Certain q-Difference Operators and Their Applications to the Subclass of Meromorphic q-Starlike Functions

Qazi Zahoor Ahmad ${ }^{\text {a }}$, Nazar Khan ${ }^{\text {a }}$, Mohsan Raza ${ }^{\text {b,* }, ~ M u h a m m a d ~ T a h i r ~}{ }^{\text {a }}$, Bilal Khan ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan.
${ }^{b}$ Department of Mathematics, Government College University Faisalabad, Pakistan.
${ }^{\text {c S School of Mathematical Sciences, East China Normal University, } 500 \text { Dongchuan Road, Shanghai 200241, Peoples Republic of China }}$

Abstract

The main aim of this work is to find some coefficient inequalities and sufficient condition for some subclasses of meromorphic starlike functions by using q-difference operator. Here we also define the extended Ruscheweyh differential operator for meromorphic functions by using q-difference operator. Several properties such as coefficient inequalities and Fekete-Szego functional of a family of functions are investigated.

1. Introduction

Let $\mathcal{H}(\mathrm{E})$ denote the class of functions which are analytic in the open unit disk $\mathrm{E}=\{z: z \in \mathbb{C},|z|<1\}$. Also let \mathcal{A} denote a subclass of analytic functions f in $\mathcal{H}(\mathrm{E})$, satisfying the normalization conditions $f(0)=f^{\prime}(0)-1=0$. In other words, a function f in \mathcal{A} has Taylor-Maclaurin series expansion of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad(z \in \mathrm{E}) \tag{1}
\end{equation*}
$$

We denote \mathcal{S} by a subclass of \mathcal{A}, consisting of univalent functions. Furthermore, we denote the class of starlike functions by \mathcal{S}^{*}. A function $f \in \mathcal{A}$ is in the class \mathcal{S}^{*} of starlike functions if it satisfies the relation

$$
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \mathrm{E})
$$

A function f is said to be subordinate to a function g written as $f<g$, if there exists a schwarz function w with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. In particular if g is univalent in E and $f(0)=g(0)$, then $f(E) \subset g(E)$.

[^0]For two analytic functions f of the form (1) and g of the form

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in \mathrm{E})
$$

the convolution (Hadamard product) of f and g is defined as:

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}(z \in \mathrm{E})
$$

We now recall some essential definitions and concepts of the q-calculus, which are useful in our investigations. We suppose throughout the paper that $0<q<1$ and

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}, \quad \mathbb{N}_{0}:=\{0,1,2,3, \ldots\}
$$

Definition 1.1. Let $q \in(0,1)$ and define the q-number $[\lambda]_{q}$ by

$$
[\lambda]_{q}=\left\{\begin{array}{lr}
\frac{1-q^{\lambda}}{1-q}, & \lambda \in \mathbb{C}, \\
\sum_{k=0}^{n-1} q^{k}=1+q+q^{2}+\ldots+q^{n-1}, & \lambda=n \in \mathbb{N}
\end{array}\right.
$$

Definition 1.2. Let $q \in(0,1)$ and define the q-factorial $[n]_{q}!b y$

$$
[n]_{q}!=\left\{\begin{array}{cc}
1, & n=0 \\
\prod_{k=1}^{n-1}[k]_{q}, & n \in \mathbb{N}
\end{array}\right.
$$

Definition 1.3. Let $q \in(0,1)$ and define q-generalized Pochhammer symbol by

$$
[t]_{q, n}=\left\{\begin{array}{cc}
1, & n=0 \\
\prod_{k=0}^{n-1}[t+k]_{q}, & n \in \mathbb{N}
\end{array}\right.
$$

Definition 1.4. For $t>0$, let the q-gamma function be defined as:

$$
\Gamma_{q}(t+1)=[t]_{q} \Gamma_{q}(t) \text { and } \Gamma_{q}(1)=1
$$

Definition 1.5. (see [5] and [6]) The q-derivative (or q-difference) of a function f of the form (1) is denoted by D_{q} and defined in a given subset of \mathbb{C} by

$$
D_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0 \tag{2}\\ f^{\prime}(0), & z=0\end{cases}
$$

When $q \longrightarrow 1^{-}$, the difference operator D_{q} approaches to the ordinary differential operator. That is

$$
\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(z)=f^{\prime}(z)
$$

The operator D_{q} provides an important tool that has been used in order to investigate the various subclasses of analytic functions of the form given in Definition 1.5. A q-extension of the class of starlike functions was first introduced in [4] by means of the q-difference operator, a firm footing of the usage of the q-calculus in the context of Geometric Functions Theory was actually provided and the basic (or q-) hypergeometric functions were first used in Geometric Function Theory by Srivastava (see, for details [14]). After that, wonderful research work has been done by many mathematicians which has played an important
role in the development of Geometric Function Theory. In particular, Srivastava and Bansal [17] studied the close-to-convexity of q-Mittag-Leffler functions. The authors in [16] have investigated the Hankel determinant of a subclass of bi-univalent functions defined by using symmetric q-derivative. Mahmood et al. [10] studied the class of q-starlike functions in the conic region, while in [9], the authors studied the class of q-starlike functions related with Janowski functions. The upper bound of third Hankel determinant for the class of q-starlike functions has been investigated in [11]. Recently Srivastava et al. [15] have investigated the Hankel and Toeplitz determinants of a subclass of q-starlike functions, while the authors in [18] have introduced and studied a generalized class of q-starlike functions. Motivated by the above mentioned work, in this paper our aim is to present some subclasses of meromorphic starlike functions by using q-difference operator. We also introduce Ruscheweyh differential operator for meromorphic functions by using q-difference operator.

