
Filomat 33:11 (2019), 3399–3407
https://doi.org/10.2298/FIL1911399B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Two Weak Solutions for a Singular (p, q)-Laplacian Problem
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Abstract. Here, a singular boundary value problem involving the (p, q)-Laplacian operator in a smooth
bounded domain in RN is considered. Using the variational method and critical point theory, the existence
of two weak solutions is proved.

1. Introduction

The study of partial differential equations started in the 18th century and it’s area has been growing
steadily in the past centuries. It can be used for modeling a wide range of physical phenomena, encountered
in statistical mechanics, mathematical physics, theoretical neuroscience, fluid dynamics and mathematical
finance. In fact, the theory of partial differential equations is a powerful theory to study a wide variety
of physically significant problems arising in very different areas such as physics, engineering and other
applied disciplines (see [1, 7, 14, 15, 22, 29–32, 35–40]).

Partial differential equations involving the p-Laplacian are mathematical models occurring in studies of
industrial problems, for instance, problems involving electrorheological fluids, image restorations, gener-
alized reaction-diffusion theory, non-Newtonian fluid theory, non-Newtonian filtration and the turbulent
flow of a gas in porous medium.
The study of p-Laplacian comes from at least four decades, whereas a deeper study of problems involving
the (p, q)-Laplacian operator has only occurred in the last decade. The (p, q)-Laplacian operator generalizes
several types of problems and it is important form two points of views:

(I) Physical motivations.
The quasilinear operator (p, q)-Laplacian has been used to model steady-state solutions of reaction-
diffusion problems arising in biophysics, in plasma physics and in the study of chemical reactions.
More precisely, the prototype for these models can be written in the form

ut = −div[D(u)∇u] + f (x,u),

where D(u) = ap|∇u|p−2 + bq|∇u|q−2 and ap, bq ∈ R+ are positive constants. In this framework, the
function u generally stands for a concentration, the term div[D(u)∇u] corresponds to the diffusion
with coefficient D(u), and f (x,u) is the reaction term related to source and loss processes. Typically,
in chemical and biological applications, the reaction term 1(x,u) is a polynomial of u with variable
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coefficients. The differential operator ∆p + ∆q is known as the (p, q)-Laplacian operator, if p , q. The
literature on problems involving the single operator p-Laplacian (p = q) is very extensive and have
been paid much attention by many mathematicians. In particular, they are interested the existence
and the uniqueness of solution of this kind of problem (such as [23–26]).

(II) Mathematical techniques.
There is a broad set of purely mathematical techniques which mainly studying the existence of
nonnegative nontrivial solutions as well as multiplicity results. Moreover, since the (p, q)-Laplacian
operator is not homogeneous, some technical difficulties arise when applying the usual methods of
the theory of elliptic equations. In fact, the study of these problems are often very complicated and
require relevant topics of nonlinear functional analysis, especially the theory of variable exponent
Lebesgue and Sobolev spaces. Moreover, the study of the weak solution in other spaces such as
Orlicz–Morrey space and Ḃ−1

∞,∞ space is also a research problem (see [8, 10–12])

Because of these two notes (p, q)-Laplacian elliptic problems have been studied by many authors, see
[3, 5, 6, 16, 17, 21, 28].
Throughout the paper we consider Ω ⊂ RN is an open bounded domain containing the origin with smooth
boundary ∂Ω, ∆pu = div(|∇u|p−2

∇u) and ∆qu = div(|∇u|q−2
∇u) are the p-Laplacian and q-Laplacian operators,

respectively.
Li and Zhang [20] studied the existence of multiple solutions for the following nonlinear elliptic problem

of (p, q)-Laplacian type involving the critical Sobolev exponent−∆pu − ∆qu = |u|p∗−2u + µ|u|r−2u x ∈ Ω

u = 0 x ∈ ∂Ω,
(1)

where p∗ =
Np

N − p
is the critical Sobolev exponent, µ > 0 and 1 < r < q < p < N.

