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Summability of Double Integrals Over R2
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Abstract. For a real- or complex-valued continuous function f over R2
+ := [0,∞) × [0,∞), we denote its

integral over [0,u] × [0, v] by s(u, v) and its (C, 1, 1) mean, the average of s(u, v) over [0,u] × [0, v], by σ(u, v).
The other means (C, 1, 0) and (C, 0, 1) are defined analogously. We introduce the concepts of backward
differences and the Kronecker identities in different senses for double integrals over R2

+. We give one-
sided and two-sided Tauberian conditions based on the difference between double integral of s(u, v) and
its means in different senses for Cesàro summability methods of double integrals over [0,u] × [0, v] under
which convergence of s(u, v) follows from integrability of s(u, v) in different senses.

1. Introduction

Tauberian theorems for Cesàro (or (C,1)) summability methods for functions of one variable over
R+ := [0,∞) have been studied by Móricz and Németh [9] and Laforgia [8]. Namely, Móricz and Németh
[9] investigated Tauberian conditions under which convergence of integral follows from summability (C, 1)
for functions of one variable over R+ := [0,∞) and they obtained a one-sided and two-sided Tauberian
conditions of Landau and Hardy type as corollaries of their main results. Laforgia [8] established an
alternative proof of a Tauberian theorem for the summability (C, 1) for functions of one variable over R+.

In some recent works [2, 3, 5], Tauberian conditions for Cesàro summability methods have been based
on the difference between the integral of a function of one variable and its Cesàro means. Firstly, Çanak and
Totur obtained an alternative proof of the generalized Littlewood Tauberian theorem for Cesàro summability
of improper integrals in [2]. Secondly, Çanak and Totur generalized some classical type Tauberian theorems
given for Cesàro summability in [3]. Finally, Çanak and Totur obtained alternative proofs of some classical
Tauberian theorems for the Cesàro summability of integrals for functions of one variable in [5].

Tauberian theorems for Cesàro summability methods for functions of two variables over R2
+ have been

studied by Móricz [10] and Totur and Çanak [6]. Namely, Móricz [10] extended the results in [9] to Cesàro
summable double integrals over R2

+. Following Laforgia [8], Totur and Çanak [6] obtained analogous
results for integrals of functions of two variables.

Recently, the concept of generator sequence, which is the difference between a sequence and its Cesàro
mean, has been introduced by Çanak and Totur [4]. Belen [1] introduced the double analogue of the concept
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of generator sequence and obtained Tauberian conditions based on double generator sequences for double
sequences of real or complex numbers.

In this paper, we introduce the concepts of backward differences and the Kronecker identities in different
senses for double integrals over R2

+. We give one-sided and two-sided Tauberian conditions based on the
difference between the double integral of a function of two variables and its means in different senses for
Cesàro summability methods of double integrals over [0,u] × [0, v] under which convergence of improper
double integral follows from integrability of improper double integral in different senses.

2. Tauberian theorems for (C, 1, 1) summability of improper double integrals over R2
+

Suppose that f is a real- or complex-valued continuous function defined on R2
+ := [0,∞) × [0,∞) and

s(u, v) =
∫ u

0

∫ v

0 f (x, y)dxdy for 0 < u, v < ∞. The mean (C, 1, 1) (or Cesàro mean in sense (1, 1)) of s(u, v) is
defined by

σ(s(u, v)) = σ11(s(u, v)) =
1

uv

∫ u

0

∫ v

0
s(x, y)dxdy

for u, v > 0. The integral∫
∞

0

∫
∞

0
f (x, y)dxdy (1)

is said to be (C, 1, 1) summable (or Cesàro summable in sense (1, 1)) to a finite number L if

lim
u,v→∞

σ(s(u, v)) = lim
u,v→∞

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy = L. (2)

The backward difference in sense (1, 1) of s(u, v) is defined by

∆11s(u, v) =
∂2s(u, v)
∂u∂v

= f (u, v)

for u, v > 0.
The Kronecker identity in sense (1, 1) has been given independently by Totur [13] and Belen [1] for

double sequences of real or complex numbers. The identity defined by Belen is slightly different than the
identity defined by Totur. We prefer the identity defined by Belen [1] for our purposes. Next, we obtain an
analogous Kronecker identity in sense (1, 1) for improper double integrals.