Definition 1.6. (see [4]) A function $f \in \mathcal{H}(\mathrm{E})$ is said to belong to the class $\mathcal{P} \mathcal{S}_{q}$, if

$$
\begin{equation*}
f(0)=f^{\prime}(0)-1=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z}{f(z)}\left(D_{q} f\right)(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q}(z \in \mathrm{E}) \tag{4}
\end{equation*}
$$

It is readily observed that as $q \rightarrow 1^{-}$, the closed disk

$$
\left|w-(1-q)^{-1}\right| \leq(1-q)^{-1}
$$

becomes the right-half plane and the class $\mathcal{P} \mathcal{S}_{q}$ reduces to \mathcal{S}^{*}. Equivalently, by using the principle of subordination between analytic functions, we can rewrite the conditions in (3) and (4) as follows (see [19]) :

$$
\frac{z}{f(z)}\left(D_{q} f\right)(z)<\widehat{p}(z), \quad \widehat{p}(z)=\frac{1+z}{1-q z}
$$

Let \mathcal{M} denote the class of functions f of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n} \tag{5}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathrm{E}^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathrm{E}-\{0\} .
$$

A function $f \in \mathcal{M}$ is said to be in the class $\mathcal{M} \mathcal{S}^{*}(\alpha)$ of meromorphically starlike functions of order α, if it satisfies the inequality

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha(z \in \mathrm{E}) ; 0 \leqq \alpha<1
$$

Let \mathcal{P} denote the class of analytic functions p normalized by

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{6}
\end{equation*}
$$

such that

$$
\mathfrak{R}(p(z))>0(z \in \mathrm{E})
$$

Next, we extend the idea of q-difference operator analogous to the Definition 1.5 to a function f given by (5) and introduce the class $\mathcal{M} S_{q}(\beta, \lambda)$.

Definition 1.7. Let $f \in \mathcal{M}$. Then the q-derivative operator or q-difference operator for the function f of the form (5) is defined by

$$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}=-\frac{1}{q z^{2}}+\sum_{n=0}^{\infty}[n]_{q} a_{n} z^{n-1} \quad\left(z \in \mathrm{E}^{*}\right)
$$

Definition 1.8. Let $f \in \mathcal{M}$. Then $f \in \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$, if it satisfies the condition

$$
\begin{equation*}
\left|\frac{-z \frac{D_{q} f(z)}{f(z)}-\beta z^{2} \frac{D_{q}\left(D_{q} f(z)\right)}{f(z)}-\gamma}{1-\gamma}-\frac{1}{1-q}\right| \leqq \frac{1}{1-q^{\prime}} \tag{7}
\end{equation*}
$$

which by using subordination can be written as:

$$
\begin{equation*}
\frac{-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)}{f(z)\left(\frac{1}{q}-\Upsilon(\beta, q)\right)}<\frac{1+(1-\gamma(1+q)) z}{1-q z} \tag{8}
\end{equation*}
$$

Remark 1.9. It can easily be seen that

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)=\mathcal{H}(\beta, \lambda)
$$

The class $\mathcal{H}(\beta, \lambda)$ was introduced and studied by Wang et al. [20, 21]. Secondly, we have

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M} S_{q}(0, \lambda)=\mathcal{H}(0, \lambda)=\mathcal{M} \mathcal{S}^{*}(\lambda)
$$

introduced and studied by Wang et al. See [21].
Throughout this paper unless otherwise stated the parameters β and λ are considered as follows:

$$
\begin{equation*}
\beta \geqq 0 \quad \text { and } \quad \frac{1}{2} \leqq \lambda<1 \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& \Lambda_{q}(n, \beta, \gamma)=[n]_{q}+\beta[n]_{q}[n-1]_{q}+\gamma \tag{10}\\
& \gamma=\lambda-\beta \lambda\left(\lambda+\frac{1}{2}\right)-\frac{\beta}{2} \tag{11}\\
& \Upsilon(\beta, q)=\beta \frac{(1+q)}{q^{2}} \tag{12}
\end{align*}
$$

2. Preliminary Results

Lemma 2.1. [8] If a function p of the form (6) is in class \mathcal{P}, then

$$
\left|p_{2}-v p_{1}^{2}\right| \leqq\left\{\begin{array}{lr}
-4 v+2, & v \leqq 0 \tag{13}\\
2, & 0 \leqq v \leqq 1, \\
4 v-2, & v \leqq 1 .
\end{array}\right.
$$

When $v<0$ or $v>1$, equality holds true in (13) if and only if $p(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. If $0<v<1$, then equality holds true in (13) if and only if $p(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $v=0$, equality holds true in (13) if and only if

$$
p(z)=\left(\frac{1+\rho}{2}\right)\left(\frac{1+z}{1-z}\right)+\left(\frac{1-\rho}{2}\right)\left(\frac{1-z}{1+z}\right), \quad 0 \leqq \rho \leqq 1, z \in \mathrm{E},
$$

or one of its rotations. For $v=1$, equality holds true in (13) if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds true in (13) in the case when $v=0$.

