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Abstract. The distributions obtained by N intervals truncations are characterized by its high sensitivity
for stochastic volatility data. In stable intervals, we use this method to delete some certain range of data
values from a domain of the random variable. A comprehensive treatment of the statistical properties of
this distribution is presented. We assume Normal and Log-Lindley distributions to apply the obtained
results.

1. Introduction

The truncation method is an important methodology to delete some certain range of values from a
domain of the random variable Y. In other words, the truncation happens when we need to delete a
dataset which have values that are outside of a usual range. For instance, in some probability distributions
you might restrict your y-values between two values a and b. There are three known kinds of truncated
distributions: (a) Truncated from above, high values of y are cut off so your range is from negative infinity
to some maximum value of y {−∞, ymax}, (b) Truncated from below, low values of y are cut off so your
range is from some minimum value of y to positive infinity {ymin,∞}; and (c) Double truncation, both the
low values and y values are cut off {ymin, ymax}. Ali and Nadarajah [14] introduced a truncated version of
the Pareto distribution. They derived the explicit expressions for the moments for the truncated version.
Nadarajah [19] introduced truncated versions of five of the most commonly known log-tailed distributions
which possess finite moments of all orders and could therefore be better models. Zaninetti and Ferraro [10]
presented a comparison between the Pareto and truncated Pareto distributions. In [6],[11],[17],[20] and [22]
some details about truncated distribution have been discussed.
What should we do to delete some values in some intervals for some probability distributions such as stock
price distribution (Wiener process range distribution which has been studied by Feller [21], Withers and
Nadarajah [3] and Teamah et al. [1])?. In this paper, we give the answer for this question by presenting
a new definition for the N intervals truncated distribution, which generalizes existing double truncation
distribution to truncation on multiple intervals.
This paper is organized as follows: in Section 2, we provide the definition of N intervals truncated distri-
bution and discuss some of its statistical properties. The method of order statistics is derived in Section 3
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for some characterization of N intervals truncated distribution. In section 4, we apply the results which
obtained in sections 2 and 3 on Normal and Log-Lindley distributions with a real dataset. Section 5 ends
the paper with some concluding remarks and future works.

2. N intervals truncated distribution

Let Y be a random variable has a probability density function (PDF) 1Y(y) and cumulative distribution
function (CDF) GY(y). We need to delete some certain range of values from its domain at some intervals.
We are interested in the distribution of N intervals truncated random variable at the intervals (α j, β j) where
α1 < β1 < α2 < β2 < ... < αN < βN and defined by:

Definition 2.1. Let Y be a random variable with known probability density function 1Y(y), define X as a correspond-
ing N intervals truncated version of the random variable Y with PDF fX(x). Then, the probability density function
of N intervals truncated of Y is given by:

fX(x) =

 1X(x)
1−GY(βN)+

∑N
j=1[GY(α j)−GY(β j−1)]

, i f x ∈ (−∞, α1)
⋃

(β1, α2)
⋃

(β2, α3)
⋃
...

⋃
(βN−1, αN)

⋃
(βN,∞),

0, Otherwise,
(1)

where α1 < β1 < α2 < β2 < ... < αN < βN and β0 = −∞.

The idea of the above definition has been drawn from the idea of left, right and double truncation, which
studied in [10], [14], [19]. In our definition, we distribute the probability of the truncated parts (i.e., the
parts which we need to delete from the domain of X) on the remaining parts (i.e., the undeleted parts from
the domain of X) with equal proportions.

2.1. Special cases
For this new definition we get some special cases as follows:

Case 1 If we let N = 1 and (α1, β1) = (−∞, α), β−1 = −∞ then we have,

fX(x) =
1X(x)

1 − GY(α) + [GY(−∞) − GY(β−1)]
=

1X(x)
1 − GY(α) + [GY(−∞) − GY(−∞)]

=
1X(x)

1 − GY(α)
, α < x < ∞,

(2)

which is a definition of the left truncated distribution which have been studied before by Zaninetti
[11].

