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Sufficient Oscillation Conditions for Deviating Difference Equations
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Abstract. In this paper sufficient oscillation conditions are established, for deviating difference equations
with non-monotone arguments and nonnegative coefficients. An example, numerically solved in MATLAB,
is also given to demonstrate the applicability and strength of the obtained conditions over known ones.

1. INTRODUCTION

In this paper we consider the difference equation with a variable deviating argument of either retarded
(RDE)

∆x(n) + p(n)x(τ(n)) = 0, n ∈N0 (E)

or advanced type (ADE)

∇x(n) − q(n)x(σ(n)) = 0, n ∈N. (E′)

Equations (E) and (E′) are studied under the following assumptions: everywhere (p(n))n≥0 and (q(n))n≥1
are sequences of nonnegative real numbers, and (τ(n))n≥0, (σ(n))n≥1 are sequences of integers satisfying

τ(n) ≤ n − 1, ∀n ∈N0 and lim
n→∞

τ(n) = ∞ (1.1)

and

σ(n) ≥ n + 1, ∀n ∈N, (1.1′)

respectively. Here, ∆ denotes the forward difference operator ∆x(n) = x(n + 1) − x(n) and ∇ corresponds to
the backward difference operator ∇x(n) = x(n) − x(n − 1).

Set

w = −min
n≥0

τ(n).

Clearly, w is a finite positive integer if (1.1) holds.
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Definition 1.1. By a solution of (E), we mean a sequence of real numbers (x(n))n≥−w which satisfies (E) for all n ≥ 0.

It is clear that, for each choice of real numbers c−w, c−w+1, ..., c−1, c0, there exists a unique solution
(x(n))n≥−w of (E) which satisfies the initial conditions x(−w) = c−w, x(−w+1) = c−w+1, ..., x(−1) = c−1, x(0) = c0.
When the initial data is given, we can obtain a unique solution to (E) by using the method of steps.

Definition 1.2. By a solution of (E′), we mean a sequence of real numbers (x(n))n≥0 which satisfies (E′) for all n ≥ 1.

Definition 1.3. A solution (x(n))n≥−w (or (x(n))n≥0) of (E) (or (E′)) is called oscillatory, if the terms x(n) of the
sequence are neither eventually positive nor eventually negative. Otherwise, the solution is said to be nonoscillatory.
An equation is oscillatory if all its solutions oscillate.

In recent years, a considerable effort has been made to investigate oscillatory properties of solutions
of difference equations with deviating arguments. See, for example, [1−23] and references cited therein.
However, most of these results require for the arguments to be monotone increasing. While this condition
is naturally satisfied by a variety of differential equations with variable delays (advances), for difference
equations, due to the discrete nature of the arguments, if the arguments are strictly increasing, then the
deviations become eventually constant. This is one of main motivations to investigate difference equations
with non-monotone arguments. Therefore, an interesting question arising is whether we can state oscillation
criteria for (E) (or (E′)), considering the argument τ(n) (orσ(n)) to be not necessarily monotone. In the present
paper, we achieve this goal by establishing criteria which, up to our knowledge, essentially improve all
other known results in the literature.

The paper is organized as follows. First, we present, separately for a retarded and advanced case, some
of the related results which motivate the contents of this paper. Next, we establish new suffcient conditions,
involving lim sup, for the oscillation of all solutions of (E) and (E′). We base our technique on the proper
use of an iterative procedure leading to new inequalities which may replace former ones. To verify the
significance of the results, we provide an example along with various comparisons among new and known
criteria.

Throughout this paper, we are going to use the following notation:

k−1∑
i=k

A(i) = 0 and
k−1∏
i=k

A(i) = 1,

α := lim inf
n→∞

n−1∑
j=τ(n)

p( j) and β := lim inf
n→∞

σ(n)∑
j=n+1

q( j)

and

D(ω) :=


0, if ω > 1/e

1 − ω −
√

1 − 2ω − ω2

2
, if ω ∈ [0, 1/e]

.

