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Abstract. Let (A,m) be a commutative quasi-local ring with non-zero identity and let M be an Artinian
co-Cohen-Macaulay R-module with Ndim M = d. Let I ⊆ m be an ideal of R with `(0 :M I) < ∞. In this
paper, for 0 ≤ i ≤ d, we study the dual of Hilbert coefficients éi(I,M) of I relative to M. Also, we prove the
dual of Huckaba-Marley’s inequality. Moreover, we obtain some consequences of this result.

1. introduction

Throughout this paper, we assume that (A,m) is a commutative quasi-local ring with non-zero identity
and A/m is infinite and let M be a non-zero Artinian A-module. Roberts in [12] defined the dual dimension
Ndim M and proved that Ndim M is equal to the least integer d for which there exists elements a1, ..., ad ∈ m

such that `(0 :M (a1, ..., ad)) < ∞ (see also [8]). The sequence a1, ..., ad ∈ m is called a system of parameters
for M. Matlis in [9] defined that a sequence x1, ..., xn ∈ m is an M-cosequence if 0 :M (x1, ..., xi−1)

xi
−→ 0 :M

(x1, ..., xi−1) is surjective for i = 1, ...,n. In this case, it should be noted that 0 :M (x1, ..., xn) , 0. The codepth
of M, denoted by width M, is defined as the length of a maximal M-cosequence inm. Then it is always true
that width M ≤ Ndim M (see [11]). When the equality holds, it said that M is co-Cohen-Macaulay. Tang
and Zakeri in [16] proved that M is co-Cohen-Macaulay if and only if every system of parameters for M is
an M-cosequence (see also [17] and [3]).

For an ideal I of A, Kirby in [7] introduced the following two graded modules dual to the Rees ring and
associated graded ring R(I,M) =

⊕
∞

n=−∞
R(I,M)n, where R(I,M)n = M/(0 :M I−n) if n ≤ 0 and R(I,M)n = 0

if n > 0, and G(I,M) =
⊕
∞

n=−∞
G(I,M)n, where G(I,M)n = (0 :M I−n+1)/(0 :M I−n) if n ≤ 0 and G(I,M)n = 0

if n > 0. He used the two graded modules in the proofs of theorems about the Artin-Rees property and
Hilbert polynomials for Artinian modules. For an ideal I of A such that `(0 :M I) < ∞, Kirby in [7] proved
that, for n sufficiently large, the length `(0 :M In) is a polynomial function in n of degree d = Ndim M. From
now on, throughout the article, we will denote d = Ndim M > 0. Jorge Perez and Freitas in [6] denoted the
dual Hilbert-Samuel function of I by Hn(I,M) := `(0 :M In), and the dual Hilbert-Samuel polynomial of I by
Pn(I,M) := `(0 :M In) for large n. They wrote
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Pn(I,M) =

(
n + d − 1

d

)
é0(I,M) −

(
n + d − 2

d − 1

)
é1(I,M) + ... + (−1)déd(I,M)

=

d∑
i=0

(−1)i
(
n + d − i − 1

d − i

)
éi(I,M),

where éi(I,M) for i = 0, 1, ..., d are integers, called the dual Hilbert-Samuel coefficient of I relative to M. The
leading coefficient é0(I,M), called the dual Hilbert-Samuel multiplicity of I relative to M.

Sharp and Taherizadeh in [13] defined that an ideal J is a reduction of I relative to M if J ⊆ I and there
exists non-negative integer n such that (0 :M JIn) = (0 :M In+1). If J is a reduction of I relative to M and there
is no reduction of I relative to M which is strictly contained in J, then it said that J is a minimal reduction
of I relative to M. When A/m is infinite and I ⊆ m is an ideal of A with `(0 :M I) < ∞, every reduction of I
relative to M contains a minimal reduction of I relative to M and every minimal reduction of I relative to
M is generated by a system of parameters for M (see [13, Theorem 6.2]). The reduction number rJ(I,M) of
I with respect to J is the smallest n ∈ N such that (0 :M JIn) = (0 :M In+1) for some minimal reduction J of I
relative to M. We define the dual of Sally module S of I with respect to J as the

S = SJ(I,M) =
⊕
n≥1

0 :M IJn

0 :M In+1 =
⊕
n≥1

Sn.

An element x ∈ I\I2 is said to be co-superficial of degree one for I with respect to M if and only if there
is an integer n0 such that

x(0 :M In+1) + (0 :M In0 ) = (0 :M In) f or all n ≥ n0.

A sequence x1, ..., xs ∈ I is said to be a co-superficial sequence for I with respect to M if for all i = 1, ..., s
the image of xi ∈ I is a co-superficial element with respect to (0 :M (x1, ..., xi−1)). Recall that co-superficial
element was introduced in [14].