Case 2 If (α1, β1) = (β,∞) then we have,

fX(x) =
1X(x)

1 − GY(∞) + [GY(β) − GY(β−1)]
=

1X(x)
1 − GY(∞) + [GY(β) − GY(−∞)]

=
1X(x)
GY(β)

, −∞ < x < β,

(3)

that is a definition of the right truncated distribution.

Case 3 If we let N = 2 and (α1, β1) = (−∞, α), (α2, β2) = (β,∞) then we have,

fX(x) =


1X(x)

1−GY(∞)+[GY(−∞)−GY(β−1)]+[GY(β)−GY(α)] , −∞ < x < α,
1X(x)

1−GY(∞)+[GY(−∞)−GY(β−1)]+[GY(β)−GY(α)] , β < x < ∞,
=


1X(x)

GY(β)−GY(α) , −∞ < x < α,
1X(x)

GY(β)−GY(α) , β < x < ∞,

(4)

where the complement of fX(x) gives the PDF of the double-truncated distribution where the random
variable will become situated between α and β (i.e., α < x < β) which have been studied before by Johnson
et al. [17].
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2.2. Distribution, Survival, Hazard and Reversed Hazard functions

The distribution function of the N intervals truncated random variable is given by:

FX(x) =



GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] , −∞ < x < α1,

GY(α1)+GX(x)−GY(β1)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] , β1 < x < α2,

GY(α1)+GY(α2)−GY(β1)+GX(x)−GY(β2)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] , β2 < x < α3,

...
GY(α1)+GY(α2)−GY(β1)+...+GY(αN−1)−GY(βN−2)+GX(x)−GY(βN−1)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] , βN−1 < x < αN,

GY(α1)+GY(α2)−GY(β1)+...+GY(αN)−GY(βN−1)+GX(x)−GY(βN)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] , βN < x < ∞,

(5)

Also, its survival function is given by:

F̃X(x) =



1 −
[

GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] ], −∞ < x < α1,

1 −
[

2GY(α1)−GY(β1)+GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] ], β1 < x < α2,

1 −
[

3GY(α1)−2GY(β1)+2GY(α2)−GY(β2)+GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] ]
, β2 < x < α3,

...

1 −
[

NGY(α1)−(N−1)GY(β1)+(N−1)GY(α2)−(N−2)GY(β2)+...+2GY(αN−1)−GY(βN−1)+GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] ]
, βN−1 < x < αN,

1 −
[

(N+1)GY(α1)−NGY(β1)+NGY(α2)−(N−1)GY(β2)+(N−1)GY(α3)−...+2GY(αN)−GY(βN)+GX(x)

1−GY(βN)+
∑N

j=1

[
GY(α j)−GY(β j−1)

] ]
, βN < x < ∞,

(6)

The hazard function is a very useful function in life time analysis, see Marshall and Olkin [16]. For the
truncation distribution, the hazard rate function is given by:

ΘX(x) =



1X (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

1−
[

GX (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

] , −∞ < x < α1,

1X (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

1−
[

2GY (α1)−GY (β1)+GX (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

] , β1 < x < α2,

1X (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

1−
[

3GY (α1)−2GY (β1)+2GY (α2)−GY (β2)+GX (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

] , β2 < x < α3,

...
1X (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

1−
[

NGY (α1)−(N−1)GY (β1)+(N−1)GY (α2)−(N−2)GY (β2)+...+2GY (αN−1)−GY (βN−1)+GX (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

] , βN−1 < x < αN,

1X (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

1−
[

(N+1)GY (α1)−NGY (β1)+NGY (α2)−(N−1)GY (β2)+(N−1)GY (α3)−...+2GY (αN )−GY (βN )+GX (x)

1−GY (βN )+
∑N

j=1[GY (α j )−GY (β j−1)]

] , βN < x < ∞,

(7)
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Now, we need to obtain the reverse hazard rate function. This function is useful in the analysis of data in
the presence of left censored observations and it is used to discuss the lifetime distribution with reversed
time scale. The reverse hazard rate is natural if the time scale is reversed. Also, this rate is important in
the study of systems because it has an affinity for series systems and it is more appropriate for studying
parallel systems. Thus, by using our definition the reverse hazard rate function will become:

