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Abstract. Entwined Hom-modules were introduced by Karacuha in [13], which can be viewed as a
generalization of Doi-Hom Hopf modules and entwined modules. In this paper, the sufficient and necessary
conditions for the forgetful functor F : H̃ (Mk)(ψ)C

A → H̃ (Mk)A and its adjoint G : H̃ (Mk)A → H̃ (Mk)(ψ)C
A

form a Frobenius pair are obtained, one is that A⊗C and the C∗⊗A are isomorphic as (A; C∗op#A)-bimodules,
where (A,C, ψ) is a Hom-entwining structure. Then we can describe the isomorphism by using a generalized
type of integral. As an application, a Maschke type theorem for entwined Hom-modules is given.

1. Introduction

Makhlouf and Silvestrov in [18] introduced Hom-algebras and Hom-coalgebras, which can be viewed
as generalizations of ordinary algebras and coalgebras in the following sense: the associativity of the
multiplication is replaced by the Hom-associativity, and the Hom-coassociativity can be considered in a
similar way. Later, they described the structures of Hom-bialgebras and Hom-Hopf algebras, and extended
some important theories from ordinary Hopf algebras to Hom-Hopf algebras in [19] and [20]. Recently,
many more properties and structures of Hom-Hopf algebras have been developed, see as [6–11, 14, 22] and
the references cited therein.

Caenepeel and Goyvaerts in [3] investigated Hom-bialgebras and Hom-Hopf algebras from the point of
view of monoidal categories, in a natural way, they called them monoidal Hom-bialgebras and monoidal
Hom-Hopf algebras respectively, which are slightly different from the above Hom-bialgebras and Hom-
Hopf algebras. In [16], Makhlouf and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras,
and obtained that Yetter-Drinfeld modules over a Hom-bialgebra with bijective structure map provide
solutions of the Hom-Yang-Baxter equation. Liu and Shen [15] also studied Yetter-Drinfeld modules over
monoidal Hom-bialgebras, they called them Hom-Yetter-Drinfeld modules, and showed that the category
of Hom-Yetter-Drinfeld modules is a braided monoidal categories. Chen and Zhang [8] introduced the
category of Hom-Yetter-Drinfeld modules, which is differs from that of [15], and indicated that it is a full
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monoidal subcategory of the left center of left Hom-module category. In [10], we defined the category of
Doi Hom-Hopf modules and proved that the category of Hom-Yetter-Drinfeld modules is a subcategory of
our category of Doi Hom-Hopf modules.

Entwining modules were introduced in [1], which have arisen from noncommutative geometry, are
modules of an algebra and comodules of a coalgebra such that the action and the coaction satisfy a certain
compatibility condition. The most interesting example is that Doi-Hopf modules are the special cases of
entwined modules, but, the formalism for entwined modules is more transparent than the one for Doi-Hopf
modules. Many results for Doi-Hopf modules can be generalized to entwined modules.

As a generalization of entwining modules in a Hopf algebra setting, entwined Hom-modules were
introduced by Karacuha [13]. In [10] and [12], some properties of Doi Hom-Hopf modules are discussed.
It turns out that many pairs of adjoint functors are special cases, for example the functor forgetting action
or coaction, extension and restriction of scalars and coscalars. In this paper, as a generalization of [5], we
focus our attention on the functor F, which is from the category of entwined Hom-modules to the category
of right (A, β)-modules forgetting the (C, γ)-coaction. This functor has a right adjoint G = C ⊗ •. A natural
question that arises is following: when is G also a left adjoint of F? This is the motivation of this paper.

In this paper, we give the notion of a entwined Hom-module and prove that the functor F from the
category of entwined Hom-modules to the category of right (A, β)-Hom-modules has a right adjoint. And
then we obtain the main result of this paper in Sec.4, that is, one of the equivalent conditions for the forgetful
functor F : H̃ (Mk)(ψ)C

A → H̃ (Mk)A and its adjoint G : H̃ (Mk)A → H̃ (Mk)(ψ)C
A form a Frobenius pair is :

A ⊗ C and the C∗ ⊗ A are isomorphic as (A; C∗op#A)-bimodules. At the end of the paper, we give a Maschke
type theorem for entwined Hom-modules.

2. Preliminaries

Throughout this paper, we work over a commutative ring k, we recall from [3] some information about
Hom-structures which are needed in what follows.

Let C be a category. We introduce a new category H̃ (C) as follows: objects are couples (M, µ), with
M ∈ C and µ ∈ AutC(M). A morphism f : (M, µ) → (N, ν) is a morphism f : M → N in C such that
ν ◦ f = f ◦ µ.

Let Mk denote the category of k-modules. H (Mk) will be called the Hom-category associated to Mk.
If (M, µ) ∈ Mk, then µ : M → M is obviously a morphism in H (Mk). It is easy to show that H̃ (Mk) =

( H (Mk), ⊗, (I, I), ã, l̃, r̃)) is a monoidal category by Proposition 2.1 of [3]: the tensor product of (M, µ) and
(N, ν) in H̃ (Mk) is given by the formula (M, µ) ⊗ (N, ν) = (M ⊗N, µ ⊗ ν).

Assume that (M, µ), (N, ν), (P, π) ∈ H̃ (Mk). The associativity and unit constraints are given by the
following formulas

ãM,N,P((m ⊗ n) ⊗ p) = µ(m) ⊗ (n ⊗ π−1(p)),

l̃M(x ⊗m) = r̃M(m ⊗ x) = xµ(m).

Let’s now recall the definition of the monoidal Hom-algebra, monoidal Hom-coalgebra, monoidal
Hom-bialgebra and monoidal Hom-Hopf algebra.

Definition 2.1. A monoidal Hom-algebra is an object (A, α) ∈ H̃ (Mk) together with a k-linear map mA : A⊗A→ A
and an element 1A ∈ A such that

α(ab) = α(a)α(b), α(1A) = 1A, α(a)(bc) = (ab)α(c), a1A = 1Aa = α(a),

for all a, b, c ∈ A. Here we use the notation mA(a ⊗ b) = ab.

Definition 2.2. A monoidal Hom-coalgebra is an object (C, γ) ∈ H̃ (Mk) together with k-linear maps ∆ : C →
C ⊗ C, ∆(c) = c(1) ⊗ c(2) (summation implicitly understood) and γ : C→ C such that

∆(γ(c)) = γ(c(1)) ⊗ γ(c(2)), ε(γ(c)) = ε(c),
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and
γ−1(c(1)) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ γ

−1(c(2)), ε(c(1))c(2) = ε(c(2))c(1) = γ−1(c)

for all c ∈ C.

Definition 2.3. A monoidal Hom-bialgebra H = (H, α,m, η,∆, ε) is a bialgebra in the monoidal category H̃ (Mk).
This means that (H, α,m, η) is a monoidal Hom-algebra, (H, α,∆, ε) is a monoidal Hom-coalgebra such that ∆ and ε
are morphisms of algebras, that is, for any a, b ∈ H,

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1H) = 1H ⊗ 1H, ε(ab) = ε(a)ε(b), ε(1H) = 1H.