1.1. RDEs (Chronological review)
In 2008 Chatzarakis, Koplatadze and Stavroulakis [7, 8] proved that, if τ(n) is nondecreasing and

lim sup
n→∞

n∑
j=τ(n)

p( j) > 1, (1.2)

or

lim inf
n→∞

n−1∑
j=τ(n)

p( j) >
1
e

, (1.3)
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then all solutions of (E) are oscillatory.
It is obvious that there is a gap between the conditions (1.2) and (1.3) when the limit

lim
n→∞

n−1∑
j=τ(n)

p( j)

does not exist. How to fill this gap is an interesting problem which has been investigated by several authors.
For example, in 2009, Chatzarakis, Philos and Stavroulakis [9] proved that, if

lim sup
n→∞

n∑
j=τ(n)

p( j) > 1 −D(α), (1.4)

then all solutions of (E) are oscillatory.
Now we come to the case that the argument τ(n) is not necessarily monotone. Set

h(n) = max
0≤s≤n

τ(s). (1.5)

Clearly, the sequence h(n) is nondecreasing with τ(n) ≤ h(n) ≤ n − 1 for all n ≥ 0.
In 2011, Braverman and Karpuz [3] proved that, if

lim sup
n→∞

n∑
j=h(n)

p( j)
h(n)−1∏
i=τ( j)

1
1 − p(i)

> 1, (1.6)

then all solutions of (E) are oscillatory, while, in 2014, Stavroulakis [19] improved (1.6) to

lim sup
n→∞

n∑
j=h(n)

p( j)
h(n)−1∏
i=τ( j)

1
1 − p(i)

> 1 −D(α). (1.7)

In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that, if for some r ∈N

lim sup
n→∞

n∑
j=h(n)

p( j)a−1
r

(
h(n), τ( j)

)
> 1, (1.8)

or

lim sup
n→∞

n∑
j=h(n)

p( j)a−1
r

(
h(n), τ( j)

)
> 1 −D(α), (1.9)

where

a1(n, k) =
n−1∏
i=k

[
1 − p(i)

]
ar+1(n, k) =

n−1∏
i=k

[
1 − p(i)a−1

r (i, τ(i))
]
,

then all solutions of (E) are oscillatory.

Remark 1.4. Observe that conditions (1.6) and (1.7) are special cases of (1.8) and (1.9), respectively, when r = 1.
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Several improvements were made to the above conditions, see [4, 5, 6, 10, 11] to arrive at the recent
forms [6]

lim sup
n→∞

n∑
i=h(n)

p(i) exp

h(n)−1∑
j=τ(i)

p( j)
j−1∏

m=τ( j)

1
1 − Z`(m)

 > 1, (1.10)

lim sup
n→∞

n∑
i=h(n)

p(i) exp

h(n)−1∑
j=τ(i)

p( j)
j−1∏

m=τ( j)

1
1 − Z`(m)

 > 1 −D(α) (1.11)

and

lim sup
n→∞

n∑
i=h(n)

p(i) exp

 n∑
j=τ(i)

p( j)
j−1∏

m=τ( j)

1
1 − Z`(m)

 > 1
D(α)

− 1, (1.12)

where

Z`(n) = p(n)

1 +

n−1∑
i=τ(n)

p(i) exp

 n−1∑
j=τ(i)

p( j)
j−1∏

m=τ( j)

1
1 − Z`−1(m)




with

Z0(n) = p(n)

1 +

n−1∑
i=τ(n)

p(i) exp

λ0

n−1∑
j=τ(i)

p( j)




and λ0 is the smaller root of the transcendental equation λ = eαλ.