Θ̃X(x) =



1X(x)
GX(x) , −∞ < x < α1,
1X(x)

GY(α1)−GY(β1)+GX(x) , β1 < x < α2,
1X(x)

GY(α1)+GY(α2)−GY(β1)−GY(β2)+GX(x) , β2 < x < α3,

...
1X(x)

GY(α1)+GY(α2)−GY(β1)+...+GY(αN−1)−GY(βN−2)−GY(βN−1)+GX(x) , βN−1 < x < αN,
1X(x)

GY(α1)+GY(α2)−GY(β1)+...+GY(αN)−GY(βN−1)−GY(βN)+GX(x) , βN < x < ∞,

(8)

2.3. Kth moment
Moments are used to study some of the most important features of the distribution. One of these

features is the first four moments which can used to describe some characteristics of a distribution such as
the skewness and kurtosis. The Kth moment of the N intervals truncated random variable is given by:

Ω(k)
t =

∫ α1

−∞
xk fX(x)dx +

∫ α2

β1
xk fX(x)dx +

∫ α3

β2
xk fX(x)dx + ... +

∫
∞

βN
xk fX(x)dx

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] .

Using the integration by parts, one can get:

Ω(k)
t =

αk
1FX(α1) −

∫ α1

−∞
kxk−1FX(x)dx + αk

2FX(α2) − βk
1FX(β1) −

∫ α2

β1
kxk−1FX(x)dx + ... + 0 − βk

NFX(βN) +
∫ βN

−∞
kxk−1FX(x)dx

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

]
=
−βk

NFX(βN) +
∑N

j=1

[
αk

jFX(α j) − βk
j−1FX(β j−1)

]
− k

[∑N−1
j=1

∫ α j+1

β j
xk−1FX(x)dx −

∫ α1

−∞
xk−1FX(x)dx +

∫ βN

−∞
xk−1FX(x)dx

]
1 − GY(βN) +

∑N
j=1

[
GY(α j) − GY(β j−1)

] .

(9)

2.4. Moment generating and characteristic functions
The moment generating function of the N intervals truncated random variable is given by:

M(∗)
X (t) =

∫ α1

−∞
etx fX(x)dx +

∫ α2

β1
etx fX(x)dx +

∫ α3

β2
etx fX(x)dx + ... +

∫
∞

βN
etx fX(x)dx

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ,

after integration by parts:

M(∗)
X (t) =

MX(t) − etβN FX(βN) +
∑N

j=1

[
etα j FX(α j) − etβ j−1 FX(β j−1)

]
− t

[∑N−1
j=1

∫ α j+1

β j
etxFX(x)dx +

∫ α1

−∞
etxFX(x)dx −

∫ βN

−∞
etxFX(x)dx

]
1 − GY(βN) +

∑N
j=1

[
GY(α j) − GY(β j−1)

] .

(10)

Similarly, one can obtain the characteristic function of the N intervals truncated random variable by:

Φ(∗)
X (t) =

ΦX(t) − eitβN FX(βN) +
∑N

j=1

[
eitα j FX(α j) − eitβ j−1 FX(β j−1)

]
− t

[∑N−1
j=1

∫ α j+1

β j
eitxFX(x)dx +

∫ α1

−∞
eitxFX(x)dx −

∫ βN

−∞
eitxFX(x)dx

]
1 − GY(βN) +

∑N
j=1

[
GY(α j) − GY(β j−1)

] .

(11)
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2.5. Likelihood function

The likelihood function is one of the most commonly used method to estimate the parameter θ of the
distribution. Let x1, x2, ..., xh be a random sample of size h from N intervals truncated distribution with PDF
(1), then the likelihood of this distribution can be derived as:

L(θ|x) =

h1∏
i=1

fX(xi;θ)

1 − GY(βN;θ) +
∑N

j=1

[
GY(α j;θ) − GY(β j−1;θ)

] h2∏
i=h1+1

fX(xi;θ)

1 − GY(βN;θ) +
∑N

j=1

[
GY(α j;θ) − GY(β j−1;θ)

] ...
h∏

i=hN+1

fX(xi;θ)

1 − GY(βN;θ) +
∑N

j=1

[
GY(α j;θ) − GY(β j−1;θ)

]
=

∏h
i=1 fX(xi;θ)(

1 − GY(βN;θ) +
∑N

j=1

[
GY(α j;θ) − GY(β j−1;θ)

])h
.