Remark 2.2. Although the above upper bound in (13) is sharp, it can be improved as follows:

$$
\begin{equation*}
\left|p_{2}-v p_{1}^{2}\right|+v\left|p_{1}\right|^{2} \leqq 2, \quad 0<v \leqq \frac{1}{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{2}-v p_{1}^{2}\right|+(1-v)\left|p_{1}\right|^{2} \leqq 2, \quad \frac{1}{2} \leqq v<1 . \tag{15}
\end{equation*}
$$

Lemma 2.3. [12] Let a function p has the form (6) and subordinate to a function H of the form

$$
H(z)=1+\sum_{n=1}^{\infty} C_{n} z^{n}
$$

If H is univalent in E and $H(\mathrm{E})$ is convex, then

$$
\left|p_{n}\right| \leqq\left|C_{1}\right|, \quad n \geqq 1
$$

Lemma 2.4. [2] If a function p of the form (6) is in the class \mathcal{P}, then

$$
\left|p_{n}\right| \leqq 2, \quad n \in \mathbb{N}
$$

This inequality is sharp.

3. Main Results

In this section, we prove our main results.
Theorem 3.1. If $f \in \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$, then for any complex number μ

$$
\left|a_{1}-\mu a_{0}^{2}\right| \leqq \begin{cases}\frac{\mu(\beta-q) \eta^{2}+(\eta-q)(1-\gamma) \sigma}{(q-\beta)}, & \mu \leqq \frac{(q-1-\eta) \sigma}{(\beta-q)(1+q) \eta^{\prime}} \\ \frac{\sigma(1-\gamma)}{(\beta-q)}, \quad \frac{(q-1-\eta) \sigma}{(\beta-q)(1+q) \eta} \leqq \mu \leqq \frac{(1+q-\eta) \sigma}{(\beta-q)(1+q) \eta^{\prime}} \\ \frac{\mu(\beta-q) \eta^{2}+(\eta-q)(1-\gamma) \sigma}{(\beta-q)}, & \mu \geqq \frac{(1+q-\eta) \sigma}{(\beta-q)(1+q) \eta}\end{cases}
$$

Furthermore, for $\frac{(q-1-\eta) \sigma}{(\beta-q)(1+q) \eta}<\mu \leqq \frac{(q-\eta) \sigma}{(\beta-q)(1+q) \eta}$, we have

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left|a_{1}-\mu a_{0}^{2}\right|+\left(\frac{\mu(\beta-q) \eta^{2}+(\eta+1-q)(1-\gamma) \sigma}{(\beta-q) \eta^{2}}\right)\left|a_{0}\right|^{2} \leqq \frac{\sigma(1-\gamma)}{(\beta-q)}, \\
& \text { and } \frac{(q-\eta) \sigma}{(\beta-q)(1+q) \eta} \leqq \mu<\frac{(1+q-\eta) \sigma}{(\beta-q)(1+q) \eta^{\prime}}, \\
&\left|a_{1}-\mu a_{0}^{2}\right|+\left(\frac{(1+q-\eta)(1-\gamma) \sigma-\mu(\beta-q) \eta^{2}}{(\beta-q) \eta^{2}}\right)\left|a_{0}\right|^{2} \leqq \frac{\sigma(1-\gamma)}{(\beta-q)},
\end{aligned}
\end{aligned}
$$

where

$$
\begin{align*}
& \sigma=q-\beta(1+q) \tag{16}\\
& \eta=(1+q)(1-\gamma) \tag{17}
\end{align*}
$$

These results are sharp.

Proof. If $f \in \mathcal{M S}_{q}(\beta, \lambda)$, then it follows from (8) that:

$$
\begin{equation*}
\frac{-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)}{f(z)\left(\frac{1}{q}-\Upsilon(\beta, q)\right)}<\phi(z) \tag{18}
\end{equation*}
$$

where

$$
\phi(z)=\frac{1+(1-\gamma(1+q)) z}{1-q z}
$$

Define a function

$$
p(z)=\frac{1+w(z)}{1-w(z)}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots
$$

then it is clear that $p \in \mathcal{P}$. This implies that

$$
w(z)=\frac{p(z)-1}{p(z)+1}
$$

From (18), we have

$$
\frac{-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)}{f(z)\left(\frac{1}{q}-\Upsilon(\beta, q)\right)}=\phi(w(z))
$$