The objective of this paper is to state known results that link width of G(I,M) with linear relations among
the dual Hilbert coefficients éi(I,M) for 0 ≤ i ≤ d, specially for é0(I,M) and é1(I,M). We have chosen two
fundamental theorems of Huckaba [4] and Huckaba-Marley [5] to illustrate the results in this area. In section
two, we introduce the dual of Sally module and state dual of some results about length of its components.
In section three, we prove the main facts for Hilbert polynomial of co-Cohen-Macaulay modules with Ndim
equal one.
In section four, we provide a simple proof of dual of two theorems of Huckaba [4] and Huckaba-Marley [5].
In section five by using the 4 operator we prove the main Theorem 5.3 and state a few its consequences.

2. The dual of Sally module

We start this section by the following theorem.

Theorem 2.1. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I relative to M. Let S = SJ(I,M) =

⊕
n≥1

0:MIJn

0:MIn+1 =
⊕

n≥1 Sn be the dual of Sally
module. Then

`(Sn) − `(Sn−1) =

(
n + d − 1

d − 1

)
`(0 :M J) −

(
n + d − 2

d − 2

)
`(

0 :M J
0 :M I

) − `(
0 :M In+1

0 :M In ).

Proof. Since J is generated by a system of parameters for M and every system of parameters for M is M-cosequence,
by [1, Proposition 2.2] we have

`(0 :M Jn) =

(
n + d − 1

d

)
`(0 :M J), f or all n.
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Consider the two exact sequences

0→
0 :M IJn−1

0 :M In →
0 :M Jn

0 :M In →
0 :M Jn

0 :M IJn−1 → 0,

and

0→
0 :M IJn−1

0 :M Jn−1 →
0 :M Jn

0 :M Jn−1 →
0 :M Jn

0 :M IJn−1 → 0.

Now by using the above two exact sequences we have

`(0 :M In) = `(0 :M Jn) − `(
0 :M Jn

0 :M In )

= `(0 :M Jn) − `(
0 :M Jn

0 :M IJn−1 ) − `(
0 :M IJn−1

0 :M In )

= `(0 :M Jn) − `(
0 :M Jn

0 :M Jn−1 ) + `(
0 :M IJn−1

0 :M Jn−1 ) − `(
0 :M IJn−1

0 :M In )

= `(0 :M Jn−1) + `(
0 :M IJn−1

0 :M Jn−1 ) − `(
0 :M IJn−1

0 :M In ).

From [1, Lemma 2.1] we have `( 0:MIJn−1

0:M Jn−1 ) =
(n+d−2

d−1
)
`(0 :M I) and `( 0:MIJn−1

0:MIn ) = `(Sn−1). Thus

`(0 :M In) =

(
n + d − 2

d

)
`(0 :M J) +

(
n + d − 2

d − 1

)
`(0 :M I) − `(Sn−1)

and so

`(Sn) = −`(0 :M In+1) +

(
n + d − 1

d

)
`(0 :M J) +

(
n + d − 1

d − 1

)
`(0 :M I).

Therefore, we have

`(Sn) − `(Sn−1) =

=

(
n + d − 1

d − 1

)
`(0 :M J) −

(
n + d − 2

d − 2

)
`(

0 :M J
0 :M I

) − `(
0 :M In+1

0 :M In )

From Theorem 2.1 we can conclude that the growth of `(Sn) affects the bounding of `( 0:MIn+1

0:MIn ).

Lemma 2.2. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. Then S1 = 0 if and only if r(I,M) = 1.

Proof. Since S1 = 0:M JI
0:MI2 = 0, we have 0 :M JI = 0 :M I2 and so r(I,M) = 1. Conversely, let r(I,M) = 1. Then

0 :M JI = 0 :M I2 and so S1 = 0.

Corollary 2.3. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. Then S1 = 0 if and only if

`(0 :M In+1) =

(
n + d

d

)
`(0 :M J) −

(
n + d − 1

d − 1

)
`(

0 :M J
0 :M I

).

In this case G(I,M) is co-Cohen-Macaulay.

Proof. By using Lemma 2.2 and [1, Theorem 2.7] the result follows.
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Proposition 2.4. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. Let J is a minimal reduction of I and S = SJ(I,M) be the corresponding Sally module of M with respect
to I. Then for n� 0,

Hn(I,M) =

(
n + d − 1

d

)
é0 +

(
n + d − 2

d − 1

)
(`(0 :M I) − é0) − `(Sn−1).

Proof. It is a straightforward conclusion by using the equation

Hn(I,M) =

(
n + d − 2

d

)
`(0 :M J) +

(
n + d − 2

d − 1

)
`(0 :M I) − `(Sn−1).

The following results immediately obtain by Proposition 2.4.

Corollary 2.5. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. If SJ(I,M) , 0, then the function `(Sn) has the growth of a polynomial of degree d − 1.