Definition 2.4. A monoidal Hom-bialgebra (H, α) is called monoidal Hom-Hopf algebra if there exists a morphism
(called antipode) S : H→ H in H̃ (Mk), (i.e.,Sα = αS), such that

S ∗ I = I ∗ S = ηε.

Note that the antipode of monoidal Hom-Hopf algebras has almost all the properties of antipode of
Hopf algebras such as εS = ε.

Definition 2.5. Let (A, α) be a monoidal Hom-algebra. A right (A, α)-Hom-module is an object (M, µ) ∈ H̃ (Mk)
consists of a k-module and a linear map µ : M→M together with a morphism ψ : M⊗A→M, ψ(m⊗ a) = m · a, in
H̃ (Mk) such that

(m · a) · α(b) = µ(m) · (ab), m · 1A = µ(m),

for all a, b ∈ A and m ∈M. The fact that ψ ∈ H̃ (Mk) means that

µ(m · a) = µ(m) · α(a).

A morphism f : (M, µ) → (N, ν) in H̃ (Mk) is called right A-linear if it preserves the A-action, that is,
f (m · a) = f (m) · a. H̃ (Mk)A will denote the category of right (A, α)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right (C, γ)-Hom-comodule is an object (M, µ) ∈ H̃ (Mk)
together with a k-linear map ρM : M→M ⊗ C notation ρM(m) = m[0] ⊗m[1] in H̃ (Mk) such that

m[0][0] ⊗ (m[0][1] ⊗ γ
−1(m[1])) = µ−1(m[0]) ⊗ ∆C(m[1]); m[0]ε(m[1]) = µ−1(m),

for all m ∈M. The fact that ρM ∈ H̃ (Mk) means that

ρM(µ(m)) = µ(m[0]) ⊗ γ(m[1]).

The category of right (C, γ)-Hom-comodules will be denoted by H̃ (Mk)C.

Theorem 2.7. (Rafael Theorem) Let L : C → D be the left adjoint functor of R : D → C. Then L is a separable
functor if and only if the unit η of the adjunction (L,R) has a natural retraction, i.e., there is a natural transformation
ν : RL→ idC such that ν ◦ η = id.

Definition 2.8. A pair of adjoint functors (F,G) is called a Frobenius pair if G is at the same time a right and left
adjoint of F.

The following result can be found in any book on category theory: G is a left adjoint of F if and only if
there exist natural transformations v ∈ V = Nat(GF, 1C) and ζ ∈W = Nat(1D,FG) such that

F(vM) ◦ ζF(M) = IF(M), (2. 1)
vG(N) ◦ G(ζN) = IG(N). (2. 2)
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3. Adjoint functor

Now we introduce the notion of the right-right Hom-entwing structure, following Karacuha [13].

Definition 3.1. A right-right Hom-entwining structure is a triple [(A, β), (C, γ)]ψ(we write it (A,C, ψ) for short),
where (A, β) is a monoidal Hom-algebra and (C, γ) is a monoidal Hom-coalgebra with a k-linear mapψ : C⊗A→ A⊗C
satisfying the following conditions for all a, b ∈ A, c ∈ C:

(ab)ψ ⊗ γ(c)ψ = aψbϕ ⊗ γ(cψϕ), (3. 1)

1ψ ⊗ cψ = 1A ⊗ c, (3. 2)

β−1(aψ) ⊗ cψ(1) ⊗ cψ(2) = β−1(a)ψϕ ⊗ cϕ(1) ⊗ cψ(2), (3. 3)

aψε(cψ) = aε(c), (3. 4)

where ψ(c ⊗ a) = aψ ⊗ cψ, a ∈ A, c ∈ C. It is said that (C, γ) and (A, β) are entwined by ψ. ψ ∈ H̃ (Mk) has the
relation β(a)ψ ⊗ γ(c)ψ = β(aψ) ⊗ γ(cψ).

Over a Hom-entwining structure (A,C, ψ), a right-right entwined Hom-module (M, µ) ∈ H̃ (Mk) is both
a right (C, γ)-Hom-comodule with coaction ρM : M→M⊗C,m 7→ m[0]⊗m[1], and a right (A, β)-Hom-module
with action µ : M ⊗ A→M,m ⊗ a 7→ m · a satisfying

ρM(m · a) = µ(m[0]) · ψ(m[1] ⊗ β
−1(a))

= m[0] · β
−1(a)ψ ⊗ γ(mψ

[1]), (3. 5)

for all a ∈ A and m ∈M. Let H̃ (Mk)(ψ)C
A denote the category of (A,C, ψ)-entwined Hom-modules together

with the morphisms.

Example 3.2. Let (H, α) be a monoidal Hom-Hopf algebra. Define ψ : H ⊗ H → H ⊗ H with ψ(l ⊗ h) =

α(h(1))⊗α−1(l)h(2). It is easy to verify that (H,H, ψ) form a Hom-entwining structure. Then the objects of H̃ (Mk)(ψ)H
H

are right Hopf (H, α)-Hom-comodule. In fact, by Eq.(3.5), for all m ∈M and h ∈ H, we have

ρM(m · h) = µ(m[0]) · ψ(m[1] ⊗ α
−1(h))

= µ(m[0]) · (α−1(h)ψ ⊗mψ
[1])

= m[0] · h(1) ⊗m[1]h(2).

Example 3.3. Let (H, α) be a monoidal Hom-Hopf algebra, (A, β) a right (H, α)-Hom comodule algebra and (C, γ)
a right (H, α)-Hom module coalgebra. Then (C,A, ψ) has a Hom-entwining structure with ψ : C ⊗ A → A ⊗ C by
ψ(c ⊗ a) = β(a[0]) ⊗ γ−1(c) · a[1] for any a ∈ A and c ∈ C, and hence H̃ (Mk)(ψ)C

A is a entwined Hom-modules.
In particular, for any (M, µ) ∈ H̃ (Mk)(ψ)C

A, we have

ρM(m · a) = m[0] · a[0] ⊗m[1]a[1].

In this case, we say that this category is a category of right Doi Hom-Hopf modules and denote it by H̃ (Mk)(H)C
A.

Example 3.4. Let (H, α) be a monoidal Hom-Hopf algebra. Define φ : H ⊗ H → H ⊗ H given by φ(1 ⊗ h) =

α2(h(2)(1))⊗S(h(1))(α−2(1)h(2)(2)) for all h, 1 ∈ H, and hence H̃ (Mk)(φ)H
H is a entwined Hom-modules. In fact, for any

(M, µ) ∈ H̃ (Mk)(φ)H
H, the compatible condition gives

ρM(m · h) = µ(m[0]) · ψ(m[1] ⊗ α
−1(h)) = m[0] · α(h(2)(1)) ⊗ S(h(1))(α−1(m[1])h(2)(2)).