with

$$
\phi(w(z))=\frac{1+p(z)+(1-\gamma(1+q))(p(z)-1)}{p(z)+1-q(p(z)-1)}
$$

Now

$$
\begin{aligned}
\frac{1+p(z)+(1-\gamma(1+q))(p(z)-1)}{p(z)+1-q(p(z)-1)}= & 1+\left[\frac{1}{2}(1+q)(1-\gamma) p_{1}\right] z+\left[\frac{1}{2}(q+1)(1-\gamma) p_{2}\right. \\
& \left.+\frac{1}{4}\left(q^{2}-1\right)(1-\gamma) p_{1}^{2}\right] z^{2}+\ldots
\end{aligned}
$$

and

$$
\begin{align*}
\frac{-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)}{f(z)}= & \left(\frac{1}{q}-\Upsilon(\beta, q)\right)\left\{1+\left[\frac{1}{2}(1+q)(1-\gamma) p_{1}\right] z\right. \\
& {\left.\left[\frac{1}{2}(q+1)(1-\gamma) p_{2}+\frac{1}{4}\left(q^{2}-1\right)(1-\gamma) p_{1}^{2}\right] z^{2}+\ldots\right\} } \tag{19}
\end{align*}
$$

From (5) and (19), we have

$$
\begin{align*}
& a_{0}=-\frac{\eta}{2} p_{1} \tag{20}\\
& a_{1}=\frac{\sigma \eta}{2(\beta-q)(1+q)}\left[p_{2}-(\eta+1-q) \frac{p_{1}^{2}}{2}\right] . \tag{21}
\end{align*}
$$

Thus, clearly we find that:

$$
\begin{equation*}
\left|a_{1}-\mu a_{0}^{2}\right|=\frac{\sigma(1-\gamma)}{2(\beta-q)}\left|p_{2}-v p_{1}^{2}\right| \tag{22}
\end{equation*}
$$

where

$$
v=\frac{\mu(\beta-q)(1+q) \eta+(\eta+1-q) \sigma}{2 \sigma}
$$

By using Lemma 2.1 in (22), we obtain the required result.
Theorem 3.2. Let γ be defined by (11). If $f \in \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$ and of the form (5) with $0<\beta<\frac{2}{5}$, then

$$
\left|a_{0}\right| \leqq \frac{\sigma \eta}{Q_{q}(0, \beta)}
$$

and

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\sigma \eta}{Q_{q}(n, \beta)} \prod_{j=0}^{n-1}\left(1+\frac{\sigma \eta}{Q_{q}(j, \beta)}\right), \quad n \in \mathbb{N} \tag{23}
\end{equation*}
$$

where σ, η are given by (16) and (17) respectively with

$$
\begin{equation*}
Q_{q}(n, \beta)=[n]_{q}\left(1+[n-1]_{q} \beta\right) q^{2}+q-\beta(1+q) \tag{24}
\end{equation*}
$$

Proof. Since $f \in \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$, therefore

$$
\begin{equation*}
\frac{-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)}{f(z)\left(\frac{1}{q}-\Upsilon(\beta, q)\right)}=p(z) \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
p(z)< & 1+\left[\frac{1}{2}(1+q)(1-\gamma) p_{1}\right] z+\left[\frac{1}{2}(q+1)(1-\gamma) p_{2}\right. \\
& \left.+\frac{1}{4}\left(q^{2}-1\right)(1-\gamma) p_{1}^{2}\right] z^{2}+\ldots
\end{aligned}
$$

Also

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

by using Lemma 2.3 and Lemma 2.4, we obtain

$$
\begin{equation*}
\left|p_{n}\right| \leqq \eta, \quad n \in \mathbb{N} \tag{26}
\end{equation*}
$$

Now the relation (25) can be written as:

$$
-z D_{q} f(z)-\beta z^{2} D_{q}\left(D_{q} f(z)\right)=\left(\frac{1}{q}-\Upsilon(\beta, q)\right) p(z) f(z)
$$

Which implies

$$
\begin{align*}
& \left(\frac{1}{q}-\Upsilon(\beta, q)\right) \frac{1}{z}-\sum_{n=0}^{\infty}\left([n]_{q}+\beta[n]_{q}[n-1]_{q}\right) a_{n} z^{n} \\
& =\left(\frac{1}{q}-\Upsilon(\beta, q)\right)\left(1+\sum_{n=1}^{\infty} p_{n} z^{n}\right)\left(\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}\right) \tag{27}
\end{align*}
$$

Equating the coefficients of z and z^{n+1} on both sides of (27), we obtain

$$
-a_{0}=p_{1}
$$

and

$$
-\left(Q_{q}(n, \beta)\right) a_{n}=\sigma\left(p_{n+1}+\sum_{j=1}^{n} a_{n-j} p_{j}\right)
$$

or equivalently

$$
a_{0}=-p_{1}
$$

and

$$
a_{n}=-\left(\frac{\sigma}{Q_{q}(n, \beta)}\right)\left(p_{n+1}+\sum_{j=1}^{n} a_{n-j} p_{j}\right)
$$