1.2. ADEs (Chronological review)

In 2012, Chatzarakis and Stavroulakis [12] proved that, if σ(n) is nondecreasing and

lim sup
n→∞

σ(n)∑
j=n

q( j) > 1, (1.13)

or

lim sup
n→∞

σ(n)∑
j=n

q( j) > 1 −
(
1 −

√
1 − β

)2
, (1.14)

then all solutions of (E′) are oscillatory.
Now we come to the case that the argument σ(n) is not necessarily monotone. Set

ρ(n) = min
s≥n

σ(s). (1.15)

Clearly, the sequence ρ(n) is nondecreasing with σ(n) ≥ ρ(n) ≥ n + 1 for all n ≥ 1.
In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that, if for some r ∈N

lim sup
n→∞

ρ(n)∑
j=n

q( j)b−1
r (ρ(n), σ( j)) > 1, (1.16)
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or

lim sup
n→∞

ρ(n)∑
j=n

q( j)b−1
r (ρ(n), σ( j)) > 1 −D(β), (1.17)

where

b1(n, k) =
k∏

i=n+1

[
1 − q(i)

]
br+1(n, k) =

k∏
i=n+1

[
1 − q(i)b−1

r (i, σ(i))
]
,

then all solutions of (E′) are oscillatory.
Several improvements were made to the above conditions, see [4, 5, 6, 10, 11] to arrive at the recent

forms [6]

lim sup
n→∞

ρ(n)∑
i=n

q(i) exp

 σ(i)∑
j=ρ(n)+1

q( j)
σ( j)∏

m= j+1

1
1 −W`(m)

 > 1, (1.18)

lim sup
n→∞

ρ(n)∑
i=n

q(i) exp

 σ(i)∑
j=ρ(n)+1

q( j)
σ( j)∏

m= j+1

1
1 −W`(m)

 > 1 −D
(
β
)

, (1.19)

lim sup
n→∞

ρ(n)∑
i=n

q(i) exp

 σ(i)∑
j=n

q( j)
σ( j)∏

m= j+1

1
1 −W`(m)

 > 1
D(β)

− 1, (1.20)

where

W`(n) = q(n)

1 +

σ(n)∑
i=n+1

q(i) exp

 σ(i)∑
j=n+1

q( j)
σ( j)∏

m= j+1

1
1 −W`−1(m)




with

W0(n) = q(n)

1 +

σ(n)∑
i=n+1

q(i) exp

λ0

σ(i)∑
j=n+1

q( j)




and λ0 is the smaller root of the transcendental equation λ = eβλ.

2. MAIN RESULTS

2.1. RDEs

The proofs of our main results are essentially based on the following lemmas.

Lemma 2.1. [11] Assume that h(n) is defined by (1.5). If α > 0 then

lim inf
n→∞

n−1∑
j=h(n)

p( j) = lim inf
n→∞

n−1∑
j=τ(n)

p( j) = α. (2.1)
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Lemma 2.2. [4, 9] Assume that h(n) is defined by (1.5) and x(n) is an eventually positive solution of (E). If 0 < α ≤ 1/e
then

lim inf
n→∞

x(n + 1)
x(h(n))

≥ D(α) (2.2)

and

lim inf
n→∞

x(h(n))
x(n)

≥ λ0, (2.3)

where λ0 is the smaller root of the transcendental equation λ = eαλ.

Theorem 2.3. Assume that h(n) is defined by (1.5). If for some ξ ∈N

lim sup
n→∞

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u)


 > 1, (2.4)

where

dξ(n) = p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ−1(u)



 (2.5)

with

d0(n) = p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

λ0

`−1∑
j=τ(`)

p( j)





and λ0 is the smaller root of the transcendental equation λ = eαλ, then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−w is a nonoscillatory solution of (E). Then it is
either eventually positive or eventually negative. As (−x(n))n≥−w is also a solution of (E), we may restrict
ourselves only to the case where x(n) > 0 for all large n. Let n1 ≥ −w be an integer such that x(n) > 0 for all
n ≥ n1. Then, there exists n2 ≥ n1 such that x(τ(n)) > 0, ∀n ≥ n2. In view of this, Eq.(E) becomes