Note that the category H̃ (Mk)(φ)H
H is a category of Hom-right-right Yetter-Drinfeld modules see [10]

for more details.
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Proposition 3.5. The forgetful functor F : H̃ (Mk)(ψ)C
A → H̃ (Mk)A has a right adjoint G : H̃ (Mk)A →

H̃ (Mk)(ψ)C
A. G is defined by

G(M) = M ⊗ C,

with structure maps
(m ⊗ c) · a = m · β−1(a)ψ ⊗ γ(cψ),

ρG(M)(m ⊗ c) = (µ−1(m) ⊗ c(1)) ⊗ γ(c(2)),

for all a ∈ A and m ∈M, c ∈ C.

Proof. First show that G(M) is an object of H̃ (Mk)(ψ)C
A . It is routine to check that G(M) is a right

(C, γ)-Hom-comodule and a right (A, β)-Hom-module. Now we only prove the compatibility condition.
For all a ∈ A, m ∈M and c ∈ C,

ρG(M)((m ⊗ c) · a) = ρG(M)(m · β−1(a)ψ ⊗ γ(cψ))

= (µ−1(m) · β−1(β−1(a)ψ) ⊗ γ(cψ)(1)) ⊗ γ(γ(cψ)(2))

= m · β−1(a)ψ ⊗ (γ(cψ)(1) ⊗ γ(cψ)(2))
(3.3)
= m · β(β−2(a)ψψ) ⊗ (γ(c(1)

ψ) ⊗ γ(c(2)
ψ))

= (µ−1(m) · β−2(a)ψψ ⊗ γ(c(1)
ψ) ⊗ γ(γ(c(2)

ψ))

= (µ−1(m) ⊗ c(1)) · β−1(a)ψ ⊗ γ(γ(c(2))ψ)
= ρG(M)(m ⊗ c) · a.

This is exactly what we want to show.
For an A-linear map ϕ : (M, µ)→ (N, ν), let

G(ϕ) = ϕ ⊗ idC : M ⊗ C→ N ⊗ C.

Standard computations show that G(ϕ) is morphisms of right (A, β)-Hom-modules and right (C, γ)-Hom-
comodules.

Next we describe the unit η and the counit δ of the adjunction. The unit is described by the coaction: for
(M, µ) ∈ H̃ (Mk)(ψ)C

A, we define ηM : M→M ⊗ C as follows: for all m ∈M,

ηM(m) = m[0] ⊗m[1].

Then ηM ∈ H̃ (Mk)(ψ)C
A . In fact, for any m ∈M, we have

ηM(m · a) = (m · a)[0] ⊗ (m · a)[1]

= m[0] · β
−1(a)ψ ⊗ γ(mψ

[1])

= (m[0] ⊗m[1]) · a = ηM(m) · a,

and

ρM⊗C ◦ ηM(m) = ρM⊗C(m[0] ⊗m[1])
= (µ−1(m[0]) ⊗m[1](1)) ⊗ γ(m[1](2))
= (m[0][0] ⊗m[0][1]) ⊗m[1]

= (ηM ⊗ idC)(m[0] ⊗m[1])
= (ηM ⊗ idC) ◦ ρM(m).

For any (N, ν) ∈ H̃ (Mk)A, let δN : N ⊗ C→ N, for all n ∈ N and c ∈ C,

δN(n ⊗ c) = ε(c)ν(n).
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We can observe that δN is (A, β)-linear. In fact, for any n ∈ N, we have

δN((n ⊗ c) · a) = δN(n · β−1(a)ψ ⊗ γ(cψ))

= ε(γ(cψ))ν(n · β−1(a)ψ)
= ε(c)ν(n) · a = δN(n ⊗ c) · a.

This is what we need to show. We can check that η and δ defined above are all natural transformations and
satisfied

G(δN) ◦ ηG(N) = IG(N),

δF(M) ◦ F(ηM) = IF(M),

for all (M, µ) ∈ H̃ (Mk)(ψ)C
A and (N, ν) ∈ H̃ (Mk)A. �

4. The functor forgetting the coaction

Let V1 be the k-module consisting of all k-linear maps θ : (C, γ) ⊗ (C, γ)→ (A, β) such that

β(β−1(a)ϕψ)θ(dψ ⊗ cϕ) = θ(d ⊗ c)a, (4. 1)

θ(γ−1(d) ⊗ c(1)) ⊗ γ(c(2)) = θ(d(2) ⊗ γ
−1(c))ψ ⊗ dψ(1). (4. 2)

Proposition 4.1. The map Ψ : V → V1 given by Ψ(v) = θ with

θ(c ⊗ d) = r̃A(idA ⊗ εC)νA⊗C((1A ⊗ c) ⊗ γ(d)), (4. 3)

is an isomorphism of k-modules. The inverse Ψ−1(v) = θ is defined as follows vM : M ⊗ C→M, which is given by

vM(m ⊗ c) = µ(m[0])θ(m[1] ⊗ γ
−1(c)). (4. 4)

Proof. According to the naturality of v, we have

θ(c ⊗ d) = (εC ⊗ idA)vC⊗A((c ⊗ 1A) ⊗ γ(d)) = (idA ⊗ εC)vA⊗C((1A ⊗ c) ⊗ γ(d)).

Then it is easily checked that GF(A ⊗ C) = (A ⊗ C) ⊗ C ∈ AH̃ (Mk)(ψ)C
A, the left (A, β)-action is induced by

the multiplication in (A, β) and vA⊗C is a morphism in AH̃ (Mk)(ψ)C
A. Hence vA⊗C and (idA ⊗ εC)vA⊗C are left

and right (A, β)-linear, and

θ(c ⊗ d)a = (idA ⊗ εC)vA⊗C((1A ⊗ c) ⊗ γ(d))a
= (idA ⊗ εC)vA⊗C((1A ⊗ c) ⊗ γ(d))a
= (idA ⊗ εC)vA⊗C(β−1(a)1A ⊗ [γ(cψ) ⊗ γ(dψ)])
= aψψ(idA ⊗ εC)vA⊗C([1A ⊗ cψ ⊗ dψ])

= aψψ(idA ⊗ εC)vA⊗C([1A ⊗ cψ] ⊗ γ(dψ))

= β(β−1(a)ψψ)θ(cψ ⊗ dψ),

which gives (4.1).
To prove (4.2), first we check at once that GF(C⊗A) = C⊗(C⊗A) ∈ CH̃ (Mk)(ψ)C

A, and its left (C, γ)-coaction
of C ⊗ A is given by

c ⊗ a 7→ γ(c(1)) ⊗ (c(2) ⊗ β
−1(a)).