(12)

Then, the log-likelihood function is given by:

log L(θ|x) =

h∑
i=1

log fX(xi;θ) − h log
(
1 − GY(βN;θ) +

N∑
j=1

[
GY(α j;θ) − GY(β j−1;θ)

])
.

To get the estimated value θ̂ of the parameter θ, we solve the following equation:

∂ log L(θ|x)
∂θ

=
∂
∂θ

[ h∑
i=1

log fX(xi;θ) − h log
(
1 − GY(βN;θ) +

N∑
j=1

[
GY(α j;θ) − GY(β j−1;θ)

])]
θ=θ̂

= 0.

3. Characterization using order statistics

Kendall-Stuart [8] and Johnson-Kotz [7] studied the characterizations of statistical distributions by
collecting and describing various characterization theorems for each distribution. Kagan et al. [9] used
probabilistic and statistical methods and properties which leads to characterizations, including a form
of characteristic functions, behaviour of linear statistics, independence, sufficiency, regression properties,
etc. In addition, some authors studied the characterizations of statistical distributions from a purely
mathematical point of view such as Lukacs [12], [13].
Let X1,X2, ...,Xm be an independent identically distributed sequence of random variables with PDF fX(x)
and CDF FX(x) then X1:m ≤ X2:m ≤ ... ≤ Xm:m be the order statistics with PDF:

fr:m(x) =
m!

(r − 1)!(m − r)!
[FX(x)]r−1[1 − FX(x)]m−r fX(x), 1 ≤ r ≤ m, (13)

and the joint PDF of the rth and sth order statistics where 1 ≤ r < s ≤ m is given by:

fr,s:m(x, z) =
m!

(r − 1)!(s − r − 1)!(m − s)!
[FX(x)]r−1[FZ(z)−FX(x)]s−r−1[1−FZ(z)]m−s fX(x) fZ(z), 1 ≤ r < s ≤ m,

(14)

(see Arnold et al. [2]). To characterize the N intervals truncated distribution based on this order statistics,
we shall prove the following theorem as in Mohie El-Din et al. [15].
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Theorem 3.1. The random variable X has N intervals truncated distribution with PDF (1) if and only if:

(i) E
(
Xk

r+1:m|Xr:m = x
)

= xk+
k[

1 − GX(x)
]m−r

∫
∞

x
zk−1

[
1−

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

dz;

(15)

(ii) Var
(
Xk

r+1:m|Xr:m = x
)

=
2
[
1 − GX(x)

]m−r
ΦX(x) − 2x

[
1 − GX(x)

]m−r
ΨX(x) −Ψ2

X(x)[
1 − GX(x)

]2(m−r)
, (16)

where

ΦX(x) =

∫
∞

x
z
[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

dz;

ΨX(x) =

∫
∞

x

[
1 −

∑N
j=1

[∑ j
ζ=1[GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

dz;

Proof. (i) Firstly, if X has N intervals truncated distribution and Xk
r+1:m = z, then we have,

E
(
Xk

r+1:m|Xr:m = x
)

=

∫
∞

x zk fr,r+1:m(x, z)dz

fr:m(x)
=

m − r[
1 − GX(x)

]m−r

∫
∞

x

[
1 − G(z)

]m−r−1
1(z)dz.

As in Mohie El-Din et al. [15]:

E
(
Xk

r+1:m|Xr:m = x
)

= xk +
k[

1 − GX(x)
]m−r

∫
∞

x
zk−1

[
1 −

1

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

]
[ ∫ z

−∞

f (t)dt + GX(α1) +

∫ z

β1

f (t)dt + GX(α1) + GX(α2) − GX(β1) +

∫ z

β2

f (t)dt

+GX(α1) + GX(α2) − GX(β1) + ... + GX(αN−1) − GX(βN−2) +

∫ z

βN−1

f (t)dt + ...