Using (26) , we have

$$
\begin{equation*}
\left|a_{0}\right| \leqq \frac{\sigma \eta}{Q_{q}(0, \beta)} \tag{28}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\sigma \eta}{Q_{q}(n, \beta)}\left(1+\sum_{j=1}^{n}\left|a_{n-j}\right|\right), \quad n \in \mathbb{N} \tag{29}
\end{equation*}
$$

For $n=1$, the relation (29) yields

$$
\begin{aligned}
\left|a_{1}\right| & \leqq \frac{\sigma \eta}{Q_{q}(1, \beta)}\left(1+\left|a_{0}\right|\right) \\
& \leqq \frac{\sigma \eta}{Q_{q}(1, \beta)}\left(1+\frac{\sigma \eta}{\left(Q_{q}(0, \beta)\right.}\right) .
\end{aligned}
$$

To prove (23), we apply mathematical induction. For $n=2$, (29) yields

$$
\left|a_{2}\right| \leqq 1+\left|a_{0}\right|+\left|a_{1}\right|
$$

That is

$$
\begin{aligned}
\left|a_{2}\right| & \leqq \frac{\sigma \eta}{Q_{q}(2, \beta)}\left\{1+\frac{\sigma \eta}{\left(Q_{q}(0, \beta)\right.}+\frac{\sigma \eta}{Q_{q}(1, \beta)}\left(1+\frac{\sigma \eta}{\left(Q_{q}(0, \beta)\right.}\right)\right\} \\
& =\frac{\sigma \eta}{Q_{q}(2, \beta)}\left(1+\frac{\sigma \eta}{\left(Q_{q}(0, \beta)\right.}\right)\left(1+\frac{\sigma \eta}{Q_{q}(1, \beta)}\right) \\
& =\frac{\sigma \eta}{Q_{q}(2, \beta)} \prod_{j=0}^{1}\left(1+\frac{\sigma \eta}{\left(Q_{q}(j, \beta)\right.}\right),
\end{aligned}
$$

which implies that (23) holds true for $n=2$. Let us assume that (23) is true for $n \leqq k$. That is

$$
\left|a_{k}\right| \leqq \frac{\sigma \eta}{Q_{q}(k, \beta)} \prod_{j=0}^{k-1}\left(1+\frac{\sigma \eta}{\left(Q_{q}(j, \beta)\right.}\right)
$$

Consider

$$
\begin{aligned}
\left|a_{k+1}\right| & \leqq \frac{\sigma \eta}{Q_{q}(k+1, \beta)}\left(1+\left|a_{0}\right|+\left|a_{1}\right|+\ldots+\left|a_{k}\right|\right) \\
& \leqq \frac{\sigma \eta}{Q_{q}(k+1, \beta)}\left[1+\frac{\sigma \eta}{Q_{q}(0, \beta)}+\frac{\sigma \eta}{Q_{q}(1, \beta)}\left(1+\frac{\sigma}{Q_{q}(0, \beta)}\right)+\ldots+\frac{\sigma \eta}{Q_{q}(k, \beta)} \prod_{j=0}^{k-1}\left(1+\frac{\sigma \eta}{\left(Q_{q}(j, \beta)\right.}\right)\right] \\
& =\frac{\sigma \eta}{Q_{q}(k+1, \beta)} \prod_{j=0}^{k}\left(1+\frac{\sigma \eta}{Q_{q}(j, \beta)}\right) .
\end{aligned}
$$

Therefore, the result is true for $n=k+1$. Consequently (23) holds true for all $n \in \mathbb{N}$.
The following equivalent form of Definition 1.8 is potentially useful in further investigation of the class $\mathcal{M S} \mathcal{S}_{q}(\beta, \lambda)$,

$$
\begin{equation*}
f \in \mathcal{M S}_{q}(\beta, \lambda) \Longleftrightarrow\left|-z \frac{D_{q} f(z)}{f(z)}-\beta z^{2} \frac{D_{q}\left(D_{q} f(z)\right)}{f(z)}-\frac{1-\gamma q}{1-q}\right| \leqq \frac{1-\gamma}{1-q} . \tag{30}
\end{equation*}
$$

Theorem 3.3. Let

$$
\begin{equation*}
\frac{1}{q}-\Upsilon(\beta, q)-\gamma>0 \tag{31}
\end{equation*}
$$

Also suppose that $f \in \mathcal{M}$ and of the form (5). If

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\Lambda_{q}(n, \beta, \gamma)\right)\left|a_{n}\right| \leqq \frac{1}{q}-\Upsilon(\beta, q)-\gamma \tag{32}
\end{equation*}
$$

then $f \in \mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$, where $\Upsilon(\beta, q)$ and γ are stated in (12) and (11) respectively.
Proof. Assuming that (32) holds true, it suffices to show that

$$
\begin{equation*}
\left|-z \frac{D_{q} f(z)}{f(z)}-\beta z^{2} \frac{D_{q}\left(D_{q} f(z)\right)}{f(z)}-\frac{1-\gamma q}{1-q}\right| \leqq \frac{1-\gamma}{1-q} \tag{33}
\end{equation*}
$$