Corollary 2.6. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. Let ś0, ś1, ..., śd−1 be the coefficients of the Hilbert polynomial of SJ(I,M). Then

é1 = é0 − `(0 :M I) + ś0,

éi+1 = śi f or all i ≥ 1.

Corollary 2.7. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and let I be an ideal of A such that
`(0 :M I) < ∞. Then the following hold:

(a) `(0 :M I) ≥ é0 − é1.
(b) In the case of equality we have SJ(I,M) = 0.

Proof. (a) This is clear by using the equality `(0 :M I) = é0 − é1 + ś0. For (b), we have ś0 = 0 and so `(Sn) is the
polynomial of degree d − 2. Therefore, by Corollary 2.5, we have SJ(I,M) = 0.

Proposition 2.8. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that
`(0 :M I) < ∞ and J be a minimal reduction of I. Then the length of ( 0:MIJn

0:MIn+1 ) and `( 0:M J
0:MI ) is independent of J.

Proof. The result immediately follows by using the two equations

`(
0 :M J
0 :M I

) = `(0 :M J) − `(0 :M I) = é0(I,M) − `(0 :M I),

and

`(Sn) =

(
n + d − 1

d

)
é0(I,M) +

(
n + d − 1

d − 1

)
`(0 :M I) − `(0 :M In+1).

3. The dual Hilbert function of 1-dimensional co-Cohen-Macaulay modules

We start this section by the following notations. The dual postulation number of I is defined by

n(I,M) = max{n ∈ Z | Pn(I,M) , Hn(I,M)}.

Let f : Z → Z be an integer valued function. Then 41( f ) denote the first difference function defined
by 41( f )(n) = f (n + 1) − f (n), for all n ∈ Z. Inductively we define the ith difference function of f by
4

i( f ) = 4i−1(41( f )).
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Theorem 3.1. Let M be a co-Cohen-Macaulay A-module with Ndim M = 1, I be an ideal of A such that `(0 :M I) < ∞
and J = (a) be a minimal reduction of I. Then 41(Pn(I,M) −Hn(I,M)) ≥ 0 for all n ≥ 0.

Proof. Since Pn(I,M) = né0(I,M) − é1(I,M), we have

Pn+1(I,M) −Hn+1(I,M) = (n + 1)é0(I,M) − é1(I,M) − `(0 :M In+1)

= né0(I,M) − é1(I,M) − `(
0 :M JIn

0 :M J
) + `(

0 :M JIn

0 :M In+1 )

= Pn(I,M) −Hn(I,M) + `(
0 :M JIn

0 :M In+1 ).

Since `( 0:M JIn

0:MIn+1 ) ≥ 0, we conclude that 41(Pn(I,M) −Hn(I,M)) ≥ 0, as required.

Corollary 3.2. Let M be a co-Cohen-Macaulay A-module with Ndim M = 1, I be an ideal of A such that `(0 :M I) < ∞
and J = (a) be a minimal reduction of I. Then for all n ≥ 0 we have

rJ(I,M) = n(I,M) + 1.

Proof. By the proof of Theorem 3.1, we have

Hn+1(I,M) − Pn+1(I,M) = Hn(I,M) − Pn(I,M) − `(
0 :M JIn

0 :M In+1 ).

Put k = n(I,M), r = rJ(I,M). Then for all n ≥ r

Hn(I,M) − Pn(I,M) = Hr(I,M) − Pr(I,M).

Since Hn(I,M) = Pn(I,M) for all n � 0, we have Hr(I,M) = Pr(I,M). Therefore k ≤ r − 1. Now we show that
k ≥ r − 1. Let n = k + 1. By using the above equations we have

Hk+2(I,M) − Pk+2(I,M) = Hk+1(I,M) − Pk+1(I,M) − `(
0 :M JIk+1

0 :M Ik+2
).

Thus `( 0:M JIk+1

0:MIk+2 ) = 0 and so 0 :M JIk+1 = 0 :M Ik+2. Therefore r ≤ k + 1 and this completes the proof.

Theorem 3.3. Let M be a co-Cohen-Macaulay A-module with Ndim M = 1, I be an ideal of A such that `(0 :M I) < ∞
and J = (a) be a minimal reduction of I. Then

(a) é1(I,M) = Σn≥1`(
0:M JIn−1

0:MIn ) ≥ Σn≥1`(
(0:M J)+(0:MIn)

(0:MIn) ).

(b) é1(I,M) = Σn≥1`(
(0:M J)+(0:MIn)

(0:MIn) ) i f and only i f G(I,M) is co − Cohen −Macaulay.

Proof. Part (a). For all m ≥ 1 we consider the exact sequence

0→ (0 :M Im)→ (0 :M JIm−1)→ (
0 :M JIm−1

0 :M Im )→ 0.

