CR-Submanifolds of $(L C S)_{n}$-Manifolds with Respect to Quarter Symmetric Non-Metric Connection

Tanumoy Pal ${ }^{\text {a }}$, Md. Hasan Shahid ${ }^{\text {b }}$, Shyamal Kumar Hui ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, The University of Burdwan, Burdwan, 713104, West Bengal, India.
${ }^{b}$ Department of Mathematics, Jamia Millia Islamia, New Delhi- 110025, India

Abstract

The present paper deals with the study of CR-submanifolds of $(L C S)_{n}$-manifolds with respect to quarter symmetric non-metric connection. We investigate integrability of the distributions and the geometry of foliations. The totally umbilical CR-submanifolds of said ambient manifolds are also studied. An example is presented to illustrate the results.

1. Introduction

Quarter symmetric linear connection on smooth manifolds \tilde{M} introduced in [12], is a linear connection $\bar{\nabla}$ such that its torsion tensor T is of the form

$$
\begin{equation*}
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1}
\end{equation*}
$$

where η is an 1-form and ϕ is a $(1,1)$ type tensor. If $\phi X=X$, in particular then it reduces to semisymmetric connection introduced in [11]. Further, if $\left(\bar{\nabla}_{X} g\right)(Y, Z) \neq 0$ for all $X, Y, Z \in \chi(\tilde{M})$, then $\bar{\nabla}$ is said to be a quarter symmetric non-metric connection.

Lorentzian concircular structure manifolds (briefly, $(L C S)_{n}$-manifolds) introduced in [29] as a generalisation of LP-Sasakian manifold [25], has many applications in the general theory of relativity and cosmology ([32], [33]). In [23] it has shown that LCS- spacetimes coincide with generalised Robertson-Walker spacetimes. So, these manifolds are interesting for geometry as well as for physics. For detail study of this type of manifolds we may refer to ([7], [13], [30], [31], [35], [36], [37], [38]) and for study of submanifolds of $(L C S)_{n}$-manifolds we may refer ([4], [14]-[21], [39]).

CR-submanifolds was introduced by Bejancu in [5]. There are several research papers (see [3], [5], [8], [22], [28], [31]) on geometry of CR- submanifolds. Cohomology of CR-submanifolds is studied in [2], [9], [10]. In the present paper we have studied curvature properties and CR-submanifolds of $(L C S)_{n}$-manifolds \tilde{M} with respect to quarter symmetric non-metric connection $\bar{\nabla}$. The totally umbilical CR-submanifolds of \tilde{M} is also studied. Finally, we have presented an example of a submanifold of a $(L C S)_{5}$-manifold to illustrate the results.

[^0]
2. Preliminaries

A Lorentzian concircular structure manifold (briefly $(L C S)_{n}$-manifold) is a Lorentzian manifold \tilde{M} of dimension n endowed with the unit timelike concircular vector field ξ, its associated 1-form η and an $(1,1)$ tensor field ϕ such that

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=\alpha \phi X \tag{2}
\end{equation*}
$$

α being a non-zero scalar function satisfying

$$
\begin{equation*}
\tilde{\nabla}_{X} \alpha=(X \alpha)=d \alpha(X)=\rho \eta(X) \tag{3}
\end{equation*}
$$

where $\rho=-(\xi \alpha)$ is another scalar, and $\tilde{\nabla}$ is the Levi-Civita connection of the Lorentzian metric g. For $\alpha=1$, a $(L C S)_{n}$-manifold reduces to the $L P$-Sasakian manifold ([25], [34]).
In a $(L C S)_{n}$-manifold $(n>2) \tilde{M}$, the following relations hold [29]:

$$
\begin{align*}
& \eta(\xi)=-1, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{4}\\
& \phi^{2} X=X+\eta(X) \xi, \tag{5}\\
& \left(\tilde{\nabla}_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\}, \quad(\alpha \neq 0) \tag{6}\\
& \left(\tilde{\nabla}_{X} \phi\right) Y=\alpha\{g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \tag{7}\\
& (X \rho)=d \rho(X)=\beta \eta(X) \tag{8}
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T \bar{M})$ and $\beta=-(\xi \rho)$ is a scalar function.
Let M be a submanifold of dimension m of a $(L C S)_{n}$-manifold $\tilde{M}(m<n)$ with induced metric g and induced connections ∇ and ∇^{\perp} on $T M$ and $T^{\perp} M$, respectively. Then for $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, Gauss and Weingarten formulae are given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{10}
\end{equation*}
$$

respectively, where h and A_{V} are second fundamental form and shape operator for the immersion of M satisfying the relation [40]

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{11}
\end{equation*}
$$

M is totally umbilical if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{12}
\end{equation*}
$$

for each $X, Y \in \Gamma(T M)$, where H is the mean curvature vector on M and M becomes minimal if $H \equiv 0$, totally geodesic if $h \equiv 0$. Throughout the paper we have taken M is a submanifold of \tilde{M}.
Definition 2.1. [6] A submanifold M of \tilde{M} is called a $C R$-submanifold if ξ is tangent to M and there is a differential distribution D and its orthogonal complementary distribution D^{\perp} such that
(i) $\phi(D) \subseteq D$ and
(ii) $\phi\left(D^{\perp}\right) \subseteq T^{\perp} M$.

Here, D (resp. D^{\perp}) is called horizontal (resp. vertical) distribution. M is called ξ-horizontal (resp. ξ-vertical) if $\xi \in D$ (resp. $\xi \in D^{\perp}$). Now we have

$$
\begin{equation*}
T M=D \oplus D^{\perp}, \text { and } T^{\perp} M=\phi\left(D^{\perp}\right) \oplus \mu \tag{13}
\end{equation*}
$$

where μ is a normal subbundle invariant to ϕ. For $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, we write

$$
\begin{equation*}
X=P X+Q X \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi V=B V+C V \tag{15}
\end{equation*}
$$

where $P X \in D, Q X \in D^{\perp}, B V=\tan (\phi V)$ and $C V=\operatorname{nor}(\phi V)$.

3. $(L C S)_{n}$-manifolds with respect to quarter symmetric non-metric connection

We consider a linear connection $\overline{\tilde{\nabla}}$ on \tilde{M} by

$$
\begin{equation*}
\overline{\tilde{\nabla}}_{X} Y=\tilde{\nabla}_{X} Y+\eta(Y) \phi X+a(X) \phi Y \tag{16}
\end{equation*}
$$

where a is an 1 -form associated to a vector field A on \tilde{M} by

$$
\begin{equation*}
g(X, A)=a(X) \tag{17}
\end{equation*}
$$

for every $X \in \chi(\tilde{M})$. If $\overline{\tilde{T}}$ be the torsion tensor of \tilde{M} with respect to $\overline{\tilde{\nabla}}$, then from (16), we find

$$
\begin{equation*}
\tilde{\tilde{T}}(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y+a(X) \phi Y-a(Y) \phi X \tag{18}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\left(\overline{\tilde{V}}_{X} g\right)(Y, Z)=-\eta(Y) g(\phi X, Z)-\eta(Z) g(\phi X, Y)-2 a(X) g(\phi Y, Z) \tag{19}
\end{equation*}
$$