We also get νC⊗A : (C ⊗ A) ⊗ C→ C ⊗ A is a morphism in CH̃ (Mk)(ψ)C
A. Thus we conclude that νC⊗A is left

and right (C, γ)-colinear. Take c, d ∈ C, and let

νC⊗A((c ⊗ 1A) ⊗ d) =
∑

i

pi ⊗ bi ∈ C ⊗ A.
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As νC⊗A is left (C, γ)-colinear, and applying εC to the second factor, we obtain

γ2(c(1)) ⊗ θ(c(2) ⊗ γ
−1(d)) =

∑
i

ci ⊗ ai.

Since νC⊗A is also right (C, γ)-colinear,

vC⊗A(γ−1(c) ⊗ 1A ⊗ γ(d(1))) ⊗ γ2(d(2)) = ci(1) ⊗ β
−1(aiψ) ⊗ γ−1(cψi(2)),

and applying εC to the second factor, we find

θ(γ−1(c) ⊗ d(1)) ⊗ γ2(d(2)) = aiψ ⊗ γ
−2(cψi ).

Hence, (4.2) holds. This proves that there is a well-defined map Ψ : V → V1.
To show that the map Ψ−1 defined by (4.4) is well-defined, we need to prove vM ∈ H̃ (Mk)(ψ)C

A, i.e., vM
is right (A, β)-linear and right (C, γ)-colinear, and v is a natural transformation. The proof is similar to [10],
we leave it to the reader.

Given any morphism f : M→ N in H̃ (Mk)(ψ)C
A, one easily checks that for all m ∈M and c ∈ C, we have

vN( f (m) ⊗ C) = f (µ(m[0]))θ(m[1] ⊗ γ
−1(c))) = f (µ(m[0])θ(m[1] ⊗ γ

−1(c))) = f (vM(m ⊗ c)),

i.e., v is natural. The verification that Ψ and Ψ−1 are inverses of each other is left to the reader.
Now we give a description of W = Nat(1MA ,FG). Let

W1 = {z ∈ A ⊗ C|az = za, (β ⊗ γ)(z) = z, for all a ∈ A}, (4. 5)

i.e., z =
∑

l al ⊗ cl ∈W1 if and only if∑
l

β−1(a)al ⊗ γ(cl) =
∑

l

alβ
−1(a)ψ ⊗ γ(cψl ), (β ⊗ γ)(z) = z. (4. 6)

Proposition 4.2. Let (A,C, ψ) be a right-right Hom-entwining structure. Then there is an isomorphism of k-modules
Φ : W →W1 given by

Φ(ζ) = ζ(1A). (4. 7)

The inverse of Φ is Φ−1(
∑

l al ⊗ cl) = ζ, with ζN : N→ N ⊗ C given by

ζN(n) =
∑

l

ν−1(n)al ⊗ γ(cl),

for any (N, ν) ∈ H̃ (Mk)(ψ)C
A and n ∈ N.

Proof. The proof is based on the fact that ζA is left and right (A, β)-linear, we leave it to the reader. �

Theorem 4.3. Let F : H̃ (Mk)(ψ)C
A → H̃ (Mk)A be the forgetful functor, and G : H̃ (Mk)A → H̃ (Mk)(ψ)C

A its
adjoint. Then F is separable if and only if there exists θ ∈ V1 such that

θ ◦ ∆C = εC,

and G is separable if and only if there exists z =
∑

l al ⊗ cl ∈W1 such that∑
l

εC(cl)al = 1A.

Proof. This follows immediately from Propositions 4.1 and 4.2. �
Next we will show that (F,G) is a Frobenius pair if and only if there exist θ ∈ V1 and z ∈ W1, which

satisfy different normalizing conditions.
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Theorem 4.4. Let F : H̃ (Mk)(ψ)C
A → H̃ (Mk)A be the forgetful functor, and G : H̃ (Mk)A → H̃ (Mk)(ψ)C

A its
adjoint. Then F is separable if and only if there exist θ ∈ V1 and z =

∑
l al ⊗ cl ∈ W1 such that the following

normalizing condition holds, for all d ∈ C,

εC(d)1A =
∑

l

β(al)θ(cl ⊗ γ
−2(d)) (4. 8)

= alψθ(γ−1(d)ψ ⊗ γ−1(cl)). (4. 9)

Proof. Suppose that (F,G) is a Frobenius pair. Then there exist v ∈ V and ζ ∈ W such that (2.1-2.2) hold.
Let θ = Ψ(v) ∈ V1 and z =

∑
l al ⊗ cl = Φ(ζ) ∈W1. Then (2.1) can be rewritten as

vM(
∑

l

µ−1(m)al ⊗ γ(cl)) = (m[0] · alψ) · θ(γ(m[1])ψ ⊗ cl) = m,

for any m ∈M ∈ H̃ (Mk)(ψ)C
A. Taking M = C ⊗ A,m = d ⊗ 1A, then we have

d ⊗ 1A = vC⊗A(
∑

l

µ−1(d ⊗ 1A)al ⊗ γ(cl))

= ((d ⊗ 1A)[0] · alψ) · θ(γ((d ⊗ 1A)[1])ψ ⊗ cl)

= ((d(1) ⊗ 1A) · alψ) · θ(d(2)
ψ
⊗ cl)

= γ2(d(1)) ⊗ [alψθ(γ−1(d(2)
ψ) ⊗ γ−1(cl))],

thus

εC(d)1A = l̃A(εC(γ2(d(1))) ⊗ [alψθ(γ−1(d(2)
ψ) ⊗ γ−1(cl))])

= β(alψ)θ(εC(d(1))d(2)
ψ
⊗ cl)

= β(alψ)θ(γ−1(d)ψ ⊗ cl).

One obtains (4.9).
For all n ∈ N ∈ H̃ (Mk)(ψ)A and c ∈ C, one has

vG(N)(G(ζN)(n ⊗ d)) = vG(N)(ν−1(n)al ⊗ γ(cl) ⊗ d)

= ν−1(n)al ⊗ γ
2(cl(1))θ(γ2(cl(2)) ⊗ γ−1(d))

= n(alθ(cl(2) ⊗ γ
−3(d))ψ) ⊗ γ3(cl(1))ψ

= n(alθ(γ−1(cl(1)) ⊗ γ−2(d(1))) ⊗ γ(d(2))
= n ⊗ d,

and (2.2) can be written as

n(alθ(γ−1(cl1) ⊗ γ−2(d(1))) ⊗ γ(d(2)) = n ⊗ d.

Taking N = A and n = 1A, we obtain

β(al)θ(cl1 ⊗ γ
−1(d(1))) ⊗ γ(d(2)) = 1A ⊗ d.

Applying εC to the second factor yields (4.8). �
In [10], it is shown that if (H,A,C) is a Doi Hom-Hopf datum, (A, β) is faithfully flat as a k-module, and

(C, γ) is projective as a k-module, then (C, γ) is finitely generated.
The next proposition illustrates that the assumption that (C, γ) is projective is superfluous.