∆x(n) = −p(n)x(τ(n)) ≤ 0, ∀n ≥ n2,

which means that the sequence (x(n)) is eventually nonincreasing.
Dividing (E) by x(n) and summing up from τ(n) to n − 1, we take

n−1∑
j=τ(n)

∆x( j)
x( j)

= −

n−1∑
j=τ(n)

p( j)
x(τ( j))

x( j)
. (2.6)

However, since ex
≥ x + 1, x ∈ R we have

n−1∑
j=τ(n)

∆x( j)
x( j)

=

n−1∑
j=τ(n)

(
x( j + 1)

x( j)
− 1

)
=

n−1∑
j=τ(n)

[
exp

(
ln

x( j + 1)
x( j)

)
− 1

]
≥

n−1∑
j=τ(n)

ln
x( j + 1)

x( j)
= ln

x(n)
x(τ(n))

. (2.7)

Combining (E), (2.6) and (2.7), we obtain

∆x(n) + p(n)x(n) exp

 n−1∑
j=τ(n)

p( j)
x(τ( j))

x( j)

 ≤ 0. (2.8)
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Dividing (2.8) by x(n) and summing up from τ(k) to n − 1, we take

n−1∑
`=τ(k)

∆x( j)
x( j)

≤ −

n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


which, in view of (2.7), gives

ln
x(n)

x(τ(k))
≤ −

n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


or

x(τ(k)) ≥ x(n) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


 . (2.9)

Summing up (E) from τ(n) to n − 1, we have

x(n) − x(τ(n)) +

n−1∑
k=τ(n)

p(k)x (τ(k)) = 0. (2.10)

Combining (2.9) and (2.10), we obtain

x(n) − x(τ(n)) + x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


 ≤ 0.

Multiplying the last inequality by p(n), we get

x(n)p(n) − p(n)x(τ(n)) + p(n)x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


 ≤ 0

which, in view of (E), becomes

∆x(n) + p(n)x(n) + p(n)x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(τ( j))

x( j)


 ≤ 0.

Since τ( j) ≤ h( j), clearly

∆x(n) + p(n)x(n) + p(n)x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
x(h( j))

x( j)


 ≤ 0.

Taking into account the fact that (2.3) of Lemma 2.2 is satisfied, the last inequality becomes

∆x(n) + p(n)x(n) + p(n)x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

(λ0 − ε)
`−1∑

j=τ(`)

p( j)


 ≤ 0.

Thus

∆x(n) + p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

(λ0 − ε)
`−1∑

j=τ(`)

p( j)



 x(n) ≤ 0,
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or

∆x(n) + d0(n, ε)x(n) ≤ 0, (2.11)

with

d0(n, ε) = p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

(λ0 − ε)
`−1∑

j=τ(`)

p( j)



 .

Applying the discrete Grönwall inequality in (2.11), we obtain

x(m) > x(n)
n−1∏
u=m

1
1 − d0(u, ε)

, n ≥ m.

Thus

x(τ( j)) > x( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)

, for all n ≥ n(ε). (2.12)

Combining the inequalities (2.9) and (2.12) we obtain

x(τ(k)) ≥ x(n) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)


 . (2.13)

In view of this, (2.10) becomes

x(n) − x(τ(n)) + x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)


 ≤ 0.

Multiplying the last inequality by p(n), we get

p(n)x(n) − p(n)x(τ(n)) + p(n)x(n)
∑n−1

k=τ(n)
p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)


 ≤ 0

which, in view of (E), becomes

∆x(n) + p(n)x(n) + p(n)x(n)
n−1∑

k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)


 ≤ 0

or

∆x(n) + p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)



 x(n) ≤ 0.