Liang and Song [21] using Morse theory, studied the existence of solutions for the following (2, q)-Laplacian
problem:−∆u − ∆qu = f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω,
(2)

where p > 2 and f ∈ C(Ω̄ ×R,R) is a suitable function.

Here we are interested to study the singular (p, q)-Laplacian elliptic problem as−∆pu − ∆qu +
|u|p−2u
|x|p

+
|u|q−2u
|x|q

= λ f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω,
(3)

where 2 ≤ q < p < N, λ > 0 is a real parameter and f : Ω ×R→ R is a Carathéodory function such that

( f1) | f (x, t)| ≤ a1t + a2|t|r−1, for all (x, t) ∈ Ω ×R,

where a1 and a2 are positive constants, r ∈]p, p∗[.
In order to prove the existence of at least two weak solutions for the problem (3), we recall some definitions
and theorems as follow. Let W1,p

0 (Ω) endowed with the norm

‖u‖ := ‖u‖p = (
∫

Ω

|∇u(x)|pdx)
1
p , (4)

and the norm in Lp(Ω) is

|u|p = (
∫

Ω

|u(x)|pdx)
1
p . (5)
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Assume r ∈ [1, p∗[, the compact embedding W1,p
0 (Ω) ↪→ Lr(Ω) shows that there exists a cr > 0 such that

‖u‖Lr(Ω) ≤ cr‖u‖r, for all u ∈W1,p
0 (Ω), (6)

where cr is the best constant of the embedding and it can be estimated by Talenti inequality [42]. Set

c :=
1

N
√
π

(N(p − 1)
N − p

) p−1
p
( N!Γ( N

2 )

2Γ( N
p )Γ(N + 1 − N

p )

) 1
N

, (7)

where Γ is the Gamma function defined by

Γ(t) :=
∫ +∞

0
zt−1e−zdz, for all t > 0.

This is the best constant (see [2]) of the Sobolev embedding theorem (see [33, Proposition B.7]). By Holder’s
inequality

cr ≤ meas(Ω)
p∗−r
p∗r c

where meas(Ω) is the Lebesgue measure of the set Ω.
We recall the classical Hardy’s inequality:∫

Ω

|u(x)|s

|x|s
dx ≤

1
H

∫
Ω

|∇u(x)|sdx, for all u ∈W1,s
0 (Ω), (8)

where 1 < s < N and H := ( N−s
s )s, see [13].

Definition 1.1. [41] Let X be a reflexive real Banach space. The operator T : X → X∗ is said to satisfy the (S+)
condition if the assumptions lim supn→∞ < T(un) − T(u0),un − u0 >≤ 0 and un ⇀ u0 in X imply un → u0 in
X(notice that < ., . > denotes the usual inner product in RN).

If we set F(x, ξ) :=
∫ ξ

0 f (x, t)dt, for every (x, ξ) ∈ Ω ×R, then the energy functional Iλ : X→ R associated
with (3) can be written

Iλ := Φ(u) − λΨ(u), for all u ∈ X,

where

Φ(u) := Φp(u) + Φq(u),

such that

Φp(u) := 1
p (
∫

Ω
|∇u|pdx +

∫
Ω

|u|p

|x|p
dx)

Φq(u) := 1
q (
∫

Ω
|∇u|qdx +

∫
Ω

|u|q

|x|q
dx)

Ψ(u) :=
∫

Ω
F(x,u(x))dx.

By (8),

‖u‖p

p
≤ Φp(u) ≤ (

H + 1
pH

)‖u‖p,
‖u‖q

q
≤ Φq(u) ≤ (

H + 1
qH

)‖u‖q, (9)

for every u ∈ X.
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Definition 1.2. The function u : Ω→ R is a weak solution of (3), if u ∈ X and∫
Ω

|∇u|p−2
∇u∇vdx+

∫
Ω

|u|p−2

|x|p
uvdx +

∫
Ω

|∇u|q−2
∇u∇vdx

+

∫
Ω

|u|q−2

|x|q
uvdx − λ

∫
Ω

f (x,u)vdx = 0,

for every v ∈ X.