Proposition 4.5. Let (A,C, ψ) be a right-right Hom-entwining structure. If (F,G) is a Frobenius pair, then A⊗C is
finitely generated and projective as a left (A, β)-Hom-module.
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Proof. Let θ and z = Σlal ⊗ cl be as in Theorem 4.4. Then for any d ∈ C,

1A ⊗ d = ψ(d ⊗ 1A)
= ψ(γ(d1) ⊗ ε(d2)1A)
= ψ(γ(d1) ⊗ alψθ(γ−1(d2)ψ ⊗ γ−1(cl))

= alψψθ(γ−1(d2)ψ ⊗ γ−1(cl))ψ ⊗ γ(d1)ψψ

= alψθ(γ−1(d)ψ2 ⊗ γ
−1(cl))ψ ⊗ γ(d)ψψ1

= alψθ(γ−2(d)ψ ⊗ cl1) ⊗ γ(cl2).

Write cll ⊗ cl2 = Σml
j=1cl j ⊗ c′l j and for all l, j, we consider the map

σl j : A ⊗ C→ A, σl j(a ⊗ d) = β−1(a)[alψθ(γ−2(d)ψ ⊗ cl j)].

Then for all a ∈ A and d ∈ C,
a ⊗ d = σl j(a ⊗ d)(1 ⊗ c′l j),

so {σl j, 1 ⊗ c′l j| l = 1, · · ·,n, j = 1, · · ·,ml} is a finite dual basis for A ⊗ C as a left (A, β)-Hom-module. �

In some situations, one can conclude that (C, γ) is finitely generated and projective as a k-module.

Corollary 4.6. Let (A,C, ψ) be a right-right Hom-entwining structure and (F,G) a Frobenius pair.
1) If (A, β) is faithfully flat as a k-module, then (C, γ) is finitely generated as a k-module.
2) If (A, β) is commutative and faithfully flat as a k-module, then (C, γ) is finitely generated projective as a k-module.
3) If k is a field, then (C, γ) is finite dimensional as a k-vector space.
4) If A = k, then (C, γ) is finitely generated projective as a k-module.

Assume that (C, γ) is finitely generated and projective as a k-module, and let {di, d∗i | l = 1, · · ·,m} be
a finite dual basis for (C, γ). Then C∗ ⊗ A can be made into an object of AH̃ (Mk)(ψ)C

A as follows: for all
a, b, b′ ∈ A, c∗ ∈ C∗,

b(c∗ ⊗ a) =
∑

i

< c∗, di
ψ > γ∗(di

∗) ⊗ β−1(bψ)a, (4. 10)

(c∗ ⊗ a)b′ = γ∗(c∗) ⊗ aβ−1(b′), (4. 11)

ρr(c∗ ⊗ a) =
∑

i

γ∗−1(di
∗) ∗ γ∗−2(c∗) ⊗ β−1(a)ψ ⊗ γ(di

ψ). (4. 12)

This can be checked directly. The map λ : C ⊗ A ⊗ C→ A induces φ : A ⊗ C→ C∗ ⊗ A. This is the map we
need. At some place it is convenient to use C∗ ⊗ A as the image space. Note that φ is given by

φ(a ⊗ c) = γ∗(di
∗) ⊗ β−1(a)ψθ(γ−1(di

ψ) ⊗ γ−2(c)). (4. 13)

It turns out that φ is a morphism in AH̃ (Mk)(ψ)C
A. Let V2 be the k-module consisting of all left (A, β)-linear,

right (A, β)-linear, (C, γ)-colinear maps φ : A ⊗ C→ C∗ ⊗ A. Then we have the following result.

Proposition 4.7. Let (A,C, ψ) be a right-right Hom-entwining structure, and assume that (C, γ) is finitely generated
projective as a k-module. Then

V � V1 � V2.

The isomorphism is α1 : V1 → V2, with α1(θ) = φ, which given by(4.13). The inverse of α1 is

α−1
1 (φ)(d ⊗ c) = φ(1A ⊗ c)d.
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Proof. First show that φ ∈ V2. For all a, b ∈ A and c ∈ C, we have

bφ(a ⊗ c) = b(γ∗(di
∗) ⊗ [β−1(a)ψθ(γ−1(di

ψ) ⊗ γ−2(c))])

=
∑

< γ∗(di
∗), d j

ψ > γ∗(d∗j) ⊗ β
−1(b)ψ(β−1(a)ϕθ(γ−1(dϕi ) ⊗ γ−2(c)))

=
∑

γ∗(d∗i ) ⊗ β
−1(b)ψ(β−1(a)ϕθ(γ−1(γ−1(dψi )

ϕ
) ⊗ γ−2(c)))

=
∑

γ∗(d∗i ) ⊗ (β−1(β−1(b)ψ)β−1(a)ϕ)θ(γ−1(dψi )
ϕ
⊗ γ−1(c)))

=
∑

γ∗(d∗i ) ⊗ β
−1(β−1(b)a)ϕθ(γ−1(dψi ) ⊗ γ−1(c)))

= φ(β−1(b)a ⊗ γ(c))

= φ(b · (a ⊗ c)),

which proves that φ is left (A, β)-linear. And it is also right (A, β)-linear, because

φ(a ⊗ c)b =
∑

γ∗2(di
∗) ⊗ [β−1(a)ψθ(γ−1(dψi ) ⊗ γ−2(c))]β−1(b)

=
∑

γ∗2(di
∗) ⊗ β(β−1(a)ψ)[θ(γ−1(dψi ) ⊗ γ−2(c))β−2(b)]

=
∑

γ∗2(di
∗) ⊗ [β−1(a)ψβ(β−3(b)ϕυ)]θ(γ(γ−1(dψi )

υ
) ⊗ γ(γ−2(c)

ϕ
))

=
∑

γ∗2(di
∗) ⊗ [β−1(a)ψβ(β−3(b)ϕ)

υ
]θ(dψυi ⊗ γ(γ−2(c)

ϕ
))

=
∑

γ∗2(di
∗) ⊗ [(β−1(a)β−2(b)ϕ)

ψ
]θ(γ−1(γ(di)ψ) ⊗ γ−1(c)

ϕ
)

=
∑

γ∗(di
∗) ⊗ [β−1(a(β−1(b)ϕ))

ψ
]θ(γ−1(di

ψ) ⊗ γ−1(cϕ))

= φ(a(β−1(b)ψ) ⊗ γ(cψ)) = φ((a ⊗ c)b).

Notice that the dual basis for (C, γ) satisfies the following equality∑
∆(di) ⊗ d∗i =

∑
di ⊗ d j ⊗ d∗i ∗ d∗j.