Thus $\overline{\tilde{\nabla}}$, given in (16) which satisfies (18) and (19) is a quarter symmetric non-metric connection. The existence and uniqueness of such connection has shown in [27] for LP-Sasakian manifolds.
Let the curvature tensor of \tilde{M} with respect to $\tilde{\nabla}$ and $\tilde{\nabla}$ be $\tilde{\tilde{R}}$ and \tilde{R} respectively. Then we find

$$
\begin{align*}
\tilde{\tilde{R}}(X, Y) Z= & \tilde{R}(X, Y) Z+\alpha[g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X+\eta(Y) \eta(Z) X \\
& -\eta(X) \eta(Z) Y+a(Y) g(X, Z) \xi-a(X) g(Y, Z) \xi] \\
& +(2 \alpha-1)[a(Y) \eta(X) \eta(Z) \xi-a(X) \eta(Y) \eta(Z) \xi] \tag{20}\\
& +(\alpha-1)[a(Y) \eta(Z) X-a(X) \eta(Z) Y]+d a(X, Y) \phi Z .
\end{align*}
$$

After contraction we obtain the Ricci tensor $\overline{\tilde{S}}$ as

$$
\begin{align*}
\tilde{\tilde{S}}(Y, Z) & =\tilde{S}(Y, Z)+\alpha\{1-a(\xi)\} g(Y, Z)-\alpha \lambda g(\phi Y, Z) \tag{21}\\
& +\{n \alpha-(2 \alpha-1) a(\xi)\} \eta(Y) \eta(Z)+(n-2)(\alpha-1) a(Y) \eta(Z)+d a(Y, \phi Z)
\end{align*}
$$

and the scalar curvature $\overline{\tilde{r}}$ as

$$
\begin{equation*}
\overline{\tilde{r}}=\tilde{r}-(n-1) a(\xi)-\lambda^{2}+\mu \tag{22}
\end{equation*}
$$

where $\lambda=$ trace ϕ and $\mu=$ trace $d a$. Thus we have the following:
Theorem 3.1. $\overline{\tilde{R}}, \tilde{S}$ and $\overline{\tilde{r}}$ of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$ are given in (20), (21) and (22) respectively.
For \tilde{M} with respect to $\overline{\tilde{V}}$, we get

$$
\begin{equation*}
\left(\overline{\tilde{\nabla}}_{X} \phi\right) Y=\alpha g(X, Y) \xi+(\alpha-1) \eta(Y) X+(2 \alpha-1) \eta(X) \eta(Y) \xi \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\tilde{\nabla}}_{X} \xi=(\alpha-1) \phi X \tag{24}
\end{equation*}
$$

4. CR-submanifolds M of $(L C S)_{n}$-manifold \tilde{M} with respect to $\tilde{\tilde{\nabla}}$

Let ∇ be the induced connection on M from the connection $\tilde{\nabla}$ and $\bar{\nabla}$ be the induced connection on M from the connection $\bar{\nabla}$. Let h and \bar{h} be second fundamental form with respect to ∇ and $\bar{\nabla}$ respectively.

Then we have

$$
\begin{equation*}
\overline{\tilde{\nabla}}_{X} Y=\bar{\nabla}_{X} Y+\bar{h}(X, Y) \tag{25}
\end{equation*}
$$

From (9), (16) and (25), we get

$$
\begin{equation*}
\bar{\nabla}_{X} Y+\bar{h}(X, Y)=\nabla_{X} Y+h(X, Y)+\eta(Y) \phi X+a(X) \phi Y \tag{26}
\end{equation*}
$$

Using (14) in (26), we get

$$
\begin{align*}
P \bar{\nabla}_{X} Y+Q \bar{\nabla}_{X} Y+\bar{h}(X, Y)= & P \nabla_{X} Y+Q \nabla_{X} Y+h(X, Y)+\eta(Y) \phi P X \tag{27}\\
& +\eta(Y) \phi Q X+a(X) \phi P Y+a(X) \phi Q Y .
\end{align*}
$$

Comparing horizontal, vertical and normal part from both sides, we get

$$
\begin{align*}
P \bar{\nabla}_{X} Y & =P \nabla_{X} Y+\eta(Y) \phi P X+a(X) \phi P Y \tag{28}\\
Q \bar{\nabla}_{X} Y & =Q \nabla_{X} Y \tag{29}\\
\bar{h}(X, Y) & =h(X, Y)+\eta(Y) \phi Q X+a(X) \phi Q Y . \tag{30}
\end{align*}
$$

Now if $X, Y \in D$ then we obtain from (26) that

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X+a(X) \phi Y \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}(X, Y)=h(X, Y) \tag{32}
\end{equation*}
$$

For $X, \xi \in D, \bar{h}(X, \xi)=h(X, \xi)=0$. which means that $\bar{\nabla}$ is a quarter symmetric non-metric connection and the second fundamental forms are equal. This leads to the following:

Proposition 4.1. If M is an invariant submanifold of \tilde{M} admitting $\overline{\tilde{\nabla}}$, then
(i) The induced connection $\bar{\nabla}$ on M is also quarter symmetric non-metric.
(ii) The second fundamental forms h and \bar{h} are equal.

Again if $Z, W \in D^{\perp}$, then we have

$$
\begin{equation*}
\bar{\nabla}_{Z} W=\nabla_{Z} W \tag{33}
\end{equation*}
$$

i.e., both the connections are identical and

$$
\begin{equation*}
\bar{h}(Z, W)=h(Z, W)+\eta(W) \phi Z+a(Z) \phi W \tag{34}
\end{equation*}
$$

If $X \in D$ and $Z \in D^{\perp}$ then

$$
\begin{align*}
\bar{\nabla}_{X} Z & =\nabla_{X} Z+\eta(Z) \phi X \tag{35}\\
\bar{h}(X, Z) & =h(X, Z)+a(X) \phi Z . \tag{36}
\end{align*}
$$

Again for $X \in T M$ and $V \in T^{\perp} M$ from Weingarten formula for quarter symmetric non-metric connection, we have

$$
\begin{equation*}
\overline{\tilde{\nabla}}_{X} V=-\bar{A}_{V} X+\bar{\nabla}_{X}^{\perp} V \tag{37}
\end{equation*}
$$

Also from (10), (15) and (16), we get

$$
\begin{equation*}
\overline{\tilde{\nabla}}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V+a(X) B V+a(X) C V \tag{38}
\end{equation*}
$$

Thus from (37) and (38), we get

$$
\begin{equation*}
\bar{A}_{V} X=A_{V} X-a(X) B V \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X}^{\perp} V=\nabla_{X}^{\perp} V+a(X) C V \tag{40}
\end{equation*}
$$

Now, for $Z \in D^{\perp}, \phi Z \in T^{\perp} M$ and hence for any $X \in T M$, we get

$$
\begin{equation*}
\tilde{\tilde{\nabla}}_{X} \phi Z=-A_{\phi Z} X+a(X)\left\{\nabla_{X}^{\perp} \phi Z+Z+\eta(Z) \xi\right\} \tag{41}
\end{equation*}
$$

from which, we get

$$
\begin{equation*}
\bar{A}_{\phi Z} X=A_{\phi Z} X-a(X)\{Z+\eta(Z)\} \xi \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X}^{\perp} \phi Z=\nabla_{X}^{\perp} \phi Z . \tag{43}
\end{equation*}
$$