Since Ω is bounded and q < p, we have W1,p
0 (Ω) ⊂ W1,q

0 (Ω) and the continuous embedding W1,p
0 (Ω) ↪→

W1,q
0 (Ω). Then for all u ∈W1,p

0 (Ω), we have 1
p

∫
Ω
|∇u|pdx < ∞ and 1

q

∫
Ω
|∇u|qdx < ∞.

Definition 1.3. A Gâteaux differentiable function I satisfies the Palais-Smale condition (in short (PS)-condition) if
any sequence {un} such that

(I) {I(un)} is bounded,

(II) lim supn→∞ ‖I
′(un)‖X∗ = 0,

has a convergent subsequence.

Here, we need the following proposition and theorem to prove the main result.

Proposition 1.4. [19] The operator T : X→ X∗ defined by

T(u)(v) :=
∫

Ω

|∇u|p−2
∇u∇vdx +

∫
Ω

|u|p−2

|x|p
uvdx +

∫
Ω

|∇u|q−2
∇u∇vdx

+

∫
Ω

|u|q−2

|x|q
uvdx,

for every u, v ∈ X, is strictly monotone.

Theorem 1.5. [4, Theorem 3.2] Let X be a real Banach space and let Φ,Ψ : X → R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix δ > 0 such
that sup{Φ(u)<δ}Ψ(u) < +∞ and assume that, for each λ ∈ Λ :=

]
0, δ

sup{Φ(u)<δ}Ψ(u)

[
, the functional Iλ := Φ−λΨ satisfies

(PS)-condition and it is unbounded from below. Then, for each λ ∈ Λ the functional Iλ admits two distinct critical
points.

2. Two weak solutions

In this section the existence of two weak solutions for the problem (3) is studied. The statement of main
result is as follows:

Theorem 2.1. Let f : Ω×R→ R be a Carathéodory function such that condition ( f1) holds. Moreover, assume that

( f2) There exist θ > p and K > 0 such that

0 < θF(x, t) ≤ t f (x, t),

for each x ∈ Ω and |t| > K.

Then for each λ ∈]0, λ∗[, problem (3) admits at least two distinct weak solutions, where

λ∗ :=
r

ra1c1p
1
p + a2cr

rp
r
p

and cr is the constant of the embedding X ↪→ Lr(Ω) for each r ∈ [1, p∗[ in (6).
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Proof. Let X = W1,p
0 (Ω), Φ and Ψ be defined as before. Condition ( f1) and the compact embedding X ↪→ Lr(Ω)

implies Ψ ∈ C1(X,R) with the following compact derivative

Ψ′(u)(v) :=
∫

Ω

f (x,u(x))v(x)dx,

for every v ∈ X. Also Φ ∈ C1(X,R) and Φ′ : X → R is strictly monotone (see Proposition 1.4). Notice that
the critical points of Iλ are exactly the weak solutions of problem (3).
Now we show that Φ′ is a mapping of (S+)-type. Let un ⇀ u in X and

lim sup
n→+∞

< Φ′(un) −Φ′(u),un − u >≤ 0.

We denote L : X→ R by

L(u) :=
1
p

∫
Ω

|∇u|pdx +
1
q

∫
Ω

|∇u|qdx,

for every u ∈ X. Hence L′ : X→ X∗ and

L′(u)(v) :=
∫

Ω

|∇u|p−2
∇u∇vdx +

∫
Ω

|∇u|q−2
∇u∇vdx,

for every v ∈ X. Since Φ′ is strictly monotone, then

lim sup
n→+∞

< L′(un) − L′(u),un − u >≤ 0.

There exist Cp > 0 and Cq > 0 such that (see [41])

0 ≥ lim sup
n→+∞

< L′(un) − L′(u),un − u >

=

∫
Ω

(|∇un|
p−2
∇u − |∇u|p−2

∇u)∇(un − u)dx

+

∫
Ω

(|∇un|
q−2
∇u − |∇u|q−2

∇u)∇(un − u)dx

≥ Cp

∫
Ω

|∇un − ∇u|pdx + Cq

∫
Ω

|∇un − ∇u|qdx

≥ Cp‖un − u‖p.