Using this equality one can computes

ρr(φ(a ⊗ c))

=
∑

ρr(γ∗(di
∗) ⊗ β−1(a)ψθ(γ−1(di

ψ) ⊗ γ−2(c)))

=
∑

(γ∗−1(di
∗) ⊗ β−1(β−1(a)ϕθ(γ−1(di(2)

ϕ) ⊗ γ−2(c)))
ψ

) ⊗ γ(di(1)
ψ)

=
∑

(γ∗−1(di
∗) ⊗ β−1(β−1(a)ϕ)

υ
θ(γ−2(di(2)

ϕ) ⊗ γ−3(c))ψ) ⊗ γ2(γ−1(di(1))
υψ

)

=
∑

(γ∗−1(di
∗) ⊗ β−1(β−1(a)ϕυ)θ(γ−2(di(2)

ϕ) ⊗ γ−3(c))ψ) ⊗ γ2(γ−1(di(1)
υ)
ψ

)

=
∑

(γ∗−1(di
∗) ⊗ β−2(aϕ)θ(γ−2(di

ϕ)(2) ⊗ γ
−3(c))ψ) ⊗ γ2(γ(γ−2(di

ϕ)(1))
ψ

)

=
∑

(γ∗−1(di
∗) ⊗ β−2(aϕ)θ(γ−3(di

ϕ) ⊗ γ−2(c(1)))) ⊗ γ(c(2))

=
∑

(γ∗(di
∗) ⊗ β−2(a)ϕθ(γ−1(di

ϕ) ⊗ γ−2(c(1)))) ⊗ γ(c(2))

=
∑

φ(β−1(a) ⊗ c(1)) ⊗ γ(c(2)).

This proves that φ is right C-colinear.
Conversely, given φ ∈ V2, one needs to show that θ = α−1

1 (φ) ∈ V1. Now it is more convenient to work
with Hom(C,A) rather than C∗ ⊗ A. For f ∈ Hom(C,A), b ∈ A, we have

bϕ f (γ−1(cϕ)) = (b · f )(c),
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and
f (γ−1(c))b = ( f · b)(c).

Take any c, d ∈ C, a ∈ A and compute

θ(c ⊗ d)a = (φ(1A ⊗ d)c)a

= (φ(1A ⊗ d)a)γ(c)

=
∑

φ(β(β−1(a)ψ) ⊗ γ(dψ))γ(c)

=
∑

(β(β−1(a)ψ)φ(1A ⊗ dψ))γ(c)

=
∑

β(β−1(a)ψ)
ϕ

(φ(1A ⊗ dψ)γ−1(γ(c)ϕ))

=
∑

β(β−1(a)ψϕ)φ(cϕ ⊗ dψ),

thus (4.1) holds. Before proving (4.2), we write ρr( f ) = f[0] ⊗ f[1] for f = c∗ ⊗ a ∈ Hom(C,A) � C∗ ⊗ A, and
then for all c ∈ C, we have

f[0](c) ⊗ f[1] =
∑

(γ∗−1(d∗i ) ∗ γ
∗−2(c∗) ⊗ β−1(a)ψ)(c) ⊗ γ(di

ψ)

=
∑

< γ∗−1(d∗i ), c1 >< γ
∗−2(c∗), c(2) > β(β−1(a)ψ) ⊗ γ(di

ψ)

=
∑

< c∗, γ2(c(2)) > aψ ⊗ γ2(c(1))
ψ

= < c∗, γ2(c(2)) > ψ(γ2(c(1)) ⊗ a) = ψ(γ2(c(1)) ⊗ f (γ(c(2)))).

Explicitly, we have∑
θ(d(2) ⊗ γ

−1(c))ψ ⊗ γ(d(1))
ψ = ψ(γ(d(1)) ⊗ φ(1A ⊗ γ

−1(c))(d(2)))

= ψ(1A ⊗ γ
−1(c))0(γ−1(d)) ⊗ ψ(1A ⊗ γ

−1(c))(1)

= ψ(1A ⊗ γ
−1(c(1)))(γ−1(d)) ⊗ c(2)

= θ(γ−1(d) ⊗ γ−1(c(1))) ⊗ c(2).

It remains to be shown that α1 and α−1
1 are inverse of each other. First take θ ∈ V1, for all c, d ∈ C, we

have

α−1
1 (α(θ))(d ⊗ c) = α1(θ)(1A ⊗ c)(d)

= (γ∗(d∗i ) ⊗ 1Aθ(γ−1(di) ⊗ γ−2(c)))(d)
= < γ∗(d∗i ), d > θ(γ(di) ⊗ c) = θ(d ⊗ c).

Finally, for φ ∈ V2, a ∈ A, c, d ∈ C:

α1(α−1(φ))(a ⊗ c)(d)

=
∑

(γ∗(d∗i ) ⊗ β
−1(a)ψα

−1
1 (φ)(γ−1(di

ψ) ⊗ γ−2(c)))(d)

=
∑

< d∗i , γ
−1(di) > β(β−1(a)ψα

−1
1 (φ)(γ−1(di

ψ) ⊗ γ−2(c)))

=
∑

β(β−1(a)ψ)α−1
1 (φ)(γ−1(d)

ψ
⊗ γ−1(c)))

=
∑

β(β−1(a)ψ)α−1
1 (φ)(1A ⊗ γ

−1(c)))γ−1(d)
ψ

= a · φ(1A ⊗ γ
−1(c))d = φ(a ⊗ c)d.

�
Now we give an alternative description for W2.
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Proposition 4.8. Let (C, γ) be finitely generated and projective as a k-module. Then

W �W1 �W2 = HomkA
AA(C∗ ⊗ A,A ⊗ C).

The isomorphism β1 : W1 →W2 is given by β1(z) = φ with

φ(c∗ ⊗ a) =
∑

l

alβ
−1(a)ψ ⊗ γ(cl(1))ψ < γ∗−2(c∗), cl(2) >

and the inverse of β1 is given by
β−1

1 (φ) = φ(ε ⊗ 1).

Proof. We need to show that β1(z) = φ is left and right (A, β)-linear and right (C, γ)-colinear. For all c∗ ∈ C∗

and a, b ∈ A,

φ((c∗ ⊗ a)b) = φ(γ∗(c∗) ⊗ aβ−1(b))

=
∑

l

alβ
−1(aβ−1(b))ψ ⊗ γ(cl(1))ψ < γ∗−1(c∗), cl(2) >

=
∑

l

alβ
−1(a)ψβ−2(b)ψ ⊗ γ(cl(1))ψψ < γ∗−1(c∗), cl(2) >

=
∑

l

[β−1(al)β−1(a)ψ]β−1(b)ψ ⊗ γ(cl(1))ψψ < γ∗−1(c∗), cl(2) >

=
∑

l

[β−1(al)β−1(a)ψ]β−1(b)ψ ⊗ γ(cl(1))ψψ < γ∗−1(c∗), cl(2) >

=
∑

l

[β−1(al)β−1(a)ψ ⊗ cψl(1) < γ
∗−1(c∗), cl(2) >] · b

=
∑

l

[alβ
−1(a)ψ ⊗ γ(cl(1))ψ < γ∗−2(c∗), γ(cl(2)) >] · b

=
∑

l

[alβ
−1(a)ψ ⊗ γ(cl(1))ψ < γ∗−2(c∗), cl(2) >] · b

= φ(c∗ ⊗ a)b,

which proves that φ is right (A, β)-linear. The proof of left (A, β)-linearity goes as follows:

φ(b(c∗ ⊗ a)) = φ(< c∗, di
ψ > γ∗(di

∗) ⊗ β−1(bψ)a)

=
∑

l

< c∗, di
ψ > alβ

−1(β−1(bψ)a)ψ ⊗ γ(cl(1))ψ < γ∗−1(d∗i ), cl(2) >

=
∑

l

< c∗, di
ψ > alβ

−2(bψψ)β−1(a)ψ ⊗ γ(cl(1))ψψ < γ∗−1(d∗i ), cl(2) >

=
∑

l

< c∗, [γ(cl)ψ](2) > alβ
−2(bψ)β−1(a)ψ ⊗ [γ(cl)ψ]ψ(1)

=
∑

l

< c∗, [γ(cl)ψ](2) > [β−1(al)β−2(bψ)]aψ ⊗ [γ(cl)ψ]ψ(1)

(4.8)
=

∑
l

< c∗, γ(cl(2)) > [β−2(b)β−1(al)]aψ ⊗ γ(cl(1))ψ

=
∑

l

< γ∗−1(c∗), cl(2)) > β−1(b)[β−1(al)β−1(aψ)] ⊗ γ(cl(1))ψ

= b · [
∑

l

< γ∗−1(c∗), cl(2)) > β−1(al)β−1(aψ) ⊗ cψl(1)]
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= b · [
∑

l

alβ
−1(a)ψ ⊗ γ(cl(1))ψ < γ∗−2(c∗), cl(2) >]

= b · φ(c∗ ⊗ a).

Next we need to show that φ is right (C, γ)-colinear. In fact,

φ((c∗ ⊗ a)[0]) ⊗ (c∗ ⊗ a)[1]

= φ(γ∗−1(di
∗) ∗ γ∗−2(c∗) ⊗ β−1(a)ψ) ⊗ γ(di

ψ)

=
∑

i,l

alβ
−1(β−1(a)ψ)ψ ⊗ γ(cl(1))ψ < γ∗−2(γ∗−1(di

∗) ∗ γ∗−2(c∗)), cl(2) > ⊗γ(di
ψ)

=
∑

i,l

alβ
−2(a)ψψ ⊗ γ(cl(1))ψ < γ∗−3(di

∗), cl(2)(1) >< γ
∗−4(c∗), cl(2)(2) > ⊗γ(di

ψ)

=
∑

i,l

alβ
−2(a)ψψ ⊗ γ(cl(1))ψ < γ∗−4(c∗), cl(2)(2) > ⊗γ

3(cl(2)(1))ψ

=
∑

i,l

β(al)β−1(a)ψψ ⊗ γ2(cl(1)(1))ψ < γ∗−3(c∗), cl(2) > ⊗γ
2(cl(1)(2))ψ

=
∑

i,l

alβ
−1(a)ψψ ⊗ γ(cl(1)(1))ψ < γ∗−2(c∗), cl(2) > ⊗γ(cl(1)(2))ψ

= ρr(φ((c∗ ⊗ a))).

Conversely, let φ ∈ W2 and put z = φ(ε ⊗ 1A) =
∑

l al ⊗ cl, we obtain a(ε ⊗ 1A) = (ε ⊗ 1A)a, for all a ∈ A.
Hence az = aφ(ε ⊗ 1A) = φ(a(ε ⊗ 1A)) = φ((ε ⊗ 1A)a) = φ(ε ⊗ 1A)a = za, and z ∈ W1. Take z =

∑
l al ⊗ cl ∈ W1.

Then

β−1
1 (β1(z)) = β−1

1 (φ) = φ(ε ⊗ 1A) =
∑

l

alβ
−1(1A)ψ ⊗ γ2(cl(1))ψ < ε, cl(2) >

=
∑

l

β(al) ⊗ γ2(cl(1)) < ε, cl(2) >

=
∑

l

β(al) ⊗ γ(cl) = z.

Finally, take φ ∈ W2, and write β−1
1 (φ) = φ(ε ⊗ 1A) =

∑
l al ⊗ cl. Then C∗ ⊗ A and A ⊗ C are right (C, γ)-

Hom-comodules and left (C∗, γ∗)-Hom-modules. Since φ is right (A, β)-linear, right (C, γ)-colinear and left
(C∗, γ∗)-linear, we see

φ(c∗ ⊗ a) = φ(γ∗−1(c∗) ⊗ 1A)a = [γ∗−1(c∗)φ(ε ⊗ 1A)]a

= [γ∗−1(c∗) ·
∑

l

al ⊗ cl]a

=
∑

l

alβ
−1(a)ψ ⊗ γ2(cl(1))ψ < γ∗−3(c∗), cl(2) >

= β1(z)(c∗ ⊗ a),

and it follows that φ = β1(z) = β1(β−1
1 (φ)), as required. �

Theorem 4.9. Let (A,C, ψ) be a right-right Hom-entwining structure and assume that (C, γ) is finitely generated
projective as a k-module. Let F : H̃ (Mk)(ψ)C

A → H̃ (Mk)A be the forgetful functor, and G : H̃ (Mk)A →

H̃ (Mk)(ψ)C
A its adjoint. Then the following statements are equivalent:

1) (F,G) is a Frobenius pair;
2) There exist z =

∑
al ⊗ cl ∈W1 and θ ∈ V1 such that the maps

φ : C∗ ⊗ A→ A ⊗ C and φ : A ⊗ C→ C∗ ⊗ A,
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given by

φ(c∗ ⊗ a) =
∑

l

alβ
−1(a)Ψ ⊗ γ(cl(1))Ψ < γ∗−2(c∗), cl(2) >, (4. 14)

φ(a ⊗ c) = γ∗(di
∗) ⊗ β−1(a)Ψθ(γ−1(dΨ

i ) ⊗ γ−2(c)), (4. 15)

are inverses of each other;
3) C∗ ⊗ A and A ⊗ C∗ are isomorphic as objects in AH̃ (Mk)(ψ)C

A.

Proof. 1)⇒ 2). Let z ∈W1 and θ ∈ V1 be as in Theorem (4.4). Thenφ = β1(z) andφ = α1(θ) are morphisms
in AH̃ (Mk)(ψ)C

A, and

φ(φ(ε ⊗ 1A)) = φ(z) =
∑

l

γ∗(di
∗) ⊗ β−1(al)Ψθ(γ−1(dΨ

i ) ⊗ γ−2(cl))

=
∑

l

γ∗(di
∗) ⊗ alΨθ(γ−1(dΨ

i ) ⊗ γ−1(cl))

=
∑

l

γ∗(di
∗) ⊗ ε(di)1A = ε ⊗ 1A.

