\right|\right] \zeta(3) .
\end{aligned}
$$

where, $\zeta(s)$ denotes Riemann zeta function.
Choosing $\delta=\frac{\epsilon}{\alpha \zeta(3)}$, so that $\left|s_{1}-s_{2}\right|<\frac{\delta}{2},\left|t_{1}-t_{2}\right|<\frac{\delta}{2}$, we obtain

$$
\left\|\left(r_{n}\right)\left(s_{1}, t_{1}\right)-\left(r_{n}\right)\left(s_{2}, t_{2}\right)\right\|<\epsilon
$$

Also, for every $(s, t) \in I_{1}^{2}$ we have

$$
\mathrm{r}_{n}(s, t) \leq \frac{\alpha}{n^{2}} \ln (4+n) \leq \frac{\alpha}{n^{2}} \sqrt{4+n} \leq \alpha\left(\frac{2}{n^{2}}+\frac{1}{n^{3 / 2}}\right)
$$

Hence,

$$
\begin{align*}
\mathrm{R} & =\max \left\{\sum_{n=1}^{\infty} \mathrm{r}_{n}(s, t):(s, t) \in I_{1}^{2}\right\} \tag{15}\\
& =\alpha(2 \zeta(2)+\zeta(1.5)) .
\end{align*}
$$

which is finite. Thus, assumption $\left(C_{4}\right)$ and Remark 4.1 are satisfied.
Then, the function $K_{n}(s, t, x, y)$ is continuous in I_{1}^{4} and

$$
\begin{aligned}
K_{n}(s, t, x, y) & =|\arctan (s+t+x+y+n)| \\
& \leq \frac{\pi}{2} .
\end{aligned}
$$

Thus, the function sequence $\left(K_{n}\right)$ is equibounded on I_{1}^{4}. Also, for fixed $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in I_{1}^{2}$ and $n \in \mathbb{N}$ then for $(x, y) \in I_{1}^{2}$ we have

$$
\begin{aligned}
\mid K_{n}\left(s_{1}, t_{1}, x, y\right)- & K_{n}\left(s_{2}, t_{2}, x, y\right) \mid \\
& =\left|\arctan \left(s_{1}+t_{1}+x+y+n\right)-\arctan \left(s_{2}+t_{2}+x+y+n\right)\right| \\
& \leq\left|s_{1}-s_{2}\right|+\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

Therefore, the function sequence $K_{n}(s, t, x, y)$ is equicontinuous with respect to $(s, t) \in I_{1}^{2}$ uniformly with respect to $(x, y) \in I_{1}^{2}$, the value of the constant K given as

$$
\begin{align*}
\mathrm{K} & =\sup \left\{K_{n}(s, t, x, y):(s, t),(x, y) \in I_{1}^{2}, n \in \mathbb{N}\right\} \\
& =\frac{\pi}{2} \tag{16}
\end{align*}
$$

Hence, all assumptions of $\left(C_{3}\right)$ are satisfied.
Again,

$$
\begin{aligned}
\left|f_{n}(s, t, v)\right| & \leq(s+t)^{2} e^{-n(s+t)}+\left|\frac{\sin n(s+t)}{(s+t)^{2}+n^{3}} \cdot \frac{v_{n}^{2}}{1+v_{1}^{2}+\cdots+v_{n}^{2}}\right| \\
& \leq(s+t)^{2} e^{-n(s+t)}+\frac{1}{(s+t)^{2}+n^{3}} \cdot\left|\frac{v_{n}^{2}}{1+v_{1}^{2}+\cdots+v_{n}^{2}}\right| \\
& \leq(s+t)^{2} e^{-n(s+t)}+\frac{1}{(s+t)^{2}+n^{3}} \cdot \frac{\left|v_{n}\right|}{1+v_{n}^{2}}\left(\left|v_{n}\right|\right) \\
& \leq(s+t)^{2} e^{-n(s+t)}+\frac{1}{2\left[(s+t)^{2}+n^{3}\right]}\left|v_{n}\right| .
\end{aligned}
$$