From

σ11(s(u, v)) =

∫ u

0

∫ v

0

(
1 −

x
u

) (
1 −

y
v

)
f (x, y)dxdy

=

∫ u

0

∫ v

0
f (x, y)dxdy −

1
u

∫ u

0

∫ v

0
x f (x, y)dxdy

−
1
v

∫ u

0

∫ v

0
y f (x, y)dxdy +

1
uv

∫ u

0

∫ v

0
xy f (x, y)dxdy,

we have

s(u, v) − σ11(s(u, v)) =: V(0)
11 (∆11s(u, v)) (3)

where V(0)
11 (∆11s(u, v)) = V(0)

10 (∆10s(u, v)) + V(0)
01 (∆01s(u, v)) −

1
uv

∫ u

0

∫ v

0
xy f (x, y)dxdy. This identity is known

as the Kronecker identity in sense (1,1). (See Sections 3 and 4 for the definitions of V(0)
10 (∆10s(u, v)) and

V(0)
01 (∆01s(u, v)))
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For each nonnegative integer m, the iterative means of s(u, v) and V(0)
11 (∆11s(u, v)) in sense (1, 1) are defined

by

σ(m)
11 (s(u, v)) =


1

uv

∫ u

0

∫ v

0
σ(m−1)

11 (s(x, y))dxdy, m ≥ 1

s(u, v), m = 0

and

V(m)
11 (∆11s(u, v)) =


1

uv

∫ u

0

∫ v

0
V(m−1)

11 (∆11s(x, y))dxdy, m ≥ 1

V(0)
11 (∆11s(u, v)), m = 0

respectively. Note that σ11(s(u, v)) = σ(1)
11 (s(u, v)).

Throughout this paper, convergence is always used in Pringsheim’s sense for convergence of improper
double integral [11]. Namely, both u and v tend to∞ independently of each other in (2).

A function s(u, v) is bounded if there exists a real number H > 0 such that |s(u, v)| ≤ H for all u, v > 0.
In this case, we write s(u, v) = O(1). Moreover, a double integral s(u, v) is said to be one-sided bounded if
there exists a real number H > 0 such that s(u, v) ≥ −H for all u, v > 0.

Assume that the function s(u, v) is bounded on R2
+. If the limit

lim
u,v→∞

s(u, v) = L (4)

exists, then the limit (2) also exists. The converse of this statement is not true in general, even if s(u, v)
is bounded on R2

+. Adding some suitable condition, which is called a Tauberian condition, one may get
the converse. Any theorem which states that convergence of the improper double integral follows from
its Cesàro summability in sense (1, 1) and some Tauberian condition is said to be a Tauberian theorem. A
similar situation is valid for the Cesàro summability methods in senses (1, 0) and (0, 1).

For the real-valued functions defined on R2
+, we need the following definitions:

A real-valued function s(u, v) defined on R2
+ is said to be slowly decreasing in sense (1, 0) [10] if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu

[s(x, v) − s(u, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u

[s(u, v) − s(x, v)] ≥ 0.

Analogously, a real-valued function s(u, v) defined on R2
+ is said to be slowly decreasing in sense (0, 1)

[10] if

lim
λ→1+

lim inf
u,v→∞

min
v≤y≤λv

[s(u, y) − s(u, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λv≤y≤v

[s(u, v) − s(u, y)] ≥ 0.

A real-valued function s(u, v) defined on R2
+ is said to be strong slowly decreasing in sense (1, 0) if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

[s(x, y) − s(u, y)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u
λv≤y≤v

[s(u, y) − s(x, y)] ≥ 0.
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Analogously, a real-valued function s(u, v) defined onR2
+ is said to be strong slowly decreasing in sense

(0, 1) [10] if

lim
λ→1+

lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

[s(x, y) − s(x, v)] ≥ 0

or equivalently

lim
λ→1−

lim inf
u,v→∞

min
λu≤x≤u
λv≤y≤v

[s(x, v) − s(x, y)] ≥ 0.

Note that the concept of slow decrease was introduced by Schmidt [12] for the sequences of real numbers.
For the complex-valued functions defined on R2

+, we need the following definitions:
A complex-valued function s(u, v) defined on R2

+ is said to be slowly oscillating in sense (1, 0) [10] if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu

|s(x, v) − s(u, v)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u

|s(u, v) − s(x, v)| = 0.

Analogously, a complex-valued function s(u, v) defined on R2
+ is said to be slowly oscillating in sense

(0, 1) [10] if

lim
λ→1+

lim sup
u,v→∞

max
v≤y≤λv

∣∣∣s(u, y) − s(u, v)
∣∣∣ = 0

or equivalently

lim
λ→1+

lim sup
u,v→∞

max
λv≤y≤v

∣∣∣s(u, v) − s(u, y)
∣∣∣ = 0.

A complex-valued function s(u, v) defined onR2
+ is said to be strong slowly oscillating in sense (1, 0) [10]

if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu
v≤y≤λv

|s(x, y) − s(u, y)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u
λv≤y≤v

|s(u, y) − s(x, y)| = 0.

Analogously, a complex-valued function s(u, v) defined on R2
+ is said to be strong slowly oscillating in

sense (0, 1) [10] if

lim
λ→1+

lim sup
u,v→∞

max
u≤x≤λu
v≤y≤λv

|s(x, y) − s(x, v)| = 0

or equivalently

lim
λ→1−

lim sup
u,v→∞

max
λu≤x≤u
λv≤y≤v

|s(x, v) − s(x, y)| = 0.