Lemma 4.2. Let M be a $C R$-submanifold of \tilde{M} with respect to quarter symmetric non-metric connection. Then

$$
\begin{align*}
P \bar{\nabla}_{X} \phi P Y-P \bar{A}_{\phi Q Y} X & =\phi P\left(\bar{\nabla}_{X} Y\right)+\alpha g(X, Y) P \xi+(\alpha-1) \eta(Y) P X+(2 \alpha-1) \eta(X) \eta(Y) P \xi \tag{44}\\
Q \bar{\nabla}_{X} \phi P Y-Q \bar{A}_{\phi Q Y} X & =B \bar{h}(X, Y)+\alpha g(X, Y) Q \xi+(\alpha-1) \eta(Y) Q X+(2 \alpha-1) \eta(X) \eta(Y) Q \xi \tag{45}\\
\bar{h}(X, \phi P Y)+\bar{\nabla}_{X}^{\perp} \phi Q Y & =\phi\left(Q \bar{\nabla}_{X} Y\right)+C \bar{h}(X, Y) \tag{46}
\end{align*}
$$

for all $X, Y \in T M$.
Proof. From (23), we get

$$
\tilde{\tilde{\nabla}}_{X} \phi Y-\phi\left(\overline{\tilde{V}}_{X} Y\right)=\alpha g(X, Y) \xi+(\alpha-1) \eta(Y) X+(2 \alpha-1) \eta(X) \eta(Y) \xi
$$

Using (14), (15), (25) and (37) in above equation, we get

$$
\begin{array}{r}
P \bar{\nabla}_{X} \phi P Y+Q \bar{\nabla}_{X} \phi P Y+\bar{h}(X, \phi P Y)-P \bar{A}_{\phi Q Y} X-Q \bar{A}_{\phi Q Y} X \tag{47}\\
+\bar{\nabla}_{X}^{\perp} \phi Q Y-\phi\left(P \bar{\nabla}_{X} Y\right)-\phi\left(Q \bar{\nabla}_{X} Y\right)-B \bar{h}(X, Y)-C \bar{h}(X, Y)= \\
\alpha g(X, Y) P \xi+g(X, Y) Q \xi+(\alpha-1) \eta(Y) P X+(\alpha-1) \eta(Y) Q X \\
+(2 \alpha-1) \eta(X) \eta(Y) P \xi+(2 \alpha-1) \eta(X) \eta(Y) Q \xi .
\end{array}
$$

Equating horizontal, vertical and normal components of (47), the result follows.

5. Integrability of the distributions

Lemma 5.1. Let M be a $C R$-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$. Then

$$
\begin{align*}
\phi P[W, \mathrm{Z}]= & A_{\phi W} \mathrm{Z}-A_{\phi \mathrm{Z}} W+[a(W) \mathrm{Z}-a(\mathrm{Z}) W]+[a(W) \eta(\mathrm{Z})-a(\mathrm{Z}) \eta(W)] \xi \tag{48}\\
& +(\alpha-1)[\eta(W) \mathrm{Z}-\eta(\mathrm{Z}) W]
\end{align*}
$$

for all $W, Z \in D^{\perp}$.
Proof. For any $W, Z \in D^{\perp}$ we have

$$
\overline{\tilde{\nabla}}_{Z} \phi W=\left(\overline{\tilde{\nabla}}_{Z} \phi\right) W+\phi\left(\overline{\tilde{V}}_{Z} W\right)
$$

Using (14), (15), (23), (25) and (37) in above equation, we get

$$
\begin{align*}
\overline{\tilde{\nabla}}_{Z}^{\perp} \phi W= & \bar{A}_{\phi W} Z+\phi P\left(\bar{\nabla}_{Z} W\right)+\phi\left(Q \bar{\nabla}_{Z} W\right)+B \bar{h}(W, Z)+C \bar{h}(W, Z) \tag{49}\\
& +\alpha g(W, Z) \xi+(\alpha-1) \eta(W) Z+(2 \alpha-1) \eta(Z) \eta(W) \xi .
\end{align*}
$$

Also from (46), we get

$$
\begin{equation*}
\bar{\nabla}_{Z}^{\perp} \phi W=\phi\left(Q \bar{\nabla}_{Z} W\right)+C \bar{h}(Z, W) \tag{50}
\end{equation*}
$$

From (49) and (50), we get

$$
\begin{equation*}
\phi\left(P \bar{\nabla}_{Z} W\right)=-\bar{A}_{\phi W} Z-B \bar{h}(W, Z)-\alpha g(W, Z) \xi-(\alpha-1) \eta(Y) Z-(2 \alpha-1) \eta(Z) \eta(W) \xi \tag{51}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\phi P[W, Z]=\bar{A}_{\phi W} Z-\bar{A}_{\phi Z} W+(\alpha-1)\{\eta(W) Z-\eta(Z) W\} \tag{52}
\end{equation*}
$$

In view of (42), (52) yields

$$
\begin{equation*}
\phi P[W, Z]=A_{\phi W} Z-A_{\phi Z} W-a(Z)[W+\eta(Y) \xi]+a(W)[Z+\eta(Z) \xi]+(\alpha-1)[\eta(W) Z-\eta(Z) W] \tag{53}
\end{equation*}
$$

from which (48) follows.
Theorem 5.2. Let M be a $C R$-submanifold of \tilde{M} with respect to $\tilde{\bar{V}}$. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{\phi W} Z-A_{\phi Z} W=a(Z) W-a(W) Z+(a(Z) \eta(W)-a(W) \eta(Z)) \xi+(\alpha-1)(\eta(Z) W-\eta(W) Z) \tag{54}
\end{equation*}
$$

for all $W, Z \in D^{\perp}$.
Proof. From Lemma 5.1, it is obvious.
Corollary 5.3. Let M be a ξ-horizontal $C R$-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then the distribution D^{\perp} is integrable if and only if

$$
A_{\phi W} Z-A_{\phi Z} W=a(Z) W-a(W) Z
$$

for all $W, Z \in D^{\perp}$.
Remark 1. Let M be a CR-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then the distribution D^{\perp} is integrable if and only if

$$
A_{\phi W} Z-A_{\phi Z} W=\alpha[\eta(Z) W-\eta(W) Z]
$$

for all $W, Z \in D^{\perp}$.
Remark 2. Let M be a ξ-horizontal CR-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then the distribution D^{\perp} is integrable if and only if

$$
A_{\phi W} Z=A_{\phi Z} W
$$

for all $W, Z \in D^{\perp}$.
Theorem 5.4. Let M be a $C R$-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$. Then the distribution D is integrable if and only if

$$
\begin{equation*}
h(X, \phi Y)=h(Y, \phi X), \quad \text { for all } X, Y \in D \tag{55}
\end{equation*}
$$

Proof. For $X, Y \in D$, we have from (32) and (46) that

$$
\begin{equation*}
\phi\left(Q \bar{\nabla}_{X} Y\right)=h(X, \phi Y)-\operatorname{Ch}(X, Y) \tag{56}
\end{equation*}
$$

from which we get

$$
\begin{equation*}
\phi Q[X, Y]=h(X, \phi Y)-h(Y, \phi X) \tag{57}
\end{equation*}
$$

Therefore D is integrable if and only if the relation (55) holds.
Remark 3. Let M be a CR-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then the distribution D is integrable if and only if $h(X, \phi Y)=h(Y, \phi X)$ for all $X, Y \in D$.