Taking, $a_{n}(s, t)=(s+t)^{2} e^{-n(s+t)}$ and $d_{n}(s, t)=\frac{1}{2\left[(s+t)^{2}+n^{3}\right]}$ gives

$$
\left|f_{n}(s, t, v)\right| \leq a_{n}(s, t)+d_{n}(s, t)\left|v_{n}\right|
$$

Obviously, the functions $a_{n}(s, t)$ are continuous on I_{1}^{2}, for any $(s, t) \in I_{1}^{2}$ we have $\left|a_{n}(s, t)\right| \leq \frac{4}{n^{3}} e^{-2}$, and the function series $a(s, t)=\sum_{n=1}^{\infty} a_{n}(s, t)=\frac{(s+t)^{2}}{e^{s+t}-1}$, is uniformly convergent on the interval I_{1}^{2}.
Also,

$$
\left|d_{n}(s, t)\right|=\frac{1}{2\left[(s+t)^{2}+n^{3}\right]} \leq \frac{1}{2 n^{3}} \leq \frac{1}{2}
$$

for all $n \in \mathbb{N}$. Hence, the function sequence $\left(h_{n}(s, t)\right)$ is equibounded on I_{1}^{2}. The value of the constants A, D are

$$
\begin{equation*}
\mathrm{A}=\max \left\{a(s, t):(s, t) \in I_{1}^{2}\right\}=\frac{16}{e^{2}-1} ; \mathrm{D}=\frac{1}{2} \tag{17}
\end{equation*}
$$

and $(b-a)^{2} \mathrm{KD}=\frac{\pi}{8}$. Using (11), (15), (16), (17) we obtain

$$
\begin{align*}
R_{1} & =\frac{\alpha(2 \zeta(2)+\zeta(3))+(2-1)^{2} \times \frac{1}{2} \times \frac{16}{e^{2}-1}}{1-\frac{\pi}{8}} & \tag{18}\\
& \approx 1.84 & \text { for } \alpha=0.10
\end{align*}
$$

Finally, we check whether the assumption $\left(C_{1}\right)$ is satisfied. Fix $v=\left(v_{n}\right) \in \mathrm{B}_{R_{1}} \subset \ell_{1}$ and $\epsilon>0$, then for any
$u=\left(u_{n}\right) \in \mathrm{B}_{R_{1}}$ with $\|u-v\|_{\ell_{1}} \leq \epsilon$, then for fixed $(s, t) \in I_{1}^{2}$, we have

$$
\begin{aligned}
& \|(\mathrm{Q} u)(s, t)-(\mathrm{Q} v)(s, t)\|_{\ell_{1}}=\sum_{n=1}^{\infty}\left|f_{n}(s, t, u)-f_{n}(s, t, v)\right| \\
& \begin{aligned}
\leq \sum_{n=1}^{\infty}\left|\frac{\sin n(s+t)}{(s+t)^{2}+n^{3}}\right|\left|\frac{u_{n}^{2}}{1+u_{1}^{2}+\cdots+u_{n}^{2}}-\frac{v_{n}^{2}}{1+v_{1}^{2}+\cdots+v_{n}^{2}}\right| \\
\leq \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left|u_{n}^{2}\left(1+v_{1}^{2}+\cdots+v_{n}^{2}\right)-v_{n}^{2}\left(1+u_{1}^{2}+\cdots+u_{n}^{2}\right)\right| \\
\leq \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\left|u_{n}^{2}-v_{n}^{2}\right|+\left|u_{n}^{2}\left(v_{1}^{2}+\cdots+v_{n}^{2}\right)-u_{n}^{2}\left(u_{1}^{2}+\cdots+u_{n}^{2}\right)\right|\right. \\
\left.\quad \quad+\left|u_{n}^{2}\left(u_{1}^{2}+\cdots+u_{n}^{2}\right)-v_{n}^{2}\left(u_{1}^{2}+\cdots+u_{n}^{2}\right)\right|\right]
\end{aligned} \\
& \begin{array}{l}
\leq \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\left|u_{n}^{2}-v_{n}^{2}\right|+u_{n}^{2}\left(\left|v_{1}^{2}-u_{1}^{2}\right|+\cdots+\left|v_{n}^{2}-u_{n}^{2}\right|\right)+\left|u_{n}^{2}-v_{n}^{2}\right|\left(u_{1}^{2}+\cdots+u_{n}^{2}\right)\right] .
\end{array}
\end{aligned}
$$

Since, $v_{n}, u_{n} \in \mathrm{~B}_{R_{1}}, n \in \mathbb{N}$ so $\left|v_{n}\right| \leq R_{1},\left|u_{n}\right|<R_{1}$ so