Note that the concept of slow oscillation was introduced by Hardy [7] for the sequences of complex
numbers.

First, we consider Landau type one-sided Tauberian conditions sufficient for convergence of s(u, v) to
follow from its (C, 1, 1) summability.
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Theorem 2.1. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

u∆10V(0)
11 (∆11s(u, v)) ≥ −H (5)

and

v∆01V(0)
11 (∆11s(u, v)) ≥ −H (6)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).

As corollary of Theorem 2.1, we have the following two-sided Hardy type Tauberian theorem.

Corollary 2.2. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that conditions

u∆10V(0)
11 (∆11s(u, v)) = O(1) (7)

and

v∆01V(0)
11 (∆11s(u, v)) = O(1) (8)

are satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).

Next, we give one-sided and two sided Tauberian conditions sufficient in order that convergence follows
from (C, 1, 1) summability for real and complex-valued functions, respectively.

Theorem 2.3. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 1) summable to a finite number L and
V11(∆11s(u, v)) is slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0) or slowly decreasing
in sense (1, 0) and strong slowly decreasing in sense (0, 1), then we have (4).

Theorem 2.4. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 1) summable to a finite number L and
V11(∆11s(u, v)) is slowly oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0) or slowly oscillating
in sense (1, 0) and strong slowly oscillating in sense (0, 1), then we have (4).

2.1. Proofs of Main Results

The following lemma gives two representations for the difference s(u, v) − σ(s(u, v)).

Lemma 2.5. Let s(u, v) be a double integral over the rectangle [0,u] × [0, v]. For sufficiently large u, v
(i) If λ > 1,

s(u, v) − σ(s(u, v)) =
(
λ

λ − 1

)2

(σ(s(λu, λv)) − σ(s(u, v))) +
λ

(λ − 1)2
(σ(s(u, v)) − σ(s(λu, v)))

+
λ

(λ − 1)2
(σ(s(u, v)) − σ(s(u, λv))) −

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
s(x, y) − s(u, v)

)
dxdy.

(ii) If 0 < λ < 1,

s(u, v) − σ(s(u, v)) =
(
λ

1 − λ

)2

(σ(s(λu, λv)) − σ(s(u, v))) +
λ

(1 − λ)2
(σ(s(u, v)) − σ(s(λu, v)))

+
λ

(1 − λ)2
(σ(s(u, v)) − σ(s(u, λv))) +

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
s(u, v) − s(x, y)

)
dxdy.
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Proof. (i) By definition, we have

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v
s(x, y)dxdy =

1
(λ − 1)2uv

(∫ λu

0
−

∫ u

0

) (∫ λv

0
−

∫ v

0

)
s(x, y)dxdy

=
λ2

(λ − 1)2λuλv

∫ λu

0

∫ λv

0
s(x, y)dxdy −

λ

(λ − 1)2λuv

∫ λu

0

∫ v

0
s(x, y)dxdy

−
λ

(λ − 1)2uλv

∫ u

0

∫ λv

0
s(x, y)dxdy +

1
(λ − 1)2uv

∫ u

0

∫ v

0
s(x, y)dxdy

=
(
λ

λ − 1

)2

σ(s(λu, λv)) −
λ

(λ − 1)2 σ(s(λu, v)) −
λ

(λ − 1)2 σ(s(u, λv))

+
1

(λ − 1)2 σ(s(u, v)) − σ(s(u, v)) + σ(s(u, v))

=
(
λ

λ − 1

)2

σ(s(λu, λv)) −
λ

(λ − 1)2 σ(s(λu, v)) −
λ

(λ − 1)2 σ(s(u, λv))

+
2λ

(λ − 1)2 σ(s(u, v)) −
(
λ

λ − 1

)2

σ(s(u, v)) + σ(s(u, v))

=
(
λ

λ − 1

)2

(σ(s(λu, λv)) − σ(s(u, v))) +
λ

(λ − 1)2
(σ(s(u, v)) − σ(s(λu, v)))

+
λ

(λ − 1)2
(σ(s(u, v)) − σ(s(u, λv))) + σ(s(u, v)).

Adding s(u, v) to both sides of the previous equation and then arranging this equality, we reach to the
equality (i) of Lemma 2.5.

(ii) The proof of Lemma 2.5 (ii) can be verified in a similar way.

Proof of Theorem 2.1 Assume that the double integral s(u, v) is bounded, (1) is (C, 1, 1) summable to L and
conditions (5) and (6) hold. Since the (C, 1, 1) summability method is regular and lim

u,v→∞
σ(1)

11 (s(u, v)) = L, we

have lim
u,v→∞

σ(2)
11 (s(u, v)) = L. Taking (C, 1, 1) means of both sides of (3), we obtain lim

u,v→∞
V(1)

11 (∆11s(u, v)) = 0.