Theorem 5.5. Let M be a $C R$-submanifold of \tilde{M} with respect to $\tilde{\bar{\nabla}}$. If the distribution D is integrable and the leaf of D is totally geodesic in M then

$$
\begin{equation*}
g(h(X, Y), \phi Z)+(\alpha-1) \eta(Z) g(X, Y)+(2 \alpha-1) \eta(X) \eta(Y) \eta(Z)=0 \tag{58}
\end{equation*}
$$

for all $X, Y \in D$ and $Z \in D^{\perp}$.
Proof. If D is integrable and leaf of D is totally geodesic in M then $\bar{\nabla}_{X} \phi Y \in D$ for $X, Y \in D$. Now for $X \in D$ and $Z \in D^{\perp}$ we have from (47) that

$$
\begin{equation*}
\phi P\left(\bar{\nabla}_{X} Z\right)=-\bar{A}_{\phi Z} X+\bar{\nabla}_{X}^{\perp} \phi Z-\phi\left(Q \bar{\nabla}_{X} Z\right)-\phi \bar{h}(X, Z)-(\alpha-1) \eta(Z) X-(2 \alpha-1) \eta(X) \eta(Z) \xi \tag{59}
\end{equation*}
$$

From (14), (15) and (59), we find

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X} \phi Y, Z\right)=-g\left(\phi Y, \bar{\nabla}_{X} Z\right)=-g\left(\phi Y, P \bar{\nabla}_{X} Z\right)=-g\left(Y, \phi P \bar{\nabla}_{X} Z\right) \\
& =g\left(\bar{A}_{\phi Z} X+B \bar{h}(X, Z), Y\right)+(\alpha-1) \eta(Z) g(X, Y)+(2 \alpha-1) \eta(X) \eta(Y) \eta(Z)
\end{aligned}
$$

for all $X, Y \in D$ and $Z \in D^{\perp}$.
Now using (11) and (32) in the above relation, we get (58).
Corollary 5.6. Let M be a ξ-horizontal $C R$-submanifold of \tilde{M} with respect to $\tilde{\bar{\nabla}}$. Then the distribution D is integrable and the leaf of D is totally geodesic in M if and only if

$$
\begin{equation*}
g(h(X, Y), \phi Z)=0, \text { for all } X, Y \in D \text { and } Z \in D^{\perp} \tag{60}
\end{equation*}
$$

Proof. The direct part follows from Theorem 5.5. For converse part, let the relation (60) holds. Then using (7) in (60), we get

$$
0=g(h(X, Y), \phi Z)=g\left(\overline{\tilde{\nabla}}_{X} \phi Y, \phi Z\right)=g\left(\bar{\nabla}_{X} Y, Z\right)
$$

which implies that $\bar{\nabla}_{X} Y \in D$ for any $X, Y \in D$ and the leaf of D is totally geodesic in M with respect to quarter symmetric non-metric connection. This completes the proof.
Theorem 5.7. Let M be a CR-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$. Then the distribution D^{\perp} is integrable and the leaf of D^{\perp} is totally geodesic in M if and only if

$$
\begin{equation*}
g(h(X, Z), \phi W)+a(X) g(Z, W)+a(X) \eta(Z) \eta(W)+\alpha g(Z, W) \eta(X)+(2 \alpha-1) \eta(X) \eta(Z) \eta(W)=0 \tag{61}
\end{equation*}
$$

for all $X \in D$ and $Z, W \in D^{\perp}$.
Proof. For all $Z, W \in D^{\perp}$, we have from (47) that

$$
\begin{align*}
\phi P \bar{\nabla}_{Z} W= & -\bar{A}_{\phi W} Z+\bar{\nabla}_{Z}^{\perp} \phi W-\phi\left(Q \bar{\nabla}_{Z} W\right)-\phi \bar{h}(Z, W) \tag{62}\\
& -\alpha g(Z, W) \xi-(2 \alpha-1) \eta(Z) \eta(W) \xi-(\alpha-1) \eta(W) Z
\end{align*}
$$

Now, taking inner product of (62) with $X \in D$ we get

$$
g\left(\phi P \bar{\nabla}_{Z} W, X\right)=-g\left(\bar{A}_{\phi W} Z, X\right)-\alpha g(Z, W) \eta(X)-(2 \alpha-1) \eta(X) \eta(Z) \eta(W)
$$

Using (11) and (36) in the above equation, we get

$$
\begin{align*}
g\left(\phi P \bar{\nabla}_{Z} W, X\right)= & g(h(X, Z), \phi W)+a(X) g(Z, W)+a(X) \eta(Z) \eta(W) \tag{63}\\
& +\alpha g(Z, W) \eta(X)+(2 \alpha-1) \eta(X) \eta(Z) \eta(W)
\end{align*}
$$

from which (61) follows. The converse part is trivial.
Corollary 5.8. Let M be a ξ-horizontal $C R$-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$. Then the distribution D^{\perp} is integrable and the leaf of D^{\perp} is totally geodesic in M if and only if

$$
\begin{equation*}
g(h(X, Z), \phi W)+a(X) g(Z, W)+\alpha g(Z, W) \eta(X)=0 \tag{64}
\end{equation*}
$$

for all $X \in D$ and $Z, W \in D^{\perp}$.

Corollary 5.9. Let M be a ξ-vertical $C R$-submanifold of \tilde{M} with respect to $\overline{\tilde{\nabla}}$. Then the distribution D^{\perp} is integrable and the leaf of D^{\perp} is totally geodesic in M if and only if

$$
\begin{equation*}
g(h(X, Z), \phi W)+a(X) g(Z, W)+a(X) \eta(Z) \eta(W)=0 \tag{65}
\end{equation*}
$$

for all $X \in D$ and $Z, W \in D^{\perp}$.
Definition 5.10 ([1], [24]). A CR-submanifold M of a $(L C S)_{n}$-manifold \tilde{M} with respect to $\bar{\nabla}$ is called Lorentzian contact $C R$-product if M is locally a Riemannain product of M_{T} and M_{\perp}, where M_{T} and M_{\perp} denotes the leaves of the distribution D and D^{\perp} respectively.

Theorem 5.11. Let M be a ξ-horizontal $C R$-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then M is a Lorentzian contact $C R$-product if and only if

$$
\begin{equation*}
A_{\phi W} X+\alpha \eta(X) W+a(X) W=0 \tag{66}
\end{equation*}
$$

for all $X \in D$ and $W \in D^{\perp}$.
Proof. As the leaves of D^{\perp} are totally geodesic, we have from (64) that

$$
g\left(A_{\phi W} X+\alpha \eta(X) W+a(X) W, Z\right)=0
$$

for all $X \in D$ and $Z, W \in D^{\perp}$, which implies that

$$
\begin{equation*}
A_{\phi W} X+\alpha \eta(X) W+a(X) W \in D \tag{67}
\end{equation*}
$$

Now for $X, Y \in D$ and $W \in D^{\perp}$, we have

$$
\begin{aligned}
g\left(A_{\phi W} X+\alpha \eta(X) W+a(X) W, Y\right) & =g\left(A_{\phi W} X, Y\right)=g\left(\phi\left(\overline{\bar{\nabla}}_{X} Y-\bar{\nabla}_{X} Y\right), W\right) \\
& =g\left(\bar{\nabla}_{X} \phi Y, W\right)=g\left(\bar{\nabla}_{X} \phi Y, W\right)=0
\end{aligned}
$$

which means that

$$
\begin{equation*}
A_{\phi W} X+\alpha \eta(X) W+a(X) W \in D^{\perp} \tag{68}
\end{equation*}
$$

From (67) and (68), we get (66). Conversely, let (66) holds. Then, for $Z \in D^{\perp}$, we get

$$
g(h(X, Z), \phi W)+a(X) g(Z, W)+\alpha \eta(X) g(Z, W)=0
$$

which implies that the leaves of D^{\perp} are totally geodesic. Next for all $X, Y \in D$ and $W \in D^{\perp}$, we have

$$
\begin{aligned}
g\left(\bar{\nabla}_{X} Y, W\right) & =g\left(\overline{\tilde{\nabla}}_{X} Y, W\right)=g\left(\phi \overline{\tilde{\nabla}}_{X}, \phi W\right) \\
& =g\left(\overline{\tilde{\nabla}}_{X} \phi Y, \phi W\right)=g(h(X, \phi Y), \phi W) \\
& =g\left(A_{\phi W} X, \phi Y\right) \\
& =g(-\alpha \eta(Y) W-a(X) W, \phi Y) \\
& =0 .
\end{aligned}
$$

Therefore, the leaves of D are totally geodesic in M. So, M is a Lorentzian contact CR-product.