Let us consider

$$
\begin{aligned}
& \left|-z \frac{D_{q} f(z)}{f(z)}-\beta z^{2} \frac{D_{q}\left(D_{q} f(z)\right)}{f(z)}-\frac{1-\gamma q}{1-q}\right| \\
& =\left|\frac{\left(-\frac{1}{q}+\Upsilon(\beta, q)+\frac{1-\gamma q}{1-q}\right)+\sum_{n=0}^{\infty}\left([n]_{q}+[n]_{q}[n-1]_{q} \beta\right) a_{n} z^{n+1}}{1+\sum_{n=0}^{\infty} a_{n} z^{n+1}}+\frac{\sum_{n=0}^{\infty}\left(\frac{1-\gamma q}{1-q}\right) a_{n} z^{n+1}}{1+\sum_{n=0}^{\infty} a_{n} z^{n+1}}\right| .
\end{aligned}
$$

Last expression is bounded above by $\frac{1-\gamma}{1-q}$ if

$$
\left(-\frac{1}{q}+\Upsilon(\beta, q)+\frac{1-\gamma q}{1-q}\right)+\sum_{n=0}^{\infty}\left([n]_{q}+[n]_{q}[n-1]_{q} \beta+\frac{1-\gamma q}{1-q}\right)\left|a_{n}\right| \leqq \frac{1-\gamma}{1-q}\left(1+\sum_{n=0}^{\infty}\left|a_{n}\right|\right)
$$

After some simplee calculations, we have

$$
\sum_{n=0}^{\infty}\left(\Lambda_{q}(n, \beta, \gamma)\right)\left|a_{n}\right| \leqq\left(\frac{1}{q}-\Upsilon(\beta, q)-\gamma\right)
$$

This complete the require proof.

When $q \longrightarrow 1^{-}$, Theorem 3.3 reduces to the following known result.
Corollary 3.4. (see [20]) Let

$$
1+\beta \lambda\left(\lambda+\frac{1}{2}\right)-\lambda-\frac{3}{2} \beta>0
$$

Also suppose that $f \in \mathcal{M}$ is given by (5). If

$$
\sum_{n=0}^{\infty}(n+\beta n(n-1)+\gamma)\left|a_{n}\right| \leqq 1-\gamma-2 \beta,
$$

then $f \in \mathcal{H}(\beta, \lambda)$.

4. Ruscheweyh q-Difference Operator for Meromorphic Functions.

Ruscheweyh derivatives for analytic function was defined by Ruscheweyh [13] and named as m-th order Ruscheweyh derivative by Al-Amiri (see [1]). Ganigi and Uralegaddi introduced the meromorphic analogy of Ruscheweyh derivative in [3]. Recently Kanas et al. (see [7]) introduced the Ruscheweyh derivative operator for analytic functions by using q-differential operator. We here define the meromorphic analogy of Ruscheweyh derivative by using q-differential operator. In this section, we define and study a new class of functions from class \mathcal{M} by using meromorphic analogy of Ruscheweyh q-difference operator. We also investigate the similar kind of results which have been proved in the above section.

Definition 4.1. Let $f \in \mathcal{M}$. Then the meromorphic analogue of Ruscheweyh q-differential operator is defined as

$$
\begin{equation*}
\mathcal{M} \mathcal{R}_{q}^{\delta} f(z)=f(z) * \phi(q, \delta+1 ; z)=\frac{1}{z}+\sum_{n=1}^{\infty} \psi_{n} a_{n} z^{n}, \quad z \in \mathrm{E}^{*}, \quad \delta>-1 \tag{34}
\end{equation*}
$$

where

$$
\phi(q, \delta+1 ; z)=\frac{1}{z}+\sum_{n=0}^{\infty} \psi_{n} z^{n}
$$

and

$$
\begin{equation*}
\psi_{n}=\frac{[\delta+n+1]_{q}!}{[n+1]_{q}![\delta]_{q}!} \tag{35}
\end{equation*}
$$

From (34), we have

$$
\mathcal{M} \mathcal{R}_{q}^{0} f(z)=f(z), \quad \mathcal{M} \mathcal{R}_{q}^{1} f(z)-[2]_{q} \mathcal{M} \mathcal{R}_{q}^{0} f(q z)=z D_{q} f(z)
$$

and

$$
\mathcal{M} \mathcal{R}_{q}^{m} f(z)=\frac{z^{-1} D_{q}\left(z^{m+1} f(z)\right)}{[m]_{q}!}, \quad m \in \mathbb{N}
$$

Note that

$$
\lim _{q \rightarrow 1^{-}} \phi(q, \delta+1 ; z)=\frac{1}{z(1-z)^{\delta+1}}
$$

and

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M} \mathcal{R}_{q}^{\delta} f(z)=f(z) * \frac{1}{z(1-z)^{\delta+1}},
$$

which is the well-known Ruscheweyh differential operator for meromorphic functions introduced and studied by Ganigi and Uralegaddi [3].