If we replace s(u, v) by V(0)
11 (∆11s(u, v)) in Lemma 2.5 (i), we obtain

V(0)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, v)) =
(
λ

λ − 1

)2 (
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(λ − 1)2

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(λ − 1)2

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
−

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy. (9)

In addition, we obtain by (5) and (6) that

V(0)
11 (∆11s(x, y)) − V(0)

11 (∆11s(u, v)) =

∫ x

u

∆V(0)
11 (∆11s(s, y))

∆s
ds +

∫ y

v

∆V(0)
11 (∆11s(u, t))

∆t
dt

≥ −H
(∫ x

u

ds
s

+

∫ y

v

dt
t

)
= −H

(
ln

(x
u

)
+ ln

( y
v

))
(10)
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for some H > 0. Taking lim sup of both sides of (9) as u, v→∞ and taking (10) into consideration, we get

lim sup
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≤

(
λ

λ − 1

)2

lim sup
u,v→∞

(
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(λ − 1)2 lim sup
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(λ − 1)2 lim sup
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
+ H lim sup

u,v→∞

(
ln

(
λu
u

)
+ ln

(
λv
v

))
.

Since lim
u,v→∞

V(1)
11 (∆11s(u, v)) = 0, the first three terms on the right-hand side of the previous inequality are

vanished and we get

lim sup
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≤ 2H lnλ.

Hence taking the limit of both sides of the last inequality as λ→ 1+, we have

lim sup
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≤ 0. (11)

If we replace s(u, v) by V(0)
11 (∆11s(u, v)) in Lemma 2.5 (ii), we obtain

V(0)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, v)) =
(
λ

1 − λ

)2 (
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(1 − λ)2

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(1 − λ)2

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
+

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
dxdy. (12)

In addition, we obtain by (5) and (6) that

V(0)
11 (∆11s(u, v)) − V(0)

11 (∆11s(x, y)) =

∫ u

x

∆V(0)
11 (∆11s(s, y))

∆s
ds +

∫ v

y

∆V(0)
11 (∆11s(u, t))

∆t
dt

≥ −H
(∫ u

x

ds
s

+

∫ v

y

dt
t

)
= −H

(
ln

(u
x

)
+ ln

(
v
y

))
(13)

for some H > 0. Hence taking lim inf of both sides of (12) as u, v→∞ and (13) into consideration, we get

lim inf
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≥

(
λ

1 − λ

)2

lim inf
u,v→∞

(
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(1 − λ)2 lim inf
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(1 − λ)2 lim inf
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
−H lim sup

u,v→∞

(
ln

( u
λu

)
+ ln

( v
λv

))
.
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Since lim
u,v→∞

V(1)
11 (∆11s(u, v)) = 0, the first three terms on the right-hand side of the previous inequality are

vanished and we get

lim inf
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≥ −2H ln

( 1
λ

)
.

Hence taking the limit of both sides of the last inequality as λ→ 1−, we have

lim inf
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≥ 0. (14)

From (11) and (14), we obtain lim
u,v→∞

V(0)
11 (∆11s(u, v)) = lim

u,v→∞
V(1)

11 (∆11s(u, v)) = 0. Thus we have (4) by the

Kronecker identity (3).
Proof of Corollary 2.2 It is plain that conditions (7) and (8) imply (5) and (6) in Theorem 2.1.
Proof of Theorem 2.3 Assume that the double integral s(u, v) is bounded and (1) is (C, 1, 1) summable to

a finite number L. Without loss of generality, we assume that V11(∆11s(u, v)) is slowly decreasing in sense
(0, 1) and strong slowly decreasing in sense (1, 0). If we do the same calculations as in the proof of Theorem
2.1, we obtain that V(1)

11 (∆11s(u, v)) convergent to zero.
Taking lim sup of both sides of (9) as u, v→∞, we have

lim sup
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≤

(
λ

λ − 1

)2

lim sup
u,v→∞

(
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(λ − 1)2 lim sup
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(λ − 1)2 lim sup
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
− lim inf

u,v→∞

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy. (15)

Since V(1)
11 (∆11s(u, v)) is convergent to zero, the first three terms on the right-hand side of (15) are vanished.

Moreover, we have

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

≥ min
u≤x≤λu
v≤y≤λv

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
.