Then un → u in X, (see [9, Theorem 3.1]). Hence, Φ′ is a mapping of (S+)-type. Moreover, [9, Theorem 3.1]
shows Φ′ is a homeomorphism. Now we prove that Iλ = Φ − λΨ satisfies (PS)-condition for every λ > 0.
we show that any sequence {un} ∈ X satisfying

m := sup
n

Iλ(un) < +∞, ‖I′λ(un)‖X∗ → 0, (10)

contains a convergent subsequence. For n large enough, from (10) we have

m ≥ Iλ(un) = Φp(un) + Φq(un) − λ
∫

Ω

F(x,un)dx,
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then since θ > p > q, we have

Iλ(un) ≥
1
p

(
∫

Ω

|∇un|
pdx +

∫
Ω

|un|
p

|x|p
dx) +

1
q

(
∫

Ω

|∇un|
qdx +

∫
Ω

|un|
q

|x|q
dx)

−
λ
θ

∫
Ω

f (x,un)undx

>(
1
p
−

1
θ

)
∫

Ω

|∇un|
pdx + (

1
q
−

1
θ

)
∫

Ω

|∇un|
qdx

+
1
θ

(
∫

Ω

|∇un|
pdx +

∫
Ω

|un|
p

|x|p
dx +

∫
Ω

|∇un|
qdx +

∫
Ω

|un|
q

|x|q
dx

− λ

∫
Ω

f (x,un)undx)

≥(
1
p
−

1
θ

)‖un‖
p + (

1
q
−

1
θ

)‖un‖
q
q +

1
θ
< I′λ(un),un >

≥(
1
p
−

1
θ

)‖un‖
p +

1
θ
< I′λ(un),un > .

By (10), we can assume that | 1θ < I′λ(un),un > | ≤ ‖un‖. Hence

m + ‖un‖ ≥ Iλ(un) −
1
θ
< I′λ(un),un >≥ (

1
p
−

1
θ

)‖un‖
p.

From this inequality it is easy to see that {‖un‖} is bounded. Using the Eberlein-Smulyan Theorem, passing
to a subsequence if necessary, we can suppose that un ⇀ u. Compactness of Ψ′ implies that Ψ′(un)→ Ψ′(u)
and since I′λ(un) = Φ′(un)−λΨ′(un)→ 0, then Φ′(un)→ λΨ′(u). Since Φ′ is a homeomorphism, then un → u.
This ensures that the functional Iλ verifies (PS)-condition. From ( f2), there exists a positive constant C such
that

F(x, t) ≥ C|t|θ, (11)

for all x ∈ Ω and |t| > K. Indeed, setting h(x) := min{|ξ|=K} F(x, ξ) and

ϕt(s) := F(x, st), for all s > 0. (12)

By ( f2), for every x ∈ Ω and |t| > K, we have

0 < θϕt(s) = θF(x, st) ≤ st f (x, st) = sϕ′t(s), for all s >
K
|t|
.

Thus ∫ 1

K
|t|

ϕ′t(s)
ϕt(s)

ds ≥
∫ 1

K
|t|

θ
s

ds.

And

ϕt(1) ≥ ϕt

(K
|t|

) |t|θ
Kθ
.

By (12), we get

F(x, t) ≥ F
(
x,

K
|t|

t
) |t|θ

Kθ
≥ h(x)

|t|θ

Kθ
≥ C|t|θ,
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where C > 0 is a constant. Hence, (11) is proved. Now, for fix u0 ∈ X \ {0} and every t > 1 we have

Iλ(tu0) ≤
1
p

tp
‖u0‖

p +
1
q

tq
‖u0‖

q
q − λCtθ

∫
Ω

|u0|
θdx.