The fact that φ and φ are right (A, β)-linear and left (C∗, γ∗)-linear implies that φ ◦ φ = IC∗⊗A. Similarly, for
all c ∈ C,

φ(φ(1A ⊗ c)) = φ(γ∗(di
∗) ⊗ θ(di ⊗ c))

=
∑

l

alβ
−1(θ(di ⊗ c))Ψ ⊗ γ(cl(1))Ψ < d∗i , cl(2) >

=
∑

l

alβ
−1(θ(cl(2) ⊗ c))Ψ ⊗ γ(cl(1))Ψ

=
∑

l

alθ(γ−1(cl) ⊗ γ−2(d)) ⊗ γ(c(2))

= ε(c(1))1A ⊗ γ(c(2))
= 1A ⊗ c.

2)⇒ 3). Obviously, since φ and φ are in AH̃ (Mk)(ψ)C
A.

3)⇒ 1). Let φ : C∗⊗A→ A⊗C be an isomorphism, and put z = φ(ε⊗1A) =
∑

l al⊗ cl ∈W1, θ = α−1
1 (φ−1) ∈

V1, we have
ε ⊗ 1A = φ−1(φ(ε ⊗ 1A)) = γ∗(di

∗) ⊗ β−1(al)Ψθ(γ−1(dΨ
i ) ⊗ γ−2(cl)).

Evaluating this equality at c ∈ C, one obtains (4.15). For all c ∈ C,

1A ⊗ C = φ(φ−1(1A ⊗ c)) =
∑

l

alθ(γ−1(cl) ⊗ γ−2(d)) ⊗ γ(c(2)).

Applying ε to the second factor gives (4.14). Thus (F,G) is a Frobenius pair. �
Recall from [17] that let (A, βA) and (B, βB) be two Hom-associative algebras and a linear map R : A⊗B→

B ⊗ A with R(b ⊗ a) = aR ⊗ bR = ar ⊗ br satisfying the conditions:

βA(aR) ⊗ βB(bR) = βA(a)R ⊗ βB(b)R, (4. 16)
(aa′)R ⊗ βB(b)R = aRa′r ⊗ βB((bR)r), (4. 17)
β(a)R ⊗ (bb′)R = βA((aR)r) ⊗ brb′R, (4. 18)

1BR ⊗ a = 1B ⊗ a, (4. 19)
bR ⊗ 1AR = b ⊗ 1A, (4. 20)
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for all a, a′ ∈ A and b, b′ ∈ B. Define a new multiplication on A⊗B by (a⊗ b)(a′ ⊗ b′) = aa′R ⊗ bRb′. Then A⊗B
with this multiplication is a Hom-associative algebra with structure map βA ⊗ βB, we denote it by B#RA.

Next we want to examine when B#RA/A is Frobenius. In fact, this is a direct application of Theorem 4.9
under the hypotheses of that (B, βB) is finitely generated and projective as a k-module. Let (A,C, ψ) be a Hom-
entwining structure, with (C, γ) finitely generated and projective, and put B = (C∗)op. Let {ci, c∗i , i = 1, ...,n}
be a dual basis for (C, γ). There is a bijective between Hom-entwining structures (A,C, ψ) and Hom smash
product structures ((C∗)op,A,R), where R and ψ can be recovered from each other using the formulae

R(a ⊗ c∗) =< γ∗−1(c∗), cψi > γ
∗(c∗i ) ⊗ aψ, ψ(c ⊗ a) =< (c∗i )R, 1

−1(c) > γ(ci) ⊗ aR.

Moreover, there are isomorphisms of categories

H̃ (Mk)(ψ)C
A � H̃ (Mk)(ψ)B#A and AH̃ (Mk)(ψ)C

A � AH̃ (Mk)(ψ)B#A.

In particular, B#RA can be made into an object of AH̃ (Mk)(ψ)C
A, and this explains the structure on C∗ ⊗ A

using in Section 4. Combining Theorem 4.9, we find that the forgetful functor F : H̃ (Mk)(ψ)C
A → H̃ (Mk)A

and its adjoint form a Frobenius pair if and only if A⊗C and C∗⊗A are isomorphic as (A; C∗op#A)-bimodules
if and only if the extension (C∗)op

⊗ A/A is Frobenius.

5. Maschke type theorems

The classical Maschke’s Theorem states that a group ring of a finite group is semisimple if and only if
the characteristic of the field does not divide the order of the group. Several generalisations of Maschke’s
theorem for Hom-Hopf algebras and Hom-comodule algebras can be found in [6, 9, 10]. In [10], a Maschke-
type theorem was formulated for Doi Hom-Hopf modules. Following [10] we define

Definition 5.1. Let (A,C, ψ) be a Hom-entwining structure. A k-module map θ : (C, γ)⊗ (C, γ)→ (A, β) satisfying
θ ◦ (γ ⊗ γ) = β ◦ θ is called a normalized (A, β)-integral, if θ satisfies the following conditions:

(1) For all c, d ∈ C,

β(β−1(a)ϕψ)θ(dψ ⊗ cϕ) = θ(d ⊗ c)a, (5. 1)

(2) For all a ∈ A, c, d ∈ C,

θ(γ−1(d) ⊗ c(1)) ⊗ γ(c(2)) = θ(d(2) ⊗ γ
−1(c))ψ ⊗ dψ(1), (5. 2)

(3) For all c ∈ C,

θ(c(1) ⊗ c(2)) = 1Aε(c). (5. 3)

Theorem 5.2. Let (A,C, ψ) be a Hom-entwining structure and (M, µ), (N, ν) ∈ H̃ (Mk)(ψ)C
A. Suppose that there

exists a normalized (A, β)-integral θ : (C, γ) ⊗ (C, γ) → (A, β). Then a monomorphism (resp. epimorphism)
f : (M, µ) → (N, ν) splits in H̃ (Mk)(ψ)C

A, if the monomorphism (resp. epimorphism) f splits as an (A, β)-linear
morphism.

Proof. Let M,N ∈ H̃ (Mk)(ψ)C
A and assume that f : M → N ∈ H̃ (Mk)(ψ)C

A has a section 1 : N → M
as an (A, β)-module morphism. Define 1̃ : N → M by 1̃(n) =

∑
µ(1(n[0])[0]) · φ(n[1] ⊗ γ−1(1(n[0])[1])). By the

partial normalized integral θ, one can easily check that 1̃ is right (A, β)-Hom-module morphism and right
(C, γ)-Hom-comodule morphism. Now we show that 1̃ is a section of f in H̃ (Mk)(ψ)C

A. In fact,

f 1̃(n) =
∑

f (µ(1(n[0])[0]) · θ(n[1] ⊗ γ
−1(1(n[0])[1])))

=
∑

( f1(µ(n[0]))[0] · θ(n[1] ⊗ ( f1γ−1(n[0]))[1])

=
∑

(µ(n[0][0]) · θ(n[1] ⊗ γ
−1(n[0][1]))

=
∑

n[0] · θ(n[1](1) ⊗ n[1](2))1A

(5.3)
= n.
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Similar computation shows that if 1 is a retraction of f , then so is 1̃.
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