Taking lim inf of both sides of the last inequality as u, v→∞, we have

lim inf
u,v→∞

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

≥ lim inf
u,v→∞

min
u≤x≤λu
v≤y≤λv

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, y))

)
+ lim inf

u,v→∞
min

v≤y≤λv

(
V(0)

11 (∆11s(u, y)) − V(0)
11 (∆11s(u, v))

)
Since V11(∆11s(u, v)) is slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0), we get

lim inf
u,v→∞

1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy ≥ 0 (16)

by taking the limit of both sides of the last inequality as λ→ 1+. Hence from (15) and (16), we obtain

lim sup
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≤ 0. (17)
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In addition, taking the lim inf of both sides of (12) as u, v→∞, we have

lim inf
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≥

(
λ

1 − λ

)2

lim inf
u,v→∞

(
V(1)

11 (∆11s(λu, λv)) − V(1)
11 (∆11s(u, v))

)
+

λ

(1 − λ)2 lim inf
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(λu, v))

)
+

λ

(1 − λ)2 lim inf
u,v→∞

(
V(1)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, λv))

)
+ lim inf

u,v→∞

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
dxdy. (18)

Since V(1)
11 (∆11s(u, v)) convergent to zero, the first three terms on the right-hand side of the previous inequality

are vanished. Moreover,

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
dxdy

≥ min
λu≤x≤u
λv≤y≤v

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
.

Taking lim inf of both sides of the last inequality as u, v→∞, we have

lim inf
u,v→∞

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
dxdy

≥ lim inf
u,v→∞

min
λv≤y≤v

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(u, y))

)
+ lim inf

u,v→∞
min
λu≤x≤u
λv≤y≤v

(
V(0)

11 (∆11s(u, y)) − V(0)
11 (∆11s(x, y))

)
.

Since V11(∆11s(u, v)) is slowly decreasing in sense (0, 1) and strong slowly decreasing in sense (1, 0), we get

lim inf
u,v→∞

1
(u − λu)(v − λv)

∫ u

λu

∫ v

λv

(
V(0)

11 (∆11s(u, v)) − V(0)
11 (∆11s(x, y))

)
dxdy ≥ 0 (19)

by taking limit of both sides of the last inequality as λ→ 1−. Hence from (18) and (19) we obtain

lim inf
u,v→∞

(
V(0)

11 (∆11s(u, v)) − V(1)
11 (∆11s(u, v))

)
≥ 0. (20)

Thus we have (4) from (17), (20) and (3) as in the proof of Theorem 2.1.
Proof of Theorem 2.4 Assume that the double integral s(u, v) is bounded and (1) is (C, 1, 1) summable to

a finite number L. Without loss of generality, we assume that V11(∆11s(u, v)) is slowly oscillating in sense
(0, 1) and strong slowly oscillating in sense (1, 0). If we do the same calculations as in the proof of Theorem
2.1, we obtain that V(1)

11 (∆11s(u, v)) convergent to zero.
From (9),we get

|V(0)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, v))| ≤
(
λ

λ − 1

)2 ∣∣∣V(1)
11 (∆11s(λu, λv)) − V(1)

11 (∆11s(u, v)
∣∣∣

+
λ

(λ − 1)2

∣∣∣V(1)
11 (∆11s(u, v)) − V(1)

11 (∆11s(λu, v))
∣∣∣

+
λ

(λ − 1)2

∣∣∣V(1)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, λv))
∣∣∣

+

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

∣∣∣∣∣∣ . (21)
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Taking lim sup of both sides of (21) as u, v→∞, we have

lim sup
u,v→∞

|V(0)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, v))| ≤
(
λ

λ − 1

)2

lim sup
u,v→∞

∣∣∣V(1)
11 (∆11s(λu, λv)) − V(1)

11 (∆11s(u, v)
∣∣∣

+
λ

(λ − 1)2 lim sup
u,v→∞

∣∣∣V(1)
11 (∆11s(u, v)) − V(1)

11 (∆11s(λu, v))
∣∣∣

+
λ

(λ − 1)2 lim sup
u,v→∞

∣∣∣V(1)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, λv))
∣∣∣

+ lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

∣∣∣∣∣∣ .
Since V(1)

11 (∆11s(u, v)) convergent to zero, the first three terms on the right-hand side of the last inequality
are vanished. Moreover,∣∣∣∣∣∣ 1

(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

∣∣∣∣∣∣
≤ max

u≤x≤λu
v≤y≤λv

∣∣∣V(0)
11 (∆11s(x, y)) − V(0)

11 (∆11s(u, v))
∣∣∣ .

Taking lim sup of both sides of the last inequality as u, v→∞, we have

lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

∣∣∣∣∣∣
≤ lim sup

u,v→∞
max

u≤x≤λu
v≤y≤λv

∣∣∣V(0)
11 (∆11s(x, y)) − V(0)

11 (∆11s(u, y))
∣∣∣

+ lim sup
u,v→∞

max
v≤y≤λv

∣∣∣V(0)
11 (∆11s(u, y)) − V(0)

11 (∆11s(u, v))
∣∣∣ .

Since V11(∆11s(u, v)) is slowly oscillating in sense (0, 1) and strong slowly oscillating in sense (1, 0), we get

lim sup
u,v→∞

∣∣∣∣∣∣ 1
(λu − u)(λv − v)

∫ λu

u

∫ λv

v

(
V(0)

11 (∆11s(x, y)) − V(0)
11 (∆11s(u, v))

)
dxdy

∣∣∣∣∣∣ ≤ 0. (22)

by taking the limit of both sides of the last inequality as λ→ 1+. From (21) and (22), we obtain

lim sup
u,v→∞

|V(0)
11 (∆11s(u, v)) − V(1)

11 (∆11s(u, v))| ≤ 0.