6. Totally umbilical CR-submanifolds

In this section, we study totally umbilical CR-submanifolds of $(L C S)_{n}$-manifolds. Let M be a totally umbilical CR-submanifolds of \tilde{M} with respect to $\tilde{\nabla}$.
Then for $Z, W \in D^{\perp}$ we have from (7) that

$$
\begin{equation*}
\tilde{\nabla}_{Z} \phi W-\phi\left(\tilde{\nabla}_{Z} W\right)=\alpha[g(Z, W) \xi+2 \eta(Z) \eta(W) \xi+\eta(W) Z] . \tag{69}
\end{equation*}
$$

Using (9), (10) and (14) in (69), we get

$$
\begin{equation*}
-A_{\phi W} Z+\nabla_{Z}^{\perp} \phi W=\phi\left(P \nabla_{Z} W\right)+\phi\left(Q \nabla_{Z} W\right)+\phi h(Z, W)+\alpha\{g(Z, W) \xi+2 \eta(Z) \eta(W) \xi+\eta(W) Z\} \tag{70}
\end{equation*}
$$

Taking inner product of (70) with $Z \in D^{\perp}$ and using (11), we get

$$
\begin{equation*}
-g(h(Z, Z), \phi W)=g(\phi h(Z, W), Z)+\alpha\left\{g(Z, W) \eta(Z)+2 \eta^{2}(Z)+\eta(W) g(Z, Z)\right\} \tag{71}
\end{equation*}
$$

In view of (12), (71) yields

$$
\begin{equation*}
g(H, \phi W)=-\frac{1}{\|Z\|^{2}}\left[g(Z, W) g(\phi H, Z)+\alpha\left\{g(Z, W) \eta(Z)+2 \eta^{2}(Z)+\eta(W)\|Z\|^{2}\right\}\right] . \tag{72}
\end{equation*}
$$

Interchanging Z and W in (72), we obtain

$$
\begin{equation*}
g(H, \phi Z)=-\frac{1}{\|W\|^{2}}\left[g(Z, W) g(\phi H, W)+\alpha\left\{g(Z, W) \eta(W)+2 \eta^{2}(W)+\eta(Z)\|W\|^{2}\right\}\right] \tag{73}
\end{equation*}
$$

Substituting (72) in (73), we get after simplification

$$
\begin{align*}
{\left[1-\frac{g(Z, W)^{2}}{\|Z\|^{2}\|W\|^{2}}\right] g(H, \phi Z)-\alpha\left[\frac{\eta(W) g(Z, W)}{\|W\|^{2}}-\eta(Z)\right] } & -2 \alpha \frac{\eta(Z) \eta(W)}{\|W\|^{2}}\left[\frac{\eta(Z) g(Z, W)}{\|Z\|^{2}}-\eta(W)\right] \tag{74}\\
& -\alpha \frac{g(Z, W)}{\|W\|^{2}}\left[\frac{\eta(Z) g(Z, W)}{\|Z\|^{2}}-\eta(W)\right]=0
\end{align*}
$$

Hence we get the following theorems:
Theorem 6.1. Let M be a ξ-horizontal totally umbilical $C R$-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then one of the following holds:
(i) M is minimal in \tilde{M},
(ii) $\operatorname{dim} D^{\perp}=1$,
(iii) $H \in \Gamma(\mu)$.

Theorem 6.2. Let M be a ξ-vertical totally umbilical $C R$-submanifold of \tilde{M} with respect to $\tilde{\nabla}$. Then dim $D^{\perp}=1$.
Remark 4. The Theorem 6.1 and Theorem 6.2 also holds good in case of considering \tilde{M} with respect to $\tilde{\tilde{\nabla}}$.

7. Cohomology

In this section we have studied cohomology of CR-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$ and obtain the following:

Lemma 7.1. Let M be a ξ-vertical $C R$-submanifold of \tilde{M} with respect to $\overline{\tilde{\nabla}}$. Then the invariant distribution D is minimal if

$$
\begin{equation*}
g\left(A_{\phi Z} X, \phi X\right)=-\alpha \eta(Z) g(X, \phi X) \tag{75}
\end{equation*}
$$

for every $X \in D$ and $Z \in D^{\perp}$.

Proof. For $X \in D$ and $Z \in D^{\perp}$, we have from (16) that

$$
\begin{equation*}
g\left(Z, \bar{\nabla}_{X} X\right)=g\left(Z, \tilde{\nabla}_{X} X\right)=g\left(Z, \tilde{\nabla}_{X} X\right) \tag{76}
\end{equation*}
$$

By virtue of (2), (4) and (7), (76) yields

$$
\begin{equation*}
g\left(Z, \bar{\nabla}_{X} X\right)=-g\left(\tilde{\nabla}_{X} \phi Z, \phi X\right)+\alpha \eta(Z) g(X, \phi X) \tag{77}
\end{equation*}
$$

Using (10) in (77), we find

$$
\begin{equation*}
g\left(Z, \bar{\nabla}_{X} X\right)=g\left(A_{\phi Z} X, \phi X\right)+\alpha \eta(Z) g(X, \phi X) \tag{78}
\end{equation*}
$$

Replacing X by ϕX in (78), we obtain

$$
\begin{equation*}
g\left(Z, \bar{\nabla}_{\phi X} \phi X\right)=g\left(A_{\phi Z} X, \phi X\right)+\alpha \eta(Z) g(X, \phi X) . \tag{79}
\end{equation*}
$$

From (78) and (79), we get

$$
\begin{equation*}
g\left(Z, \bar{\nabla}_{X} X\right)+g\left(Z, \bar{\nabla}_{\phi X} \phi X\right)=2 g\left(A_{\phi Z} X, \phi X\right)+2 \alpha \eta(Z) g(X, \phi X) . \tag{80}
\end{equation*}
$$

Thus the result follows from (80).
Let $\left\{e_{1}, \cdots, e_{q}, e_{q+1}=\phi e_{1}, \cdots, e_{2 q}=\phi e_{q}, e_{2 q+1}, \cdots, e_{m-1}=e_{2 q+p-1}, e_{m}=e_{2 q+p}=\xi\right\}$ is a local pseudo orthonormal basis of $\chi(M)$ such that $\left\{e_{1}, \cdots, e_{2 q}\right\}$ is a local basis of D and $\left\{e_{2 q+1}, \cdots, e_{2 q+p}\right\}$ is a local basis of D^{\perp}. We take $\left\{\omega^{1}, \cdots, \omega^{2 q}\right\}$ as dual basis of $\left\{e_{1}, \cdots, e_{2 q}\right\}$ and $\left\{\theta^{2 q+1}, \cdots, \theta^{2 q+p-1}, \eta\right\}$ as the dual basis of $\left\{e_{2 q+1}, \cdots, e_{2 q+p-1}, \xi\right\}$. Let $v=\omega^{1} \wedge \omega^{2} \cdots \wedge \omega^{2 q}$ is the transversal volume form of a foliation \mathcal{F}^{\perp} defined by D^{\perp} on M. Then

$$
d v=(-1)^{j} \omega^{1} \wedge \omega^{2} \cdots \wedge d \omega^{j} \wedge \cdots \wedge \omega^{2 q}
$$