Therefore we have

`(
0 :M JIm−1

0 :M Im ) = `(0 :M JIm−1) − `(0 :M Im)

= `(0 :M J) + `(0 :M JIm−1) − `(0 :M J) − `(0 :M Im)

= `(0 :M J) + `(
0 :M JIm−1

0 :M J
) − `(0 :M Im)

= `(0 :M J) + `(0 : M
0:Ma

Im−1) − `(0 :M Im)

= `(0 :M J) + `(0 :M Im−1) − `(0 :M Im)

= `(0 :M J) − `(
0 :M Im

0 :M Im−1 ).
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Hence for all m ≥ 1,

`(
0 :M Im

0 :M Im−1 ) = `(0 :M J) − `(
0 :M JIm−1

0 :M Im ) = é0(I,M) − `(
0 :M JIm−1

0 :M Im ).

Adding the above equation for m = 1, ...,n we obtain

`(0 :M In) = né0(I,M) − Σn
m=1`(

0 :M JIm−1

0 :M Im ).

Taking n� 0, we get,

Pn(I,M) = né0(I,M) − é1(I,M) = né0(I,M) − Σ
rJ(I,M)
m=1 `(

0 :M JIm−1

0 :M Im ).

Thus é1(I,M) = Σ
rJ(I,M)
m=1 `( 0:M JIm−1

0:MIm ). Since (0 :M J)+(0 :M Im) ⊆ (0 :M JIm−1), we obtain é1(I,M) ≥ Σ
rJ(I,M)
m=1 `( (0:M J)+(0:MIm)

0:MIm ).
For (b), equality holds if and only if (0 :M J) + (0 :M Im) = (0 :M JIm−1) for all m ≥ 1. By using [15, Theorem

3.2] this condition is equivalent to G(I,M) is co-Cohen-Macaulay.

4. The dual of Huckaba-Marley’s inequality

We start this section by the following lemma.

Lemma 4.1. Suppose M is co-Cohen-Macaulay and x is a co-superficial element for I with respect to M. Then

(1) x is a cosequence element of M.
(2) x(0 :M In) = (0 :M In−1) for n sufficiently large.
(3) Pn(I, M̄) = Pn(I,M) − Pn−1(I,M) for all n, where M̄ = (0 :M x) .

Proof. (1) By definition of co-superficial element, there exists a positive integer c such that x(0 :M In) + (0 :M
Ic) = (0 :M In−1) for n sufficiently large. Now consider the following exact sequence:

0→ 0 :M (In, x)→ 0 :M In x
→ 0 :M In

→
0 :M In

x(0 :M In)
→ 0.

Hence for large n we have:

Hn(I, M̄) = `(0 :M (In, x))

= `(
0 :M In

x(0 :M In)
)

= `(
0 :M In

x(0 :M In) + (0 :M Ic)
) + `(

x(0 :M In) + (0 :M Ic)
x(0 :M In)

)

= `(
0 :M In

(0 :M In−1)
) + `(

0 :M Ic

x(0 :M In) ∩ (0 :M Ic)
).

≤ Hn(I,M) −Hn−1(I,M) + `(0 :M Ic).

Since x(0 :M In) ⊆ (0 :M In−1) we have `( 0:MIn

x(0:MIn) ) ≥ `(
0:MIn

(0:MIn−1) ). It therefore follows

Hn(I, M̄) = `(0 :M (In, x))

= `(
0 :M In

x(0 :M In)
)

≥ `(
0 :M In

(0 :M In−1)
)

= Hn(I,M) −Hn−1(I,M).
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Therefore, we obtain

Pn(I,M) − Pn−1(I,M) ≤ Pn(I, M̄) ≤ Pn(I,M) − Pn−1(I,M) + `(0 :M Ic)

Thus, deg Pn(I, M̄) = deg Pn(I,M) − 1. Since deg Pn(I,M) = Ndim M and deg Pn(I, M̄) = Ndim(0 :M x), we
have Ndim(0 :M x) = Ndim M − 1. Since M is co-Cohen-Macaulay this implies that x is a cosequence
element of M. To prove (2) it is enough to show (0 :M Ic) ⊂ x(0 :M In) for n sufficiently large. To see this, by
Artin-Rees Lemma [7, Proposition 3], there exists an integer p such that (0 :M x)+ (0 :M In) = (((0 :M x)+ (0 :M
Ip)) :M In−p) ⊇ ((0 :M x) :M In−p). Therefore we have x(0 :M xIn−p) ⊆ x(0 :M In). Now since x is a cosequence
element i.e., xM = M, for r ∈ (0 :M In−p) there exists ḿ ∈M such that r = xḿ and rIn−p = 0. So xḿIn−p = 0 and
therefore ḿ ∈ (0 :M xIn−p). Consequently r ∈ x(0 :M xIn−p) and so x(0 :M In) ⊇ (0 :M In−p). Thus

(0 :M In−p−k) ⊂ x(0 :M In−k) ⊂ x(0 :M In).