$$
\begin{aligned}
\|(\mathrm{Q} u)(s, t)-(\mathrm{Q} v)(s, t)\|_{\ell_{1}} \leq & \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left(\left|u_{n}-v_{n}\right|\left(\left|u_{n}\right|+\left|v_{n}\right|\right)\left(1+u_{1}^{2}+\cdots+u_{n}^{2}\right)+\right. \\
& u_{n}^{2}\left(\left|v_{1}-u_{1}\right|\left(\left|v_{1}\right|+\left|u_{1}\right|\right)+\cdots+\left|v_{n}-u_{n}\right|\left(\left|v_{n}\right|+\left|u_{n}\right|\right)\right) \\
< & 2 R_{1} \sum_{n=1}^{\infty}\left[\frac{1}{n^{3}}\left|u_{n}-v_{n}\right|\left(1+n R_{1}^{2}\right)+R_{1}^{2}\left(\sum_{i=1}^{n}\left|v_{i}-u_{i}\right|\right)\right] \\
= & 2 R_{1}\|u-v\|_{\ell_{1}} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\left[\left(1+n R_{1}^{2}\right)+R_{1}^{2}\right] \\
= & 2 R_{1}\|u-v\|_{\ell_{1}}\left(\left[1+R_{1}^{2}\right] \zeta(3)+R_{1}^{2} \zeta(2)\right) .
\end{aligned}
$$

Thus, choose $\delta=\frac{\epsilon}{2 R_{1}\left(\left[1+R_{1}^{2}\right] \zeta(3)+R_{1}^{2} \zeta(2)\right)}$, then for $\|u-v\|_{\ell_{1}}<\delta$ we have

$$
\|(\mathrm{Q} u)(s, t)-(\mathrm{Q} v)(s, t)\|_{\ell_{1}}<\epsilon
$$

Hence the assumption $\left(C_{1}\right)$ is also satisfied, therefore by Theorem 4.2 we conclude that the system in (14) has a solution in $\mathrm{B}_{R_{1}} \subset \ell_{1}$ where R_{1} is given by (18).

Acknowledgement: The authors are grateful to the anonymous referees for their careful reading of the manuscript and their valuable suggestions, which improved the presentation of the paper.

References

[1] R. P. Agarwal, B. Mouffak and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109(3) (2010), 973-1033.
[2] A. Aghajani, M. Mursaleen and A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci. 35(3) (2015), 552-566.
[3] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii and J. Appell, Measures of noncompactness and condensing operators, Vol. 55. Basel: Birkhäuser, 1992.
[4] R. Allahyari and A. Aghajani, Some extensions of Darbo's theorem and solutions of integral equations of Hammerstein type, Int. J. Nonlinear Anal. Appl. 8(1) (2017), 337-351.
[5] R. Arab, R. Allahyari and A. S. Haghighi, Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness, Appl. Math. Comput. 246 (2014), 283-291
[6] J. Banas̀ and K. Goebel, Measures of noncompactness in Banach spaces. Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York and Basel, 1980.
[7] J. Banas̀ and M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math. 137(2) (2001), 363-375.
[8] J. Banas̀ and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, 2014.
[9] C. Corduneanu, Integral equations and applications, Cambridge University Press, 1991.
[10] U. D'Ancona and V.Volterra, Les associations biologiques au point de vue mathématique, Paris 1935.
[11] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
[12] A. Das, B. Hazarika, R. Arab and M. Mursaleen, Solvability of the infinite system of integral equations in two variables in the sequence spaces c_{0} and ℓ_{1}, J. Comput. Appl. Math. 326 (2017), 183-192.
[13] A. Das, B. Hazarika and M. Mursaleen, Application of measure of noncompactness for solvability of the infinite system of integral equations in two variables in $\ell_{p}(1<p<\infty)$, Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. 113(1) (2017), 31-40.
[14] J. Klamka, Schauder's fixed-point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), 153-165.
[15] C. Kuratowski, Sur les espaces complets, Fund. Math. 1(15) (1930), 301-309.
[16] J. Le Roux, Sur les intégrales des équations linéaires aux dérivées partielles du second ordre à deux variables indépendantes, Ann. Sci. Éc. Norm. Supér. 12 (1895), 227-316.
[17] Z. Liu and M. K. Shin, Applications of Schauder's Fixed-point theorem with respect to iterated functional equations, Appl. Math. Lett. 14(8) (2001), 955-962.
[18] I. M. Olaru, An integral equation via weakly Picard operators, Fixed Point Theory 11(1) (2010), 97-106.
[19] W. Rudin, Real and complex analysis, Tata McGraw-Hill Education 2006.
[20] P. A. Samuelson, Les fondements de l'analyse économique, Gauthier-Villars, 1971.

[^0]: 2010 Mathematics Subject Classification. 45G15, 47H08, 46A45, 46E30
 Keywords. Infinite system of integral equations in two variables, measures of noncompactness, Darbo's fixed point theorem, equicontinuous sets, Meir-Keeler condensing operator

 Received: 31 December 2018; Revised: 28 March 2019; Accepted: 31 March 2019
 Communicated by Eberhard Malkowsky
 Email addresses: ishfaq_2phd15@nitsri.net (Ishfaq Ahmad Malik), tjalal@nitsri.net (Tanweer Jalal)