Thus $d v=0$ if

$$
\begin{equation*}
d v\left(W_{1}, W_{2}, X_{1}, \cdots, X_{2 q-1}\right)=0 \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
d v\left(W_{1}, X_{1}, \cdots, X_{2 q}\right)=0 \tag{82}
\end{equation*}
$$

for any $X_{1}, X_{2}, \cdots, X_{2 q} \in D$ and $W_{1}, W_{2} \in D^{\perp}$.
By straightforward we can say that (81) holds if D^{\perp} is integrable and (82) holds if D is minimal. Consequently v is closed if (54) and (75) holds simultaneously.
Again we take the p-form $v^{\perp}=\theta^{2 q+1} \wedge \cdots \wedge \theta^{2 q+p-1} \wedge \eta$ so that
$\theta^{i}\left(e_{j}\right)=\delta_{j^{\prime}}^{i}, \theta_{/ D}^{i}=0, i, j=\overline{2 q+1,2 q+p-1}$. Then by similar argument v is closed if D^{\perp} is minimal and D is integrable i.e. D^{\perp} is minimal and $h(X, \phi Y)=h(Y, \phi X)$ for $X, Y \in D$. Thus we get the following theorem:

Theorem 7.2. Let M be a compact $C R$-submanifold of \tilde{M} with respect to $\tilde{\tilde{\nabla}}$. Then the transversal volume form v defines a cohomology class $c(v):=[v] \in H^{2 q}(M ; \mathbb{R}), 2 q=\operatorname{dimD}$ if (54) and (75) holds simultaneously.
Furthermore if D^{\perp} is minimal and $h(X, \phi Y)=h(Y, \phi X)$ for $X, Y \in D$ holds then $H^{2 i}(M, \mathbb{R}) \neq 0$ for any $i \in\{1, \cdots, q\}$.

8. Example

In this section we construct an example of a $(L C S)_{5}$-manifold as similar in [20], then we verify Proposition 4.1 and the relation (20).

Example 8.1. Let us consider the manifold $\tilde{M}=\left\{(x, y, z, u, v) \in \mathbb{R}^{5}:(x, y, z, u, v) \neq(0,0,0,0,0)\right\}$. We take the linearly independent vector fields at each point of \tilde{M} as
$e_{1}=e^{-k z}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), \quad e_{2}=e^{-k z} \frac{\partial}{\partial y}, \quad e_{3}=e^{-2 k z} \frac{\partial}{\partial z}, \quad e_{4}=e^{-k z}\left(u \frac{\partial}{\partial u}+v \frac{\partial}{\partial v}\right), \quad e_{5}=e^{-k z} \frac{\partial}{\partial v}$ for some scalar k.
Let \tilde{g} be the metric defined by

$$
\tilde{g}\left(e_{i}, e_{j}\right)=\left\{\begin{array}{l}
1, \text { for } i=j \neq 3 \\
0, \text { for } i \neq j \\
-1, \text { for } i=j=3
\end{array}\right.
$$

Here $i, j \in\{1,2, \cdots, 5\}$.
Let η be the 1 -form defined by $\eta(Z)=\tilde{g}\left(Z, e_{3}\right)$, for any vector field $Z \in \chi(\tilde{M})$. Let ϕ be the $(1,1)$ tensor field defined by $\phi e_{1}=e_{1}, \quad \phi e_{2}=e_{2}, \quad \phi e_{3}=0, \quad \phi e_{4}=e_{4}, \quad \phi e_{5}=e_{5}$. Then using the linearity property of ϕ and \tilde{g} we have $\eta\left(e_{3}\right)=-1, \quad \phi^{2} U=U+\eta(U) \xi$ and $\tilde{g}(\phi U, \phi V)=\tilde{g}(U, V)+\eta(U) \eta(V)$, for every $U, V \in \chi(\tilde{M})$.Thus for $e_{3}=\xi,(\phi, \xi, \eta, \tilde{g})$ defines a Lorentzian paracontact structure on \tilde{M}. Let $\tilde{\nabla}$ be the Levi-Civita connection on \tilde{M} with respect to the metric \tilde{g}. Then we have $\left[e_{1}, e_{2}\right]=-e^{-k z} e_{2},\left[e_{1}, e_{3}\right]=k e^{-2 k z} e_{1},\left[e_{1}, e_{4}\right]=0,\left[e_{1}, e_{5}\right]=0,\left[e_{2}, e_{3}\right]=k e^{-2 k z} e_{2}$, $\left[e_{2}, e_{4}\right]=0,\left[e_{2}, e_{5}\right]=0,\left[e_{4}, e_{3}\right]=k e^{-2 k z} e_{4},\left[e_{5}, e_{3}\right]=k e^{-2 k z} e_{5},\left[e_{4}, e_{5}\right]=0$.
Now, using Koszul's formula for \tilde{g}, it can be calculated that $\tilde{\nabla}_{e_{1}} e_{1}=k e^{-2 k z} e_{3}, \quad \tilde{\nabla}_{e_{1}} e_{3}=k e^{-2 k z} e_{1}, \quad \tilde{\nabla}_{e_{2}} e_{1}=e^{-k z} e_{2}$, $\tilde{\nabla}_{e_{2}} e_{2}=-e^{-k z} e_{1}+k e^{-2 k z} e_{3}, \quad \tilde{\nabla}_{e_{2}} e_{3}=k e^{-2 k z} e_{2}, \quad \tilde{\nabla}_{e_{4}} e_{3}=k e^{-2 k z} e_{4}, \quad \tilde{\nabla}_{e_{4}} e_{4}=k e^{-2 k z} e_{3}, \quad \tilde{\nabla}_{e_{5}} e_{3}=k e^{-2 k z} e_{5}, \quad \tilde{\nabla}_{e_{5}} e_{4}=e^{-k z} e_{5}$, and $\tilde{\nabla}_{e_{5}} e_{5}=-e^{-k z} e_{4}+k e^{-2 k z} e_{3}$.
and rest of the terms are zero.
Since $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is a frame field, then any vector field $X, Y \in T \tilde{M}$ can be written as

$$
\begin{aligned}
X & =x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5} \\
Y & =y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}+y_{4} e_{4}+y_{5} e_{5}
\end{aligned}
$$

where $x_{i}, y_{i} \in \mathbb{R}, \quad i=1,2,3,4,5$ such that

$$
x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}+x_{4} y_{4}+x_{5} y_{5} \neq 0
$$

and hence

$$
\begin{equation*}
\tilde{g}(X, Y)=\left(x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}+x_{4} y_{4}+x_{5} y_{5}\right) \tag{83}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\tilde{\nabla}_{X} Y= & k e^{-2 k z}\left[x_{1} y_{3} e_{1}+x_{2} y_{3} e_{2}+\left(x_{1} y_{1}+x_{2} y_{2}+x_{4} y_{4}+x_{5} y_{5}\right) e_{3}\right. \tag{84}\\
& \left.+x_{4} y_{3} e_{4}+x_{5} y_{3} e_{5}\right]+e^{-k z}\left[-x_{2} y_{1} e_{1}+x_{2} y_{1} e_{2}-x_{5} y_{5} e_{4}+x_{5} y_{4} e_{5}\right]
\end{align*}
$$