+GX(α1) + GX(α2) − GX(β1) + ... + GX(αN) − GX(βN−1) +

∫ z

βN

f (t)dt
]]m−r

dz

= xk +
k[

1 − GX(x)
]m−r

∫
∞

x
zk−1

[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

dz;

Now, we need to prove that if (15) holds then X has N intervals truncated distribution (sufficient condition).
Let,

(m − r)[
1 − GX(x)

]m−r

∫
∞

x
zk

[
1 − GZ(z)

]m−r−1

1(z)dz = xk +
k[

1 − GX(x)
]m−r

×

∫
∞

x
zk−1

[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

dz.
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By multiplying both sides with
[
1 − GX(x)

]m−r
, we get

(m − r)
∫
∞

x
zk

[
1 − GZ(z)

]m−r−1
1Z(z)dz = xk

[
1 − GX(x)

]m−r

+ k
∫
∞

x
zk−1

[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]
dz.

Differentiating both sides with respect to x, and using the rule ∂
∂a

( ∫ b

a fX(x)dx
)

= − f (a) then we get,

−(m − r)xk
[
1 − GX(x)

]m−r−1
1X(x) = kxk−1

[
1 − GX(x)

]m−r
− (m − r)xk

[
1 − GX(x)

]m−r−1
1X(x)

− kxk−1

[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

.

This leads to,

[
1 − GX(x)

]m−r
=

[
1 −

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] ]m−r

.

Comparing both sides, we get

GX(x) =

∑N
j=1

[∑ j
ζ=1

[
GY(αζ−1) − GY(βζ−2)

]]
+

∫ z

β j−1
f (t)dt

1 − GY(βN) +
∑N

j=1

[
GY(α j) − GY(β j−1)

] .

This complete the prove of (i),(ii). Since

Var
(
Xr+1:m|Xr:m = x

)
= E

(
X2

r+1:m|Xr:m = x
)
−

(
E
(
Xr+1:m|Xr:m = x

))2

= x2 +
2ΦX(x)[

1 − GX(x)
]m−r −

(
x +

ΨX(x)[
1 − GX(x)

]m−r

)2

=
2ΦX(x)[

1 − GX(x)
]m−r −

2xΨX(x)[
1 − GX(x)

]m−r −
Ψ2

X(x)[
1 − GX(x)

]2(m−r)

=
2
[
1 − GX(x)

]m−r
ΦX(x) − 2x

[
1 − GX(x)

]m−r
ΨX(x) −Ψ2

X(x)[
1 − GX(x)

]2(m−r)
.

This gives the necessary conditions.
To prove the sufficient condition of (ii), we let (16) satisfied and by the same method which used in
Mohie El-Din et al. [15] (Theorem 3.4 p. 26-28). Then we can easily get that X has N intervals truncated
distribution.

4. Applications

In this section, we apply the above Definition 2.1 on some distributions such as Normal and Log-Lindley
distributions.



M.A. El-Hadidy / Filomat 33:11 (2019), 3409–3424 3416

4.1. One and two intervals truncated Normal distribution
For general reliability analysis, we used a normal distribution. It is also commonly used in times-to-

failure of simple electronic and mechanical components, equipment or systems. Here, we apply the above
results to this distribution in one and two intervals truncated cases. Firstly, we use Maple 13 program
to show the original curves of the PDF, distribution and survival functions of the normal distribution to
compare them with the curves of one and two intervals truncated.
Let Y has a normal distribution with mean µ and variance σ2. Thus, its PDF is given by:

1Y(y;µ, σ) =
1
√

2πσ
exp

[
−(y − µ)2

2σ2

]
, −∞ < y, µ < ∞, σ > 0. (17)

Also, its corresponding CDF is given by:

GY(y;µ, σ) =
1
2

[
1 + er f

(
y − µ

σ
√

2

)]
, −∞ < y, µ < ∞, σ > 0. (18)

In addition, the Survival function is given by:

G̃Y(y;µ, σ) = 1 − GY(y;µ, σ) =
1
2

[
1 − er f

(
y − µ

σ
√

2

)]
, −∞ < y, µ < ∞, σ > 0. (19)

Now, we will apply the N intervals truncated method on (17) as follows.