Hence we have (4) from the last equation and (3) as in the proof of Theorem 2.1.

3. Tauberian theorems for (C, 1, 0) summability of improper double integrals over R2
+

Suppose that f is a real- or complex-valued continuous function defined on R2
+. The mean (C, 1, 0) (or

Cesàro mean in sense (1, 0)) of s(u, v) is defined by

σ10(s(u, v)) =
1
u

∫ u

0
s(x, v)dx

for u, v > 0. The integral (1) is said to be (C, 1, 0) summable (or Cesàro summable in sense (1, 0)) to a finite
number L if

lim
u,v→∞

σ10(s(u, v)) = lim
u,v→∞

∫ u

0

∫ v

0

(
1 −

x
u

)
f (x, y)dxdy = L.
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The backward difference in sense (1, 0) of s(u, v) is defined by

∆10s(u, v) =
∂s(u, v)
∂u

=

∫ v

0
f (u, y)dy

for u, v > 0.
From

σ10(s(u, v)) =

∫ u

0

∫ v

0

(
1 −

x
u

)
f (x, y)dxdy

=

∫ u

0

∫ v

0
f (x, y)dxdy −

1
u

∫ u

0

∫ v

0
x f (x, y)dxdy

where ∆10s(x, v) =
∫ v

0 f (x, y)dy, we have

s(u, v) − σ10(s(u, v)) = V(0)
10 (∆10s(u, v)), (23)

where V(0)
10 (∆10s(u, v)) =

1
u

∫ u

0
x∆10s(x, v)dx. This identity is known as the Kronecker identity in sense (1, 0).

For each nonnegative integer m, the iterative means of s(u, v) and V(0)
10 (∆10s(u, v)) in sense (1, 0) are defined

by

σ(m)
10 (s(u, v)) =


1
u

∫ u

0
σ(m−1)

10 (s(x, v))dx, m ≥ 1

s(u, v), m = 0

and

V(m)
10 (∆10s(u, v)) =


1
u

∫ u

0
V(m−1)

10 (∆10s(x, v))dx, m ≥ 1

V(0)
10 (∆10s(u, v)), m = 0

respectively.
First, we consider Landau type a one-sided Tauberian condition sufficient for convergence of s(u, v) to

follow from its (C, 1, 0) summability.

Theorem 3.1. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 0) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that condition

u∆10V(0)
10 (∆10s(u, v)) ≥ −H (24)

is satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).

As corollary of Theorem 3.1, we have the following two-sided Hardy type Tauberian theorem.

Corollary 3.2. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 0) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that condition

u∆10V(0)
10 (∆10s(u, v)) = O(1) (25)

is satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).

Next, we give one-sided and two sided Tauberian conditions sufficient in order that convergence follows
from (C, 1, 0) summability for real and complex-valued functions, respectively.

Theorem 3.3. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 0) summable to a finite number L and
V10(∆10s(u, v)) is slowly decreasing in sense (1, 0), then we have (4).

Theorem 3.4. Let the double integral s(u, v) be bounded. If (1) is (C, 1, 0) summable to a finite number L and
V10(∆10s(u, v)) is slowly oscillating in sense (1, 0), then we have (4).
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3.1. Proofs of Main Results
The following lemma gives two representations for the difference s(u, v) − σ10(s(u, v)).

Lemma 3.5. Let s(u, v) be a double integral over the rectangle [0,u] × [0, v]. For sufficiently large u, v
(i) If λ > 1,

s(u, v) − σ10(s(u, v)) =
λ

λ − 1
(σ10(s(λu, v)) − σ10(s(u, v))) −

1
λu − u

∫ λu

u
(s(x, v) − s(u, v)) dx.

(ii) If 0 < λ < 1,

s(u, v) − σ10(s(u, v)) =
λ

1 − λ
(σ10(s(u, v)) − σ10(s(λu, v))) +

1
u − λu

∫ u

λu
(s(u, v) − s(x, v)) dx.

Proof. (i) By definition, we have

1
λu − u

∫ λu

u
s(x, v)dx =

1
(λ − 1)u

(∫ λu

0
−

∫ u

0

)
s(x, v)dx

=
λ

(λ − 1)λu

∫ λu

0
s(x, v)dx −

1
(λ − 1)u

∫ u

0
s(x, v)dx

=
λ

λ − 1
σ10(s(λu, v)) −

λ
λ − 1

σ10(s(u, v)) + σ10(s(u, v))

=
λ

λ − 1
(σ10(s(λu, v)) − σ10(s(u, v))) + σ10(s(u, v)).