Hence, for sufficiently large n

∆x(n) + d1(n, ε)x(n) ≤ 0

where

d1(n, ε) = p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d0(u, ε)



 .
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By induction, we can build inequalities on ∆x(n) progressively higher indices dξ(n, ε), ξ ∈ N. In general,
for sufficiently large n, the positive solution x(n) satisfies the inequality

∆x(n) + dξ(n, ε)x(n) ≤ 0 (2.14)

where

dξ(n, ε) = p(n)

1 +

n−1∑
k=τ(n)

p(k) exp

 n−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ−1(u, ε)





and

x(τ(k)) ≥ x(h(n)) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 . (2.15)

Summing up (E) from h(n) to n, we have

x(n + 1) − x(h(n)) +

n∑
k=h(n)

p(k)x(τ(k)) = 0. (2.16)

Combining (2.15) and (2.16), we have, for all sufficiently large n,

x(n + 1) − x(h(n)) + x(h(n))
n∑

k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 0. (2.17)

The inequality is valid if we omit x(n + 1) > 0 in the left-hand side.Thus, as x(h(n)) > 0, for all sufficiently
large n it holds

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 < 1,

from which by letting n→∞, we have

lim sup
n→∞

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.4).
The proof of the theorem is complete.

Theorem 2.4. Assume that h(n) is defined by (1.5) and 0 < α ≤ 1/e. If for some ξ ∈N

lim sup
n→∞

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u)


 > 1 −D(α), (2.18)

where dξ(n) is defined by (2.5), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−w is an eventually positive solution of (E). Then,
as in the proof of Theorem 2.3, for sufficiently large n, (2.17) is satisfied, i.e.,

x(n + 1) − x(h(n)) + x(h(n))
n∑

k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 0.
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That is,

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 1 −

x(n + 1)
x(h(n))

,

which gives

lim sup
n→∞

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 1 − lim inf

n→∞

x(n + 1)
x(h(n))

.

By Lemma 2.2, inequality (2.2) holds. So the last inequality leads to

lim sup
n→∞

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 1 −D(α).

Since ε may be taken arbitrarily small, this inequality contradicts (2.18).
The proof of the theorem is complete.

Theorem 2.5. Assume that h(n) is defined by (1.5) and 0 < α ≤ 1/e. If for some ξ ∈N

lim sup
n→∞

n∑
k=h(n)

p(k) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u)


 > 1

D(α)
− 1, (2.19)

where dξ(n) is defined by (2.5), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−w is an eventually solution of (E). Then, as in the
proof of Theorem 2.3, for sufficiently large n, (2.15) is satisfied. Therefore

x(τ(k)) ≥ x(n + 1) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 . (2.20)

Combining (2.16) and (2.20), we have

x(n + 1) − x(h(n)) +

n∑
k=h(n)

p(k)x(n + 1) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 0.

Thus, for all sufficiently large n it holds

n∑
k=h(n)

p(k) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ x(h(n))

x(n + 1)
− 1.

Letting n→∞, we take

lim sup
n→∞

n∑
k=h(n)

p(k) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ lim sup

n→∞

x(h(n))
x(n + 1)

− 1,

which, in view of (2.2), gives

lim sup
n→∞

n∑
k=h(n)

p(k) exp

 n∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u, ε)


 ≤ 1

D(α)
− 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.19).
The proof of the theorem is complete.



G. Chatzarakis / Filomat 33:11 (2019), 3291–3305 3301

Remark 2.6. If dξ(n, ε) ≥ 1 then (2.14) guarantees that all solutions of (E) are oscillatory. In fact, (2.14) gives

∆x(n) + x(n) ≤ 0

which means that x(n+1) ≤ 0. This contradics x(n) > 0 for all n ≥ n1. Thus, in Theorems 2.3, 2.4 and 2.5 we consider
only the case dξ(n) < 1. Another conclusion, that can be draw from the above, is that if at some point through the
iterative process, we get a value of ξ, for which dξ(n) ≥ 1, then the process terminates, since in any case, all solutions
of (E) will be oscillatory. The value of ξ, that is the number of iterations, obviously, depends on the coefficient p(n)
and the form of the non-monotone argument τ(n).