Condition θ > p shows that Iλ is unbounded from below. Moreover, fixed λ ∈]0, λ∗[ from (9) we observe
that

‖u‖ < p
1
p , (13)

for each u ∈ X such that u ∈ Φ−1(] − ∞, 1[). Combining the compact embedding X ↪→ L1(Ω), ( f1), (13) and
the compact embedding X ↪→ Lr(Ω), for each u ∈ Φ−1(] −∞, 1[), we obtain

Ψ(u) ≤a1‖u‖L1(Ω) +
a2

r
‖u‖rLr(Ω) ≤ a1c1‖u‖ +

a2

r
(cr‖u‖)r

≤a1c1p
1
p +

a2

r
cr

rp
r
p ,

Thus,

sup
{Φ(u)<1}

Ψ(u) ≤ a1c1p
1
p +

a2

r
cr

rp
r
p =

1
λ∗
<

1
λ
. (14)

From (14), we have

λ ∈]0, λ∗[⊆
]
0,

1
sup

{Φ(u)<1}Ψ(u)

[
.

Therefore all hypotheses of Theorem 1.5 (in the case δ = 1) are verified. Hence, for each λ ∈]0, λ∗[, the
functional Iλ admits two distinct critical points that are weak solutions of problem (3).

Remark 2.2. If f is as [4, Example 5.1] and [18, Example 3.4], then all the assumptions in Theorem (2.1) are fulfilled.

Corollary 2.3. Assume all hypothesis of Theorem 1.5 hold. Then the problem−∆pu − µ∆qu +
|u|p−2u
|x|p

+ µ
|u|q−2u
|x|q

= λ f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω.
(15)

where µ > 0 is the perturbation parameter, has at least two distinct weak solutions for special range of λ.

Proof. Multiply the problem (3) by µ−
p−1
p−q , and let v = µ

−1
p−q u. Then the problem (3) reduces to−∆pv − ∆qv +

|v|p−2v
|x|p

+
|v|q−2v
|x|q

= λ11(x, v) x ∈ Ω

u = 0 x ∈ ∂Ω.
(16)

where λ1 := λµ−
p−1
p−q and 1(x, v) := f (x, µ

1
p−q v). Thus by Theorem 1.5, for a spacial range of λ1, the problem

(16) has two solutions. Thus the problem (15) has at least two weak solutions for a spacial rage of λ.

Corollary 2.4. Assume all hypothesis of Theorem 1.5 hold. Then the problem−∆pu − µ∆qu + µ
1

q−p
|u|p−2u
|x|p

+ µ
q−p+1

q−p
|u|q−2u
|x|q

= λ f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω.
(17)

where µ > 0 is the perturbation parameter, has at least two distinct weak solutions for a special range of λ.
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Proof. Using scaling argument (see [27]), and define us(x) := u(sx) where s := µ
1

p−q , the problem (17) reduces
to −∆pv − ∆qv +

|v|p−2v
|x|p

+
|v|q−2v
|x|q

= λµ−
p−1
p−q f (µ

1
p−q x, v) x ∈ (µ

1
p−q )−1Ω

u = 0 x ∈ ∂(µ
1

p−q )−1Ω.
(18)

where (µ
1

p−q )−1Ω = {(µ
1

p−q )−1x : x ∈ Ω} and v(x) := u(sx). By the same argument in [27, pages 3,4], a solution of
the problem (18) actually solves an equation of the type (17). Theorem 2.1 implies the problem (18) admits
two weak solutions for a special range of λ.

Remark 2.5. The problem (3) can be generalized in the following two formats:−a(x)∆pu − b(x)∆qu + µ1
|u|p−2u
|x|p

+ µ2
|u|q−2u
|x|q

= λ f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω,
(19)

where a(x) and b(x) are (I) continuous and (II) noncontinuous functions. And alsoa(x)(−∆p)su + b(x)(−∆q)ru + µ1
|u|p−2u
|x|p

+ µ2
|u|q−2u
|x|q

= λ f (x,u) x ∈ Ω

u = 0 x ∈ ∂Ω,
(20)

where (−∆p)s is the fractional p-Laplacian.
One may study the existence of multiple solutions of the problems (19) and (20).
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