Adding s(u, v) to both sides of the previous equation and then arranging this equality, we reach to the
equality (i) of Lemma 3.5.

(ii) The proof of Lemma 3.5 (ii) can be verified in a similar way.

Proof of Theorem 3.1 Assume that the double integral s(u, v) is bounded, (1) is (C, 1, 0) summable to L and
condition (24) holds. Since the (C, 1, 0) summability method is regular and lim

u,v→∞
σ(1)

10 (s(u, v)) = L, we have

lim
u,v→∞

σ(2)
10 (s(u, v)) = L. Taking (C, 1, 0) means of both sides of (23), we obtain lim

u,v→∞
V(1)

10 (∆10s(u, v)) = 0.

If we replace s(u, v) by V(0)
10 (∆10s(u, v)) in Lemma 3.5 (i), we obtain

V(0)
10 (∆10s(u, v)) − V(1)

10 (∆10s(u, v)) =
λ

λ − 1

(
V(1)

10 (∆10s(λu, v)) − V(1)
10 (∆10s(u, v))

)
−

1
λu − u

∫ λu

u

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
dx. (26)

In addition, we obtain by (24) that

V(0)
10 (∆10s(x, v)) − V(0)

10 (∆10s(u, v)) =

∫ x

u

∆V(0)
10 (∆10s(t, v))

∆t
dt

≥ −H
∫ x

u

dt
t

= −H ln
(x

u

)
(27)

for some H > 0. Taking lim sup of both sides of the equality (26) as u, v → ∞ and (27) into consideration,
we get

lim sup
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≤

λ
λ − 1

lim sup
u,v→∞

(
V(0)

10 (∆10s(λu, v)) − V(0)
10 (∆10s(u, v))

)
+H lim sup

u,v→∞
ln

(
λu
u

)
.
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Since lim
u,v→∞

V(1)
10 (∆10s(u, v)) = 0, the first term on the right-hand side of the previous inequality is vanished

and we get

lim sup
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≤ H lnλ.

Hence, taking the limit of both sides of the last inequality as λ→ 1+, we have

lim sup
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≤ 0. (28)

For 0 < λ < 1, in a similar way from Lemma (3.5) (ii) we have

lim inf
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≥ 0. (29)

From (28) and (29), we have lim
u,v→∞

V(0)
10 (∆10s(u, v)) = lim

u,v→∞
V(1)

10 (∆10s(u, v)) = 0. Hence, we have (4) by (23).

Proof of Corollary 3.2 It is plain that condition (25) implies (24) in Theorem 3.1.
Proof of Theorem 3.3 Assume that the double integral s(u, v) is bounded, (1) is (C, 1, 0) summable to a finite

number L and V10(∆10s(u, v)) is slowly decreasing in sense (1, 0). If we apply same calculations as in the
proof of Theorem 3.1, we obtain that V(1)

10 (∆10s(u, v)) convergent to zero.
Taking lim sup of both sides of (26) as u, v→∞, we have

lim sup
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≤

λ
λ − 1

lim sup
u,v→∞

(
V(0)

10 (∆10s(λu, v)) − V(0)
10 (∆10s(u, v))

)
− lim inf

u,v→∞

1
λu − u

∫ λu

u

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
dx. (30)

Since V(1)
10 (∆10s(u, v)) is convergent to zero, the first term on the right-hand side of the above inequality is

vanished. For the second term on the right-hand side of (30), we have

1
λu − u

∫ λu

u

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
dx ≥ min

u≤x≤λu

(
V(0)

10 (∆10s(x, y)) − V(0)
10 (∆10s(u, v))

)
.

Taking lim inf of both sides of the last inequality as u, v→∞, we have

lim inf
u,v→∞

1
λu − u

∫ λu

u

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
dx

≥ lim inf
u,v→∞

min
u≤x≤λu

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
.

Since V10(∆10s(u, v)) is slowly decreasing in sense (1, 0), we get

lim inf
u,v→∞

1
λu − u

∫ λu

u

(
V(0)

10 (∆10s(x, v)) − V(0)
10 (∆10s(u, v))

)
dx ≥ 0 (31)

by taking the limit of both sides of the last inequality as λ→ 1+. Hence from (30) and (31), we obtain

lim sup
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≤ 0. (32)

For 0 < λ < 1, in a similar way from Lemma 3.5 (ii) we have

lim inf
u,v→∞

(
V(0)

10 (∆10s(u, v)) − V(1)
10 (∆10s(u, v))

)
≥ 0. (33)

Hence, we have (4) from (32), (33) and (23) as in the proof of Theorem 3.1.
Proof of Theorem 3.4 The proof can be given as in that of Theorem 3.3 by using Lemma 3.5. So we omit

the proof of it.
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4. Tauberian theorems for (C, 0, 1) summability of improper double integrals over R2
+

Assume that f is a real- or complex-valued continuous function defined on R2
+. The mean (C, 0, 1) (or

Cesàro mean in sense (0, 1)) of s(u, v) is defined by

σ01(s(u, v)) =
1
v

∫ v

0
s(u, y)dy

for u, v > 0. The integral (1) is said to be (C, 0, 1) summable (or Cesàro summable in sense (0, 1)) to a finite
number L if

lim
u,v→∞

σ01(s(u, v)) = lim
u,v→∞

∫ u

0

∫ v

0

(
1 −

y
v

)
f (x, y)dxdy = L.