Definition 4.2. Let $f \in \mathcal{M}$. Then $f \in \mathcal{M S} \mathcal{S}_{q}^{\delta}(\beta, \lambda)$, if it satisfies the condition

$$
\begin{equation*}
\left|\frac{-z \frac{D_{q}\left(\mathcal{M} \mathcal{R}_{q}^{\delta} f(z)\right)}{\mathcal{M} R_{q}^{f} f(z)}-\beta z^{\frac{D_{q}\left(D_{q} \mathcal{M} \mathcal{R}_{q}^{\delta} f(z)\right)}{\mathcal{M} \mathcal{R}_{f}^{f}(z)}-\gamma}}{1-\gamma}-\frac{1}{1-q}\right| \leqq \frac{1}{1-q^{\prime}} \tag{36}
\end{equation*}
$$

which by using subordination can be written as

$$
\begin{equation*}
\frac{-z D_{q}\left(\mathcal{M} \mathcal{R}_{q}^{\delta} f(z)\right)-\beta z^{2} D_{q}\left(D_{q} \mathcal{M} R_{q}^{\delta} f(z)\right)}{\left(\frac{1}{q}-\Upsilon(\beta, q)\right) \mathcal{M} \mathcal{R}_{q}^{\delta} f(z)}<\frac{1+(1-\gamma(1+q)) z}{1-q z} . \tag{37}
\end{equation*}
$$

Remark 4.3. Firstly, it can easily be seen that

$$
\mathcal{M} S_{q}^{0}(\beta, \lambda)=\mathcal{M} \mathcal{S}_{q}(\beta, \lambda),
$$

where $\mathcal{M} \mathcal{S}_{q}(\beta, \lambda)$ is the class of functions defined in Definition 1.8. Secondly, we have

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M} S_{q}^{0}(\beta, \lambda)=\mathcal{H}(\beta, \lambda)
$$

where the class $\mathcal{H}(\beta, \lambda)$ was introduced and studied by Wang et al. For detail see [20, 21].
The following results can be proved by using the similar arguments as in Section 3, so we choose to omit the details of proofs.

Theorem 4.4. If $f \in \mathcal{M} S_{q}^{\delta}(\beta, \lambda)$, then for any complex number μ

$$
\left|a_{1}-\mu a_{0}^{2}\right| \leqq \begin{cases}\frac{\mu(\beta-q) \eta^{2} \psi_{1}+(\eta-q)(1-\gamma) \sigma \psi_{0}^{2}}{(q-\beta) \psi_{0}^{2} \psi_{1}}, & \mu \leqq \frac{(q-1-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}}, \\ \frac{\sigma(1-\gamma)}{(\beta-q) \psi_{1}{ }^{1}}, & \frac{(q-1-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}} \leqq \mu \leqq \frac{(1+q-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}^{\prime}}, \\ \frac{\mu(\beta-q) \eta^{2} \eta_{1}+(\eta-q)(1-\gamma) \sigma \psi_{0}^{2}}{(\beta-q) \psi_{1}}, & \mu \geqq \frac{(1+q-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}} .\end{cases}
$$

Furthermore for $\frac{(q-1-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}}<\mu \leqq \frac{(q-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}}$,

$$
\left|a_{1}-\mu a_{0}^{2}\right|+\left(\frac{\mu(\beta-q) \eta^{2} \psi_{1}+(\eta+1-q)(1-\gamma) \sigma \psi_{0}^{2}}{(\beta-q) \eta^{2} \psi_{1}}\right)\left|a_{0}\right|^{2} \leqq \frac{\sigma(1-\gamma)}{(\beta-q) \psi_{1}}
$$

and $\frac{(q-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}} \leqq \mu<\frac{(1+q-\eta) \sigma \psi_{0}^{2}}{(\beta-q)(1+q) \eta \psi_{1}}$,

$$
\left|a_{1}-\mu a_{0}^{2}\right|+\left(\frac{(1+q-\eta)(1-\gamma) \sigma \psi_{0}^{2}-\mu(\beta-q) \eta^{2} \psi_{1}}{(\beta-q) \eta^{2} \psi_{1}}\right)\left|a_{0}\right|^{2} \leqq \frac{\sigma(1-\gamma)}{(\beta-q) \psi_{1}},
$$

where σ, η and ψ_{n} are given by (16), (17) and (35) respectively. These results are sharp.