From the above it can be easily seen that $(\phi, \xi, \eta, \tilde{g})$ is a $(L C S)_{5}$ structure on \tilde{M} with $\alpha=k e^{-2 k z} \neq 0$ such that $X(\alpha)=\rho \eta(X)$, where $\rho=2 k^{2} e^{-4 k z}$.
We set $A=e_{1}$. Then $a(X)=g(X, A)=x_{1}$. Hence from (16), we get

$$
\begin{align*}
\overline{\tilde{\nabla}}_{X} Y= & k e^{-2 k z}\left[x_{1} y_{3} e_{1}+x_{2} y_{3} e_{2}+\left(x_{1} y_{1}+x_{2} y_{2}+x_{4} y_{4}+x_{5} y_{5}\right) e_{3}\right. \tag{85}\\
& \left.+x_{4} y_{3} e_{4}+x_{5} y_{3} e_{5}\right]+e^{-k z}\left(-x_{2} y_{2} e_{1}+x_{2} y_{1} e_{2}-x_{5} y_{5} e_{4}+x_{5} y_{4} e_{5}\right) \\
& -y_{3}\left(x_{1} e_{1}+x_{2} e_{2}+x_{4} e_{4}+x_{5} e_{5}\right)+x_{1}\left(y_{1} e_{1}+y_{2} e_{2}+y_{4} e_{4}+y_{5} e_{5}\right) .
\end{align*}
$$

Also, for $Z=z_{1} e_{1}+z_{2} e_{2}+z_{3} e_{3}+z_{4} e_{4}+z_{5} e_{5}, z_{i} \in \mathbb{R}, i=1$ to 5 , we have

$$
\begin{aligned}
\left(\overline{\tilde{\nabla}}_{X} \tilde{g}\right)(Y, Z) & =z_{3}\left(x_{1} y_{1}+x_{2} y_{2}+x_{4} y_{4}+x_{5} y_{5}\right)-2 x_{1}\left(y_{1} z_{1}+y_{2} z_{2}+y_{4} z_{4}+y_{5} z_{5}\right) \\
& \neq 0
\end{aligned}
$$

Thus in an (LCS) $)_{5}$-manifold the quarter symmetric non-metric connection is given by (85). Let f be an isometric immersion from M to \tilde{M} defined by $f(x, y, z)=(x, y, z, 0,0)$. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \neq(0,0,0)\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields
$e_{1}=e^{-k z}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), \quad e_{2}=e^{-k z} \frac{\partial}{\partial y}, \quad e_{3}=e^{-2 k z} \frac{\partial}{\partial z}$ are linearly independent at each point of M.
Let g be the induced metric defined by

$$
g\left(e_{i}, e_{j}\right)=\left\{\begin{array}{l}
1, \text { for } i=j \neq 3 \\
0, \text { for } i \neq j \\
-1, \text { for } i=j=3
\end{array}\right.
$$

Here i and j runs over 1 to 3.
Let ∇ be the Levi-Civita connection on M with respect to the metric g. Then we have $\left[e_{1}, e_{2}\right]=-e^{-k z} e_{2},\left[e_{1}, e_{3}\right]=$ $k e^{-2 k z} e_{1},\left[e_{2}, e_{3}\right]=k e^{-2 k z} e_{2}$. Clearly $\left\{e_{4}, e_{5}\right\}$ is the frame field for the normal bundle $T^{\perp} M$. If we take $Z \in T M$ then $\phi Z \in T M$ and therefore M is an invariant submanifold of \tilde{M}. If we take $X, Y \in T M$ then we can express them as

$$
\begin{aligned}
X & =x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \\
Y & =y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}
\end{aligned}
$$

Therefore

$$
\nabla_{X} Y=k e^{-2 k z}\left[x_{1} y_{3} e_{1}+x_{2} y_{3} e_{2}+\left(x_{1} y_{1}+x_{2} y_{2}+x_{4} y_{4}+x_{5} y_{5}\right) e_{3}\right]+e^{-k z}\left[-x_{2} y_{2} e_{1}+x_{2} y_{1} e_{2}\right]
$$

Now from (85), the tangential part of $\overline{\bar{V}}_{X} Y$ is given by

$$
\begin{aligned}
\bar{\nabla}_{X} Y= & k e^{-2 k z}\left[x_{1} y_{3} e_{1}+x_{2} y_{3} e_{2}+\left(x_{1} y_{1}+x_{2} y_{2}\right) e_{3}\right]+e^{-k z}\left(-x_{2} y_{2} e_{1}+x_{2} y_{1} e_{2}\right) \\
& -y_{3}\left(x_{1} e_{1}+x_{2} e_{2}\right)+x_{1}\left(y_{1} e_{1}+y_{2} e_{2}\right) \\
& =\nabla_{X} Y+\eta(Y) \phi X+a(X) \phi Y .
\end{aligned}
$$

And

$$
\begin{aligned}
\left(\bar{\nabla}_{X} g\right)(Y, Z) & =z_{3}\left(x_{1} y_{1}+x_{2} y_{2}\right)-2 x_{1}\left(y_{1} z_{1}+y_{2} z_{2}\right) \\
& \neq 0
\end{aligned}
$$

which means M admits quarter symmetric non-metric connection. Also, it is easy to see that

$$
\bar{h}(X, Y)=h(X, Y)=k e^{-2 k z}\left(x_{4} y_{3} e_{4}+x_{5} y_{3} e_{5}\right)+e^{-k z}\left(-x_{5} y_{5} e_{4}+x_{5} y_{4} e_{5}\right)
$$

Thus the Proposition 4.1 is verified.
Now, if R and \bar{R} be the curvature tensors of M with respect to ∇ and $\bar{\nabla}$ respectively then we can easily calculate

$$
\begin{align*}
& R\left(e_{1}, e_{2}\right) e_{2}=k^{2} e^{-4 k z} e_{1}-e^{-2 k z} e_{1} \\
& R\left(e_{1}, e_{3}\right) e_{3}=k^{2} e^{-4 k z} e_{1} \\
& R\left(e_{2}, e_{1}\right) e_{1}=k^{2} e^{-4 k z} e_{2}-e^{-2 k z} e_{2} \\
& R\left(e_{2}, e_{3}\right) e_{3}=k^{2} e^{-4 k z} e_{2} \tag{86}\\
& R\left(e_{3}, e_{1}\right) e_{1}=-k^{2} e^{-4 k z} e_{3} \\
& R\left(e_{3}, e_{2}\right) e_{2}=-k^{2} e^{-4 k z} e_{3} \\
& R\left(e_{1}, e_{2}\right) e_{3}=0 .
\end{align*}
$$

Again from (16), we have
$\bar{\nabla}_{e_{1}} e_{1}=k e^{-2 k z} e_{3}+e_{1}, \quad \bar{\nabla}_{e_{1}} e_{2}=e_{2}, \quad \bar{\nabla}_{e_{1}} e_{3}=\left(k e^{-2 k z}-1\right) e_{1}, \quad \bar{\nabla}_{e_{2}} e_{1}=e^{-k z} e_{2}, \quad \bar{\nabla}_{e_{2}} e_{2}=-e^{-k z} e_{1}+k e^{-2 k z} e_{3}$, $\bar{\nabla}_{e_{2}} e_{3}=\left(k e^{-2 k z}-1\right) e_{2}$ and rest of the terms are zero. Therefore

$$
\begin{aligned}
& \bar{R}\left(e_{1}, e_{2}\right) e_{2}=k^{2} e^{-4 k z} e_{1}-e^{-2 k z} e_{1}-k e^{-2 k z} e_{1}-k e^{-2 k z} e_{3} \\
& \bar{R}\left(e_{1}, e_{3}\right) e_{3}=k^{2} e^{-4 k z} e_{1}+k e^{-2 k z} e_{1} \\
& \bar{R}\left(e_{2}, e_{1}\right) e_{1}=k^{2} e^{-4 k z} e_{2}-e^{-2 k z} e_{2}-k e^{-2 k z} e_{2} \\
& \bar{R}\left(e_{2}, e_{3}\right) e_{3}=k^{2} e^{-4 k z} e_{2}+k e^{-2 k z} e_{2} \\
& \bar{R}\left(e_{3}, e_{1}\right) e_{1}=-k^{2} e^{-4 k z} e_{3}-k e^{-2 k z} e_{3} \\
& \bar{R}\left(e_{3}, e_{2}\right) e_{2}=-k^{2} e^{-4 k z} e_{3} \\
& \bar{R}\left(e_{1}, e_{2}\right) e_{3}=\left(k e^{-2 k z}-1\right) e_{2} .
\end{aligned}
$$

Now from (86), (87) and using the relation $d a(X, Y)=\frac{1}{2}\{X a(Y)-Y a(X)\}-a[X, Y]$, we can easily verify (20).