Therefore, for n sufficiently large, (0 :M Ic) ⊂ x(0 :M In). Part (3) follows by part (1) and the proof of part
(2).

Proposition 4.2. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and x = x1, ..., xk is a co-superficial
sequence for I. Let M̄ = (0 :M x). Then éi(I, M̄) = éi(I,M) for 0 ≤ i ≤ d − k and éi(I, M̄) = 0 for i > d − k.

Proof. It suffices to prove the case k = 1. To see this, by Lemma 4.1, we have

Pn(I, M̄) = Pn(I,M) − Pn−1(I,M) f or all n.

Since

Pn(I,M) =

(
n + d − 1

d

)
é0(I,M) −

(
n + d − 2

d − 1

)
é1(I,M) + ... + (−1)déd(I,M),

we have

Pn(I, M̄) =

d−1∑
i=0

(−1)i
{

(
n + d − i − 1

d − i

)
−

(
n + d − i − 2

d − i

)
}éi(I,M).

Now by the following fact (
n + i + 1

k

)
−

(
n + i

k

)
=

(
n + i
k − 1

)
,

we obtain

Pn(I, M̄) =

(
n + d − 2

d − 1

)
é0(I,M) −

(
n + d − 3

d − 2

)
é1(I,M) + ... + (−1)d−1éd−1(I,M).

This completes the proof.

The following theorem is a dual of [5, Theorem 4.7].

Theorem 4.3. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I. Then

Σn≥1`(
(0 :M J) + (0 :M In)

(0 :M In)
) ≤ é1(I,M) ≤ Σn≥1`(

0 :M JIn−1

0 :M In ).

Proof. We prove this by induction on d. For d = 1, it is proved in Theorem 3.3. Now let d ≥ 2 and
J = (x1, ..., xd), where x1, ..., xd is a co-superficial sequence for I. Let M̄ = (0 :M x). Then Ndim M̄ = d − 1 and
so by Proposition 4.2

éi(I,M) = éi(I, M̄) f or all 0 ≤ i ≤ d − 1.
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Hence by induction hypothesis,

é1(I,M) = é1(I, M̄) ≤ Σi≥1`(
0 :M̄ JIi−1

0 :M̄ Ii )

= Σi≥1`(
0 :M (x1, JIi−1)

0 :M (x1, Ii)
)

≤ Σi≥1`(
0 :M ((x1) ∩ Ii, JIi−1)

0 :M Ii )

≤ Σi≥1`(
0 :M JIi−1

0 :M Ii ).

The first inequality yields by the following injective homomorphism:

0 :M (x1, JIi−1)/0 :M (x1, Ii) −→ 0 :M ((x1) ∩ Ii, JIi−1)/0 :M Ii

m + 0 :M (x1, Ii) 7−→ m + 0 :M Ii.

Again by using induction hypothesis

é1(I,M) = é1(I, M̄) ≥ Σi≥1`(
0 :M̄ J + 0 :M̄ Ii

0 :M̄ Ii )

= Σi≥1`(
0 :M (x1, J) + 0 :M (x1, Ii)

0 :M (x1, Ii)
)

= Σi≥1`(
(0 :M J)

(0 :M J) ∩ (0 :M (x1, Ii))
)

= Σi≥1`(
(0 :M J)

(0 :M J) ∩ (0 :M Ii)
)

= Σi≥1`(
(0 :M J) + (0 :M Ii)

(0 :M Ii)
).

This completes the proof.

Lemma 4.4. For any x ∈ A, let ν(x) = the inte1er i such that x ∈ Ii
\ Ii+1 and x∗ = x + Iν(x)+1. If x∗ is a

G(I,M)-cosequence, then
G(I, 0 :M x) � (0 :G(I,M) x∗) (∗)

Proof. By [15, Theorem 3.2] x is an M-cosequence and for all n ≥ 0,

0 :M xIn−ν(x) = (0 :M In) + (0 :M x). (1)

On the other hand by [15, Lemma 3.1], (*) is an isomorphism if and only if

0 :M (In+1, xIn−ν(x)) = (0 :M In) + (0 :M (In+1, x)). (2)

By using the equation (1) and (2) the result follows.