4.1.1. One interval truncated Normal distribution
From Definition 2.1, the PDF of one interval truncated Normal distribution (i.e., N = 1) at the interval

(α, β) is given by:

f ∗X(x) =



exp
[
−(x−µ)2

2σ2

]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , −∞ < x < α,

exp
[
−(x−µ)2

2σ2

]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , β < x < ∞.

If we let, (α, β) = (60, 80), then f ∗X(x) is represented in Figure 1(a). Also, the PDF 1Y(y;µ, σ) (17) in Figure 1(b)
is merged with f ∗X(x) as in Figure 1(c) to show the effect of the new Definition 2.1 (one interval truncation)
of the area under the PDF original curve. This effectiveness resulted from the redistribute the probability
of the truncated area on the non truncated area. And, the one interval truncated CDF is given by:

F∗X(x) =



1
2

[
1+er f

(
x−µ
σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , −∞ < x < α,

1
2

[
1+er f

(
α−µ

σ
√

2

)
+er f

(
x−µ
σ
√

2

)
−er f

(
β−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , β < x < ∞.

Figure 2(b) represent the CDF F∗X(x) at the interval (α, β) = (60, 80). The area under the curve is affected
after the truncation process. That is clear after the mergers between original CDF (18) (Figure 2(a)) and one
interval truncated distribution CDF (Figure 2(b) in Figure 2(c)).
For the one interval truncated distribution, the survival function is given by:

F̃∗X(x) =


1 −

1
2

[
1+er f

(
x−µ
σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , −∞ < x < α,

1 −
1
2

[
1+er f

(
α−µ

σ
√

2

)
+er f

(
x−µ
σ
√

2

)
−er f

(
β−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β−µ

σ
√

2

)
−er f

(
α−µ

σ
√

2

)]) , β < x < ∞.
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Figure 1: (a) The original PDF; (b) One interval truncated PDF and (c) Mergers between original and one interval truncated PDF of X
for different values of µ and σ.

At (α, β) = (60, 80), we get F̃∗X(x) in Figure 3(b), but for the original distribution Figure 3(a) represents its
survival function. The difference between the survival functions of the original and one interval truncated
distribution is represented in Figure 3(c).

4.2. Two intervals truncated Normal distribution

At (α1, β1) = (20, 40) and (α2, β2) = (90, 100), we use Definition 2.1 to get the PDF of two intervals
truncated Normal distribution (i.e., N = 2) as follows:

f ∗∗X (x) =



exp
[
−(x−µ)2

2σ2

]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , −∞ < x < α1,

exp
[
−(x−µ)2

2σ2

]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β1 < x < α2,

exp
[
−(x−µ)2

2σ2

]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β2 < x < ∞,

and it is represented in Figure 4(a), where the original distribution was represented in Figure 3(a). Here, the
effectiveness is differs from the effectiveness in the case of one interval truncated distribution (see Figure
4(b)).
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Figure 2: (a) The original CDF; (b) One interval truncated CDF and (c) Mergers between original and one interval truncated CDF of
X for different values of µ and σ.

Figure 3: (a) The original distribution of the survival function; (b) One interval truncated distribution of the survival function and (c)
Mergers between original and one interval truncated distribution of the survival function of X for different values of µ and σ.
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Figure 4: (a) The original PDF and (b) Mergers between original and two intervals truncated PDF of X for different values of µ and σ.

Figure 5: (a) The original CDF and (b) Mergers between original and two intervals truncated CDF of X for different values of µ and σ.