2.2. ADEs
Similar lemmas for the (dual) advanced difference equation (E′), easily, can be derived. The proof of

these lemmas are omitted, since they are quite similar to those of the corresponding lemmas, for the retarded
equation.

Lemma 2.7. Assume that ρ(n) is defined by (1.15). If β > 0 then

lim inf
n→∞

ρ(n)∑
j=n+1

q( j) = lim inf
n→∞

σ(n)∑
j=n+1

q( j) = β.

Lemma 2.8. Assume that ρ(n) is defined by (1.15), 0 < β ≤ 1/e and x(n) is an eventually positive solution of (E′).
Then

lim inf
n→∞

x(n − 1)
x(ρ(n))

≥ D(β)

and

lim inf
n→∞

x(ρ(n))
x(n)

≥ λ0

where λ0 is the smaller root of the transcendental equation λ = eβλ.

Based on Lemmas 2.7 and 2.8, we derive new sufficient oscillation conditions, involving lim sup, which
essentially improve all previously known results in the literature.

Theorem 2.9. Assume that ρ(n) is defined by (1.15). If for some ξ ∈N

lim sup
n→∞

ρ(n)∑
k=n

q(k) exp

 σ(k)∑
`=ρ(n)+1

q(`) exp

 σ(`)∑
j=`+1

q( j)
σ( j)∏

u= j+1

1
1 − 1ξ(u)


 > 1, (2.21)

where

1ξ(n) = q(n)

1 +

σ(n)∑
k=n+1

q(k) exp

 σ(k)∑
`=n+1

q(`) exp

 σ(`)∑
j=`+1

q( j)
σ( j)∏

u= j+1

1
1 − 1ξ−1(u)



 (2.22)

with

10(n) = q(n)

1 +

σ(n)∑
k=n+1

q(k) exp

 σ(k)∑
`=n+1

q(`) exp

λ0

σ(`)∑
j=`+1

q( j)





and λ0 is the smaller root of the transcendental equation λ = eβλ, then all solutions of (E′) are oscillatory.
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Theorem 2.10. Assume that ρ(n) is defined by (1.15) and 0 < β ≤ 1/e. If for some ξ ∈N

lim sup
n→∞

ρ(n)∑
k=n

q(k) exp

 σ(k)∑
`=ρ(n)+1

q(`) exp

 σ(`)∑
j=`+1

q( j)
σ( j)∏

u= j+1

1
1 − 1ξ(u)


 > 1 −D

(
β
)

, (2.23)

where 1ξ(n) is defined by (2.22), then all solutions of (E′) are oscillatory.

Theorem 2.11. Assume that ρ(n) is defined by (1.15) and 0 < β ≤ 1/e. If for some ξ ∈N

lim sup
n→∞

ρ(n)∑
k=n

q(k) exp

σ(k)∑
`=n

q(`) exp

 σ(`)∑
j=`+1

q( j)
σ( j)∏

u= j+1

1
1 − 1ξ(u)


 > 1

D(β)
− 1, (2.24)

where 1ξ(n) is defined by (2.22), then all solutions of (E′) are oscillatory.

Remark 2.12. Similar comments as those in Remark 2.6, can be made for Theorems 2.9, 2.10 and 2.11, concerning
equation (E′).

3. AN EXAMPLE AND COMMENTS

In this section, an example illustrates cases when the results of the present paper imply oscillation while
previously known results fail. The example not only illustrates the significance of main results, but also
serves to indicate the high degree of improvement, compared to the previous oscillation criteria in the
literature. All the calculations were made in Matlab.

Example 3.1. Consider the retarded difference equation

∆x(n) +
12
125

x (τ(n)) = 0, n ∈N0, (3.1)

with (see Fig. 1, (a))

τ(n) =


n − 1, if n = 5µ
n − 6, if n = 5µ + 1
n − 2, if n = 5µ + 2
n − 6, if n = 5µ + 3
n − 3, if n = 5µ + 4

where µ ∈N0 andN0 is the set of nonnegative integers.