References

[1] Ahmad, M., CR-submanifolds of a Lorentzian Para-Sasakian manifold endowed with quarter symmetric metric connection, Bull. Korean Math. Soc., 49 (2012), 25-32.
[2] Al-Ghefari, R., Shahid, M. H. and Al-Solamy, F. R, Submersion of CR-submanifolds of locally conformal Kaehler manifold, Beiträge Zur Algebra und Geom. 47 (2006), 147-159.
[3] Atceken, M. and Dirik, S., On Contact CR-submanifolds of Kenmotsu manifolds, Acta Univ. Sapientiac, Math., 4 (2012), 182-198.
[4] Ateceken, M. and Hui, S. K., Slant and pseudo-slant submanifolds of LCS-manifolds, Czechoslovak Math. J., 63 (2013), 177-190.
[5] Bejancu, A., CR-submanifolds of a Kaehler manifold, Proc. of Amr. Math. Soc., 69 (1978), 135-142.
[6] Bejancu, A., Geometry of CR-submanifolds, D. Reidel Publ. Co., Dordrecht, Holland, 1986.
[7] Chandra, S., Hui, S. K. and Shaikh, A. A., Second order parallel tensors and Ricci solitons on (LCS) n_{n}-manifolds, Commun. Korean Math. Soc., 30 (2015), 123-130.
[8] Chen, B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math., 133 (2001), 177-195.
[9] Chen, B. Y., Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse, 3 (1981), 167-172.
[10] Chen, B. Y. and Piccini, P., The canonical foliations of a locally conformal Kaehler manifold,Ann. Mat. Pura Appl., IV, Ser., 141 (1985), 289-305.
[11] Friedmann, A. and Schouten, J. A., Über die geometric derhalbsymmetrischen Übertragung, Math. Zeitscr., 21 (1924), 211-223.
[12] Golab, S., On semi-symmetric and quarter symmetric linear connections, Tensor, N. S., 29 (1975), 249-254.
[13] Hui, S. K., On ϕ-pseudo symmetries of (LCS $)_{n}$-manifolds, Kyungpook Math. J., 53 (2013), 285-294.
[14] Hui, S. K. and Atceken, M., Contact warped product semi-slant submanifolds of (LCS $)_{n}$-manifolds, Acta Univ. Sapientiae Math., 3 (2011), 212-224.
[15] Hui, S. K., Atceken, M. and Nandy, S., Contact CR-warped product submanifolds of $(L C S)_{n}$-manifolds, Acta Math. Univ. Comenianae, 86 (2017), 101-109.
[16] Hui, S. K., Atceken, M. and Pal, T., Warped product pseudo slant submanifolds of (LCS $)_{n}$-manifolds, New Trends in Math. Sci., 5 (2017), 204-212.
[17] Hui, S. K., Atceken, M., Pal, T. and Mishra, L. N., On contact CR-submanifolds of $(L C S)_{n}$-manifolds to appear in Thai J. of Math.
[18] Hui, S. K., Mishra, V. N., Pal, T. and Vandana, Some classes of invariant submanifolds of $(L C S)_{n}$-manifolds, Italian J. of Pure Appl. Math., 39 (2018), 359-372.
[19] Hui, S. K. and Pal, T., Totally real submanifolds of (LCS $)_{n}$-manifolds, Facta Universitatis (NIS), Ser. Math. Inform, 33(2) (2018), 141-152.
[20] Hui, S. K., Piscoran, L. I. and Pal, T., Invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric connection, Acta Math. Univ. Comenianae, 87 (2018), 205-221.
[21] Hui, S. K., Prasad, R. and Pal, T., Ricci solitons on submanifolds of (LCS $)_{n}$-manifolds, Ganita, Bharat Ganit Parishad, 68(1) (2018), 53-63.
[22] Laha, B., Das, B. and Bhattacharyya, A., Contact CR-submanifolds of an indefinite Lorentzian para-Sasakian manifold, Acta Univ. Sapientae, Mathematica, 5 (2013), 157-168.
[23] Mantica, C. A. and Molinari, L. G., A note on concircular structure space-times, arXiv: 1804.02272 [math. DG].
[24] Matsumoto, K., On contact CR-submanifolds of Sasakian manifolds, Internat. J. Math. and Math. Sci., 6(2) (1983), 313-326.
[25] Matsumoto, K., On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[26] O'Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
[27] Prakash, A. and Narain, D., On a quarter symmetric non-metric connection in an Lorentzian para Sasakian manifoldes, Int. Electronic J. of Geom., 4 (2011), 129-137.
[28] Shahid, M. H., CR-submanifolds of a trans-Sasakian manifold, Indian J. Pure Appl. Math., 22 (1991), 1007-1012.
[29] Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43 (2003), 305-314.
[30] Shaikh, A. A., Some results on $(L C S)_{n}$-manifolds, J. Korean Math. Soc., 46 (2009), 449-461.
[31] Shaikh, A. A. and Ahmad, H., Some transformations on (LCS $)_{n}$-manifolds, Tsukuba J. Math., 38 (2014), 1-24.
[32] Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes, J. Math. Stat., 1 (2005), 129-132.
[33] Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes II, American J. Appl. Sci., 3(4) (2006), 1790-1794.
[34] Shaikh, A. A. and Baishya, K. K., Some results of LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 49 (2006), $193-205$.
[35] Shaikh, A. A., Basu, T. and Eyasmin, S., On locally ϕ-symmetric (LCS $)_{n}$-manifolds, Int. J. of Pure and Appl. Math., 41(8) (2007), 1161-1170.
[36] Shaikh, A. A., Basu, T. and Eyasmin, S., On the existence of ϕ-recurrent (LCS $)_{n}$-manifolds, Extracta Mathematicae, 23(1) (2008), 71-83.
[37] Shaikh, A. A. and Binh, T. Q., On weakly symmetric (LCS) n_{n}-manifolds, J. Adv. Math. Studies, 2 (2009), 75-90.
[38] Shaikh, A. A. and Hui, S. K., On generalized ϕ-recurrent (LCS $)_{n}$-manifolds, AIP Conf. Proc., 1309 (2010), 419-429.
[39] Shaikh, A. A., Matsuyama, Y. and Hui, S. K., On invariant submanifold of (LCS n_{n}-manifolds, J. of Egyptian Math. Soc., 24 (2016), 263-269.
[40] Yano, K. and Kon, M., Structures on manifolds, World Scientific publishing, 1984.

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C25
 Keywords. (LCS) ${ }_{n}$-manifold, CR-submanifold, quarter symmetric non-metric connection.
 Received: 10 December 2018; Accepted: 26 February 2019
 Communicated by Mića Stanković
 Corresponding author: Shyamal Kumar Hui
 Email addresses: tanumoypalmath@gmail.com (Tanumoy Pal), mshahid@jmi.ac.in (Md. Hasan Shahid), skhui@math.buruniv.ac.in (Shyamal Kumar Hui)