Theorem 4.5. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I. If width G(I,M) ≥ d − 1, then

é1(I,M) = Σn≥1`(
0 :M JIn−1

0 :M In )

.
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Proof. If d = 1, then by Theorem 3.3 we have the result. Let d ≥ 2 and J = (x1, ..., xd) be a minimal reduction
of I such that x∗1 is a G(I,M)-cosequence. Then G(I, 0 :M x1) � (0 :G(I,M) x∗1) and so width G(I, M̄) ≥ d− 2. Thus
by induction hypothesis we have

é1(I,M) = é1(I, M̄) = Σi≥1`(
0 :M̄ JIi−1

0 :M̄ Ii )

= Σi≥1`(
0 :M (x1, JIi−1)

0 :M (x1, Ii)
)

= Σi≥1`(
0 :M JIi−1

0 :M Ii ).

For the third equality we use [15, Theorem 3.2].

Theorem 4.6. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I. If G(I,M) is co-Cohen-Macaulay, then

é1(I,M) = Σn≥1`(
(0 :M J) + (0 :M In)

(0 :M In)
).

Proof. Let J = (x1, ..., xd) be a minimal reduction of I. Hence x1, ..., xd is a M-cosequence and since G(I,M) is
co-Cohen-Macaulay we have (0 :M J) + (0 :M In) = (0 :M JIn−1). Thus x∗1, ..., x

∗

d is a G(I,M)-cosequence and so
by Lemma 4.4, G(I, 0 :M x1) � (0 :G(I,M) x∗1) is co-Cohen-Macaulay. By induction hypothesis

é1(I,M) = é1(I, M̄) = Σn≥1`(
(0 :M̄ J) + (0 :M̄ In)

0 :M̄ In ) = Σn≥1`(
(0 :M J) + (0 :M In)

(0 :M In)
).

Corollary 4.7. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I. If R(I,M) is co-Cohen-Macaulay, then we have

é1(I,M) = Σn≥1`(
(0 :M J) + (0 :M In)

(0 :M In)
).

Proof. Since R(I,M) is co-Cohen-Macaulay, by [17, Theorem 4.5] G(I,M) is co-Cohen-Macaulay and r(I,M) ≤
d − 1. Thus by Theorem 4.6 the result follows.

The following theorem is a dual of [2, Proposition 3.1].

Theorem 4.8. Let M be a co-Cohen-Macaulay A-module with Ndim M = d. Let I be an ideal of A such that
`(0 :M I) < ∞, J be a minimal reduction of I and `( 0:M JIn

0:MIn+1 ) = 1. Then for all n ≥ 0 the following conditions are
equivalent:

(a) G(I,M) is co-Cohen Macaulay.
(b) (0 :M J) + (0 :M Ik) = (0 :M JIk−1) f or all k = 1, ...,n and 0 :M J * 0 :M In+1 , 0 :M JIn+1 = 0 :M In+2.

Proof. (a) =⇒ (b). Suppose that G(I,M) is co-Cohen-Macaulay. Then by [15, Theorem 3.2], one has that
(0 :M J)+(0 :M Ik) = (0 :M JIk−1) f or all k. In particular (0 :M J)+(0 :M In+1) = (0 :M JIn) and 0 :M J * 0 :M In+1

since if 0 :M J ⊆ 0 :M In+1 we have (0 :M In+1) = (0 :M JIn) and so `( 0:M JIn

0:MIn+1 ) = 0, a contradiction. Moreover,

from `( 0:M JIn

0:MIn+1 ) = 1 one concludes that ( 0:M JIn

0:MIn+1 ) � A
m

. Therefore m(0 :M JIn) ⊆ 0 :M In+1 and hence

(0 :M J) ⊆ (0 :M JIn) ⊆ (0 :M In+1) :M m = 0 :M In+1m ⊆ 0 :M In+2.

Therefore (0 :M In+2) = (0 :M J) + (0 :M In+2) = (0 :M JIn+1).
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(b) =⇒ (a). From the short exact sequence

0→
(0 :M J) + (0 :M In+1)

0 :M In+1 →
0 :M JIn

0 :M In+1 →
0 :M JIn

(0 :M J) + (0 :M In+1)
→ 0,

together with the fact that `( 0:M JIn

0:MIn+1 ) = 1 and (0:M J)+(0:MIn+1)
0:MIn+1 , 0 (as 0 :M J * 0 :M In+1) it follows that

(0 :M J) + (0 :M In+1) = (0 :M JIn). However, (0 :M JIn+1) = (0 :M In+2) implies that (0 :M J) + (0 :M Ik) = (0 :M
JIk−1) f or all k ≥ n + 2. Hence by [15, Theorem 3.2] we conclude that G(I,M) is co-Cohen Macaulay.

5. The 4 operator and Hilbert coefficients

We start this section by the following proposition.

Proposition 5.1. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that
`(0 :M I) < ∞ and x = x1, ..., xd be a co-superficial sequence for I. Then

4
d−i[P0(I,M)] = (−1)iéi(I,M).