Also, the two intervals truncated CDF is given by:

F∗∗X(x) =



1
2

[
1+er f

(
x−µ
σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , −∞ < x < α1,

1
2

[
1+er f

(
α1−µ

σ
√

2

)
+er f

(
x−µ
σ
√

2

)
−er f

(
β1−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β1 < x < α2,

1
2

[
1+er f

(
α1−µ

σ
√

2

)
+er f

(
α2−µ

σ
√

2

)
+er f

(
x−µ
σ
√

2

)
−er f

(
β1−µ

σ
√

2

)
−er f

(
β2−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β2 < x < ∞,

(see Figure 5(a)). The Mergers of the two CDFs (for original and two intervals truncated distribution) are
showed in Figure 5(b).
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Figure 6: (a) The original survival function and (b) Mergers between original and two intervals truncated survival of X for different
values of µ and σ.

The survival function is given by:

F̃∗∗X(x) =



1 −
1
2

[
1+er f

(
x−µ
σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , −∞ < x < α1,

1+er f
(
α1−µ

σ
√

2

)
+ 1

2

[
er f

(
x−µ
σ
√

2

)
−er f

(
β1−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β1 < x < α2,

3
2

[
1+er f

(
α1−µ

σ
√

2

)]
+er f

(
α2−µ

σ
√

2

)
−er f

(
β1−µ

σ
√

2

)
+ 1

2

[
er f

(
x−µ
σ
√

2

)
−er f

(
β2−µ

σ
√

2

)]
σ
√

2π
(

1− 1
2

[
er f

(
β2−µ

σ
√

2

)
+er f

(
β1−µ

σ
√

2

)
−er f

(
α2−µ

σ
√

2

)
−er f

(
α1−µ

σ
√

2

)]) , β2 < x < ∞,

(see Figure 6(a)). The difference between the original and two intervals truncated survival functions showed
in Figure 6(b). Definition (2.1) is more interesting to get more effective and applicable life time models after
deleting the data from stable time intervals. Of course, because from the above figures (1) to (6), we found
that, the redistribution of probabilities from the truncated parts to the remaining parts affects slightly on
the shape of the curves with maintaining the original shape of the curves.

4.3. Remarks
To distribute the probability of truncated parts on the remaining parts with unequal proportions one

can use the following definition:

Definition 4.1. Let Y be a random variable with known probability density function1Y(y), define X as a corresponding
N intervals truncated of the random variable Y with PDF fX(x). And, if η j, j = 1, 2, ...,N are the values of the
proportions that used to redistribute the probabilities of the truncated parts on the remaining parts such that η j , ηk,
∀ j , k. Then, the probability density function of N intervals truncated of Y is given by:

ΘX(x) =



η11X(x)
1−GY(βN)+

∑N
j=1[GY(α j)−GY(β j−1)]

, −∞ < x < α1,
η21X(x)

1−GY(βN)+
∑N

j=1[GY(α j)−GY(β j−1)]
, β1 < x < α2,

η31X(x)
1−GY(βN)+

∑N
j=1[GY(α j)−GY(β j−1)]

, β2 < x < α3,

...
ηN−11X(x)

1−GY(βN)+
∑N

j=1[GY(α j)−GY(β j−1)]
, βN−1 < x < αN,

ηN1X(x)
1−GY(βN)+

∑N
j=1[GY(α j)−GY(β j−1)]

, βN < x < ∞,
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Figure 7: Two intervals truncated probability density function of X for different values of µ and σ and η1 = 0.03, η2 = 0.1, η3 = 0.87.

Figure 8: Two intervals truncated distribution function of X for different values of µ and σ and η1 = 0.03, η2 = 0.1, η3 = 0.87.

where β0 = −∞ and
∑N

j=1 η j = 1.

But this definition will make a complete change in the original shape of the known curve for the density
function. For example, if we use the same values of µ and σ which used in Figure 4 and η1 = 0.03, η2 =
0.1, η3 = 0.87, we will get the unclear Figure 7. Also, the curve of distribution and survival functions are
unclear, see Figures 8 and 9. This show that the Definition 2.1 is more suitable and optimal for N intervals
truncated distribution.