The backward difference in sense (0, 1) of s(u, v) is defined by

∆01s(u, v) =
∂s(u, v)
∂v

=

∫ u

0
f (x, v)dx

for u, v > 0.
From

σ01(s(u, v)) =

∫ u

0

∫ v

0

(
1 −

y
v

)
f (x, y)dxdy

=

∫ u

0

∫ v

0
f (x, y)dxdy −

1
v

∫ u

0

∫ v

0
y f (x, y)dxdy

where ∆01s(u, y) =

∫ u

0
f (x, y)dx, we have

s(u, v) − σ01(s(u, v)) = V(0)
01 (∆01s(u, v))

where V(0)
01 (∆01s(u, v)) =

1
v

∫ v

0
y∆01s(u, y)dy. This identity is known as the Kronecker identity in sense (0, 1).

For each nonnegative integer m, the iterative means of s(u, v) and V(0)
01 (∆01s(u, v)) in sense (0, 1) are defined

by

σ(m)
01 (s(u, v)) =


1
v

∫ v

0
σ(m−1)

01 (s(u, y))dy, m ≥ 1

s(u, v), m = 0

and

V(m)
01 (∆01s(u, v)) =


1
v

∫ v

0
V(m−1)

01 (∆01s(u, y))dy, m ≥ 1

V(0)
01 (∆01s(u, v)), m = 0

respectively.
First, we consider Landau type a one-sided Tauberian condition sufficient for convergence of s(u, v) to

follow from its (C, 0, 1) summability.

Theorem 4.1. Let the double integral s(u, v) be bounded. If (1) is (C, 0, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that condition

v∆01V(0)
01 (∆01s(u, v)) ≥ −H (34)

is satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).
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As corollary of Theorem 4.1, we have the following two-sided Hardy type Tauberian theorem.

Corollary 4.2. Let the double integral s(u, v) be bounded. If (1) is (C, 0, 1) summable to a finite number L and there
exist constants H > 0 and x0 ≥ 0 such that condition

v∆01V(0)
01 (∆01s(u, v)) = O(1) (35)

is satisfied for all (u, v) ∈ R2
+ with u, v > x0, then we have (4).

Next, we give one-sided and two sided Tauberian conditions sufficient in order that convergence follows
from (C, 0, 1) summability for real and complex-valued functions, respectively.

Theorem 4.3. Let the double integral s(u, v) be bounded. If (1) is (C, 0, 1) summable to a finite number L and
V01(∆01s(u, v)) is slowly decreasing in sense (0, 1), then then we have (4).

Theorem 4.4. Let the double integral s(u, v) be bounded. If (1) is (C, 0, 1) summable to a finite number L and
V01(∆01s(u, v)) is slowly oscillating in sense (0, 1), then then we have (4).

4.1. Proofs of Main Results
The following lemma gives two representations for the difference s(u, v) − σ01(s(u, v)).

Lemma 4.5. Let s(u, v) be a double integral over the rectangle [0,u] × [0, v]. For sufficiently large u, v
(i) If λ > 1,

s(u, v) − σ01(s(u, v)) =
λ

λ − 1
(σ01(s(u, λv)) − σ01(s(u, v))) −

1
λv − v

∫ λv

v

(
s(u, y) − s(u, v)

)
dy.

(ii) If 0 < λ < 1,

s(u, v) − σ01(s(u, v)) =
λ

1 − λ
(σ01(s(u, v)) − σ01(s(u, λv))) +

1
v − λv

∫ v

λv

(
s(u, v) − s(u, y)

)
dy.

Proof of Theorem 4.1 The proof can be given as in that of Theorem 3.1 by using Lemma 4.5.
Proof of Corollary 4.2 It is plain that condition (35) implies (34) in Theorem 4.1.
Proof of Theorem 4.3 The proof can be given as in that of Theorem 3.3 by using Lemma 4.5.
Proof of Theorem 4.4 The proof can be given as in that of Theorem 4.3 by using Lemma 4.5.

Conclusion

In this paper, one-sided and two-sided Tauberian conditions have been obtained in terms of the difference
between double integral of s(u, v) and its means in different senses for Cesàro summability methods of
double integrals over [0,u]× [0, v] under which convergence of s(u, v) follows from integrability of s(u, v) in
different senses. As a natural continuation of this work, we plan to extend the results obtained to weighted
summability of double integrals in different senses over R2

+ in the forthcoming paper.
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