Proof. We prove by induction on d. Let i be an integer such that 1 ≤ i ≤ d and M̄ = (0 :M x). If d = i, then the
result is clear. Suppose i < d and let x be a co-superficial element for I. Then by induction hypothesis

4
d−i[P0(I,M)] = 4(d−1)−i[P0(I, M̄)] = (−1)iéi(I, M̄) = (−1)iéi(I,M).

Lemma 5.2. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞.
If x ∈ I \ I2, then x∗ is a G(I,M)-cosequence element if and only if for all n ≥ 1 we have

x(0 :M In) = (0 :M In−1).

Proof. (=⇒). By [15, Lemma 3.2] x is a M-cosequence element and for all n we have

(0 :M In) + (0 :M x) = (0 :M xIn−1).

Thus we have x(0 :M In) = x(0 :M xIn−1) and since x is M-cosequence we obtain x(0 :M xIn−1) = (0 :M In−1).
Indeed, for r ∈ (0 :M In−1) there exists ḿ ∈ M such that r = xḿ and rIn−1 = 0. So xḿIn−1 = 0 and therefore
ḿ ∈ (0 :M xIn−1) consequently r ∈ x(0 :M xIn−1). Conversely let m ∈ x(0 :M xIn−1). Then m = xt such that
txIn−1 = 0. Therefore, mIn−1 = 0 and so x(0 :M xIn−1) ⊆ (0 :M In−1). Therefore x(0 :M In) = (0 :M In−1).

(⇐=). Suppose x(0 :M In) = (0 :M In−1) for all n ≥ 1. It is clear (0 :M x) + (0 :M In) ⊆ (0 :M xIn−1). Let
m ∈ (0 :M xIn−1) and so mxIn−1 = 0. Thus mx ∈ (0 :M In−1) = x(0 :M In) and so there exists n ∈ (0 :M In) such
that mx = nx. Therefore m ∈ (0 :M x) + (0 :M In) and so (0 :M x) + (0 :M In) = (0 :M xIn−1). Hence x∗ is a
G(I,M)-cosequence element.

Theorem 5.3. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and width G(I,M) ≥ d − 1. Then for 0 ≤ i ≤ d and for all non-negative integer n,

(−1)d−i
4

i(Pn(I,M) −Hn(I,M)) ≥ 0.

Proof. It suffices to prove the case i = d. To see this, let h(n) = Pn(I,M) − Hn(I,M). Suppose we have
(−1)d−i

4
i(h(n)) ≥ 0 for all n and some i > 0. Then

(−1)d−i
4

i(h(n)) = 41[(−1)d−i
4

i−1(h(n))] ≥ 0

for all n. Since h(n) = 0 for n sufficiently large, (−1)d−i
4

i−1(h(n)) = 0 for n sufficiently large and so for all
n we have

(−1)d−i
4

i−1(h(n)) ≤ 0,
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which gives the theorem for i − 1. Hence it is enough to prove that

4
d(Pn(I,M) −Hn(I,M)) ≥ 0 f or all n.

We do this by induction on d. For d = 1 we proved in Theorem 3.1. Now let d > 1, since width G(I,M) > 0,
there is a cosequence element x∗ in G(I,M) such That

G(I, M̄) � (0 :G(I,M) x∗).

Hence width G(I, M̄) ≥ d − 2. So by induction hypothesis we get

4
d−1(Pn(I, M̄) −Hn(I, M̄)) ≥ 0 f or all n.

Now from the exact sequence

0→ 0 :M (In, x)→ 0 :M In x
→ 0 :M In

→
0 :M In

x(0 :M In)
→ 0.

Therefore `(0 :M (In, x)) = `( 0:MIn

x(0:MIn) ). By Lemma 5.2 we have x(0 :M In) = (0 : In−1) for all n and so

Hn(I, M̄) = `(0 :M (In, x))

= `(
0 :M In

x(0 :M In)
)

= `(
0 :M In

0 :M In−1 )

= Hn(I,M) −Hn−1(I,M) f or all n.

Clearly Pn(I, M̄) = Pn(I,M) − Pn−1(I,M) for all n. Hence we get

4
d(Pn(I,M) −Hn(I,M)) = 4

d−1(41(Pn(I,M) −Hn(I,M)))
= 4

d−1(Pn−1(I, M̄) −Hn−1(I, M̄))) ≥ 0

for all n. This completes the proof.

Corollary 5.4. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and width G(I,M) ≥ d− 1. Suppose Pk(I,M) = Hk(I,M) for some integer k. Then Pn(I,M) = Hn(I,M) for all n ≥ k.

Proof. By Theorem 5.3, we have

(−1)d−1
4

1(Pn(I,M) −Hn(I,M)) ≥ 0.