By (1.5), we see (Fig. 1, (b)) that

h(n) =


n − 1, if n = 5µ
n − 2, if n = 5µ + 1
n − 2, if n = 5µ + 2
n − 3, if n = 5µ + 3
n − 3, if n = 5µ + 4

.

It is easy to see that

α = lim inf
n→∞

n−1∑
j=τ(n)

p( j) = lim inf
µ→∞

5µ−1∑
j=5µ−1

12
125

= 0.096
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Figure 1: The graphs of τ(n) and h(n)

and therefore, the smaller root of e0.096λ = λ is λ0 = 1.11274.
Observe that the function Fξ :N0 → R+ defined as

Fξ(n) =

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − dξ(u)




attains its maximum at n = 5µ + 4, µ ∈N0, for every ξ ∈N. Specifically,

F1(n) =

n∑
k=h(n)

p(k) exp

h(n)−1∑
`=τ(k)

p(`) exp

 `−1∑
j=τ(`)

p( j)
j−1∏

u=τ( j)

1
1 − d1(u)




where

d1(u) = p(u)

1 +

u−1∑
i=τ(u)

p(i) exp

 u−1∑
v=τ(i)

p(v) exp

 v−1∑
ω=τ(v)

p(ω)
ω−1∏
ϕ=τ(ω)

1
1 − d0(ϕ)





with

d0(ϕ) = p(ϕ)

1 +

ϕ−1∑
θ=τ(ϕ)

p(θ) exp

 ϕ−1∑
ψ=τ(θ)

p(ψ) exp

λ0

ψ−1∑
ζ=τ(ψ)

p(ζ)



 .

By using an algorithm on MATLAB software, we obtain

F1(5µ + 4) ' 1.0876

and therefore

lim sup
n→∞

F1(n) ' 1.0876 > 1.

That is, condition (2.4) of Theorem 2.3 is satisfied for ξ = 1. Therefore, all solutions of equation (3.1) are oscillatory.
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Observe, however, that

Condition Value Conclusion
(1.2) = 0.384 < 1 is not satisfied
(1.3) = 0.096 < 1/e q
(1.4) = 0.384 < 1 −D(β) ' 0.9948 q
(1.6) ' 0.5218 < 1 q
(1.7) ' 0.5218 < 1 −D(β) ' 0.9948 q

(1.8) for r = 1 ' 0.5218 < 1 q
(1.9) for r = 1 ' 0.5218 < 1 −D(β) ' 0.9948 q

(1.10) for ` = 1 ' 0.8499 < 1 q
(1.11) for ` = 1 ' 0.8499 < 1 −D(β) ' 0.9948 q
(1.12) for ` = 1 ' 2.8049 < 1/D(β) − 1 ' 194.06805 q

That is, none of conditions (1.2), (1.3), (1.4), (1.6) ≡ (1.8) (for r = 1), (1.7) ≡ (1.9) (for r = 1), (1.10) (for ` = 1),
(1.11) (for ` = 1) and (1.12) (for ` = 1) is satisfied.

Comment. It is worth noting that the improvement of condition (2.4) to the corresponding condition (1.2)
is significant, approximately 183.23%, if we compare the values on the left-side of these conditions. Also, the
improvement compared to conditions (1.6) ≡ (1.8) (for r = 1) and (1.10) (for ` = 1) is very satisfactory, around
108.43% and 27.97%, respectively.

Finally, observe that the conditions (1.8)− (1.12) do not lead to oscillation for the first iteration. On the contrary,
condition (2.4) is satisfied from the first iteration. This means that our condition is better and much faster than
(1.8) − (1.12).

Remark 3.2. Similarly, one can construct examples, illustrating the other main results, in the paper.
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