By putting $\psi_{n}=1$, the above result is proved in Theorem 3.1.
Theorem 4.5. Let γ be defined by (11). If $f \in \mathcal{M} \mathcal{S}_{q}^{\delta}(\beta, \lambda)$ of the (5) with $0<\beta<\frac{2}{5}$, then

$$
\left|a_{0}\right| \leqq \frac{\sigma \eta}{Q_{q}(0, \beta) \psi_{0}}
$$

and

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\sigma \eta}{Q_{q}(n, \beta) \psi_{n}} \prod_{j=0}^{n-1}\left(1+\frac{\sigma \eta}{Q_{q}(j, \beta)}\right), \quad n \in \mathbb{N} \tag{38}
\end{equation*}
$$

where σ, η and $Q_{q}(n, \beta)$ are given by (16), (17) and (24) respectively.
By choosing $\psi_{n}=1$, the above result is proved in Theorem 3.2.
Theorem 4.6. Let

$$
\begin{equation*}
\frac{1}{q}-\Upsilon(\beta, q)-\gamma>0 \tag{39}
\end{equation*}
$$

Also suppose that $f \in \mathcal{M}$ is given by (5). If

$$
\begin{equation*}
\sum_{n=0}^{\infty} \psi_{n}\left(\Lambda_{q}(n, \beta, \gamma)\right)\left|a_{n}\right| \leqq \frac{1}{q}-\Upsilon(\beta, q)-\gamma \tag{40}
\end{equation*}
$$

then $f \in \mathcal{M S}_{q}^{\delta}(\beta, \lambda)$ where $\Upsilon(\beta, q), \psi_{n}$ and γ are given in (12), (35) and (11) respectively.
When $\delta=0$ and $q \longrightarrow 1^{-}$, Theorem 4.6 reduces to the following known result.
Corollary 4.7. (See [20]) Let

$$
1+\beta \lambda\left(\lambda+\frac{1}{2}\right)-\lambda-\frac{3}{2} \beta>0
$$

Also suppose that $f \in \mathcal{M}$ is given by (5). If

$$
\sum_{n=0}^{\infty}(n+\beta n(n-1)+\gamma)\left|a_{n}\right| \leqq 1-\gamma-2 \beta
$$

then $f \in \mathcal{H}(\beta, \lambda)$.
Acknowledgement. The authors are very grateful to the editorial board and the reviewers, whose comments improved the quality of the paper.

References

[1] H.S. Al-Amiri, Certain analogy of the α convex functions, Rev. Roumaine Math. Pures Appl., 10 (1978), 1449-1454.
[2] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[3] M.R. Ganigi, B.A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33 (81) (1989), 9-13.
[4] M.E.H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), 77-84.
[5] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[6] F.H. Jackson, q-difference equations, Amer. J. Math. 32 (1910), 305-314.
[7] S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca 64(5) (2014), 1183-1196.
[8] W.C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Zhong Li, Fuyao Ren, Lo Yang and Shunyan Zhang (Editors), Proceedings of the Conference on Complex Analysis (Tianjin, June 19-23, 1992), Conference Proceedings and Lecture Notes in Analysis, Vol. I, International Press, Cambridge, Massachusetts, 1994, pp. 157-169.
[9] S. Mahmood, Q.Z. Ahmad, H.M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl. 2019 (2019), Art. 88.
[10] S. Mahmood, M. Jabeen, S.N. Malik, H.M. Srivastava, R. Manzoor, S.M.J. Riaz, Some coefficient inequalities of q-Starlike functions associated with conic domain defined by q-derivative, J. Function Spaces 2018 (2018), ID 8492072, 13pages.
[11] S. Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-Starlike functions, Symmetry 11(2019), 347, 1-13.
[12] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), 48-82.
[13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[14] H.M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), pp. 329\{354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[15] H.M. Srivastava, Q.Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics 7(2) (2019), 181, 1-15.
[16] H.M. Srivastava, S. Altınkaya, S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32(2) (2018), 503-516.
[17] H.M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal. 1 (2017), 61-69.
[18] H.M. Srivastava, M. Tahir, B. Khan, Q.Z. Ahmad N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry 11 (2019) 292, 1-14.
[19] H.E.O. Ucar, Coefficient inequality for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.
[20] Z.-G. Wang, H.M. Srivastava and S.-M. Yuan, Some basic properties of certain subclasses of meromorphically starlike functions, J. Inequal. Appl. 2014 (2014) Art. 29.
[21] Z.-G. Wang, Z.-H. Liu and R.-G. Xiang, Some criteria for meromorphic multivalent starlike functions, Appl. Math. Comp. 218 (2011), 1107-1111.

[^0]: 2010 Mathematics Subject Classification. Primary 05A30, 30C45; Secondary 11B65, 47B38
 Keywords. Analytic functions; meromorphic functions; meromorphic starlike functions; Hadamard product; q-derivative operator; Ruscheweyh q-differential operator.

 Received: 16 December 2018; Accepted: 18 May 2019
 Communicated by Hari. M. Srivastava
 *Corresponding Author: Mohsan Raza
 Email addresses: zahoorqazi5@gmail.com (Qazi Zahoor Ahmad), nazarmaths@gmail.com (Nazar Khan), mohsan976@yahoo.com (Mohsan Raza), tahirmuhammad778@gmail.com (Muhammad Tahir), bilalmaths789@gmail.com (Bilal Khan)