4.4. One interval truncated Log-Lindley distribution

LogLindley distribution is one of the famous distribution which has a nice application in insurance and
inventory management. Gomez-Deniz et al. [4] introduced this distribution as a transformation of the
generalized Lindey distribution (see Zakerzadeh and Dolati [5]). The LogLindley distribution depends on
two parameters and Shanker et al. [18] studied this distribution for modelling waiting time and survival
times data. Sometimes, we need to delete some real data set for cost effectiveness of risk management
practice.
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Figure 9: Two intervals truncated survival function of X for different values of µ and σ and η1 = 0.03, η2 = 0.1, η3 = 0.87.

The PDF of the LogLindley distribution is given by,

h̃Y(y;λ, σ) = σ2

1+λσ (λ − log y)yσ−1, (20)

where 0 < x < 1, λ ≥ 0 and σ > 0. Using Definition 2.1 the PDF of one interval truncated LogLindley
distribution is given by:

fX(x;λ, σ) =


σ2(λ−log x)xσ−1

1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , 0 < x < α,
σ2(λ−log x)xσ−1

1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , β < x < 1,
(21)

where the deleting interval (α, β) = (0.3, 0.5). Using Mathematica7, we can show the difference between the
original PDF and the one interval truncated PDF of LogLindley distribution as in Figure [10].
The distribution function of the LogLindley distribution is given by,

H̃Y(y;λ, σ) =
yσ[1+σ(λ−log y)]

1+λσ (22)

And, the CDF of one interval truncated LogLindley distribution is given by:

FX(x;λ, σ) =


xσ[1+σ(λ−log x)]

1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , 0 < x < α,
ασ[1+σ(λ−logα)]−βσ[1+σ(λ−log β)]+xσ[1+σ(λ−log x)]

1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , β < x < 1,
(23)

Figure 11 presents the difference between the original CDF and the one interval truncated CDF of LogLindley
distribution.
Furthermore, the survival function of the LogLindley distribution is given by:

¯̃HY(y;λ, σ) = 1 − yσ[1+σ(λ−log y)]
1+λσ (24)

And, the survival function of the one interval truncated LogLindley distribution is given by:

F̃X(x;λ, σ) =

 1 − xσ[1+σ(λ−log x)]
1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , 0 < x < α,

1 − 2ασ[1+σ(λ−logα)]−βσ[1+σ(λ−log β)]+xσ[1+σ(λ−log x)]
1+λσ−βσ[1+σ(λ−log β)]+ασ[1+σ(λ−logα)] , β < x < 1.

(25)

Their exist a difference between the original and one interval truncated LogLindley distribution, see Figure
(12).
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Figure 10: Original and one interval truncated LogLindley PDF distribution for different values of λ and σ.
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Figure 11: Original and one interval truncated LogLindley distribution CDF for different values of λ and σ.

Λ=2; Σ=2

Λ=1; Σ=0.9
Λ=0.005; Σ=2
Λ=0.1; Σ=1

Original distribution   Truncated distribution

Deleting intervalΑ Β

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
F
�

x

Figure 12: Original and one interval truncated LogLindley distribution survival functions for different values of λ and σ.
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5. Concluding Remarks

In this paper, we introduced a new truncation definition for the probability distributions; that is; N
intervals truncated. The new distribution has a high sensitivity of stochastic volatility data. It used to
delete some certain range of data values from a domain of random variable (case of stable intervals).
We provided a distribution, survival, hazard, reversed hazard, moment generating, characteristic and
likelihood functions. Beside obtaining the Kth moment of the new distribution, the Characterization using
order statistics has been done. When we distribute the probability of truncated parts on the remaining parts
with unequal proportions, the natural shape of the known curve for the density function will be changed.
As an application for the new definition, we consider two of the famous distributions; that is; a normal and
Log-Lindley distributions and applied the obtained results on it. We hope that this new definition may
attract a wide application in lifetime modeling.
In the case of two intervals truncated normal distribution, we notice that the shapes of the PDF, CDF and
survival curves are construed to the original curve shapes of the normal distribution, see Figures (4),(5)
and (6). This will lead us to study the optimal number of truncation intervals in the future. In addition,
in future research one can introduce a new type of double-out and N intervals truncated for the lifetime
distribution.
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