Hence
(−1)d−1(Pn+1(I,M) −Hn+1(I,M)) ≥ (−1)d−1(Pn(I,M) −Hn(I,M))

for all n. But since for n sufficiently large Pn(I,M) −Hn(I,M) = 0, we get

(−1)d−1(Pk(I,M) −Hk(I,M)) ≤ (−1)d−1(Pn(I,M) −Hn(I,M)) ≤ 0

for all n ≥ k. Thus if Pk(I,M) −Hk(I,M)) = 0 then Pn(I,M) −Hn(I,M)) = 0 for all n ≥ k.

The following result relates n(I,M) to the Hilbert coefficients.

Corollary 5.5. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) <
∞. For 0 ≤ i ≤ d − 1 we have the following:

(a) If n(I,M) < −i, then é j(I,M) = 0 for j ≥ d − i.
(b) If width G(I,M) ≥ d − 1, then the converse of (a) is true.
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Proof. Since n(I,M) < −i ≤ j we have P j(I,M) = H j(I,M) and so for−i ≤ j ≤ 0, P j(I,M) =
∑d

i=0(−1)iéi(I,M)
( j+d−i−1

d−i

)
=

0. Now if j > d − i − 1, we have
( j+d−i−1

d−i

)
, 0 and so é j(I,M) = 0. For part (b), note that é j(I,M) = 0 for

j ≥ d − i gives P−i(I,M) = 0 = H−i(I,M). Thus by Corollary 5.4 for all n > −i, Pn(I,M) = 0 = Hn(I,M) and so
n(I,M) < −i.

Lemma 5.6. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞.
Let x ∈ I \ I2, x∗ be a cosequence element in G(I,M). Then

n(I, M̄) = n(I,M) + 1.

Proof. By the proof of Theorem 5.3 for all n we have Hn(I, M̄) = Hn(I,M) − Hn−1(I,M) and Pn(I, M̄) =
Pn(I,M)−Pn−1(I,M). Clearly that Hn(I, M̄) = Pn(I, M̄) for all n > n(I,M) + 1, so n(I, M̄) ≤ n(I,M) + 1. Now we
show that the case n(I, M̄) < n(I,M) + 1 is not true. Since in this case we have Hn(I,M)+1(I, M̄) = Pn(I,M)+1(I, M̄)
and so Hn(I,M)(I,M) = Pn(I,M)(I,M), this is a contradiction. Hence n(I, M̄) = n(I,M) + 1.

Corollary 5.7. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and width G(I,M) ≥ d − 1. Let é0, ..., éd be the Hilbert coefficients of I relative to M. Then for 0 ≤ i ≤ d

(a) éi ≥ 0.
(b) (−1)i(é0 − é1 + ... + (−1)iéi − `(0 :M I)) ≥ 0.

Proof. Recall that if x = x1, ..., xk is a co-superficial sequence for I, then éi(I, M̄) = éi(I,M) for 0 ≤ i ≤ d − k
and éi(I, M̄) = 0 for i > d − k, where M̄ = (0 :M x1, ..., xk). Also by Lemma 5.2 and [6, Proposition 3.4], if
x1, ..., xk ∈ I \ I2 such that x∗1, ..., x

∗

k form G(I,M)-cosequence, then x1, ..., xk is a co-superficial sequence for I. To
prove statement (a), note that é0 is always positive so we may assume i > 0. Since width G(I,M) ≥ d−1, there
exist elements x1, ..., xd−1 ∈ I \ I2 such that x∗1, ..., x

∗

d−1 form G(I,M)-cosequence. Let M̄ = (0 :M x1, ..., xd−i).
Then as i ≥ 1, we have x1, ..., xd−i also forms cosequence, M̄ is co-Cohen-Macaulay of Ndim M̄ = i and
éi(I, M̄) = éi(I,M). Furthermore, as G(I, M̄) � (0 :G(I,M) (x∗1, ..., x

∗

d−i)), width G(I, M̄) ≥ i − 1. Consequently, we
can reduce the problem to the case i = d; i.e., it is enough to show that the last coefficient is non-negative.
But by Theorem 5.3, (−1)d(P0(I,M) −H0(I,M) ≥ 0 so (−1)2déd(I,M) ≥ 0 and hence éd(I,M) ≥ 0.

For the second statement, note that it is true for i = 0, since é0 = `(0 :M J), where J is the minimal
reduction of I. So we may assume i ≥ 1. Also, by the same argument as above we can reduce to the case
i = d, noting that `(0 :M I) = `(0 :M̄ I). But by Theorem 5.3 we have (−1)d(P1(I,M) − H1(I,M)) ≥ 0 and so
(−1)d(é0 − é1 + ... + (−1)déd − `(0 :M I)) ≥ 0.

Corollary 5.8. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and width G(I,M) ≥ d − 1. Let é0, ..., éd be the Hilbert coefficients of I relative to M and suppose éi = 0 for some
1 ≤ i ≤ d − 1. Then é j = 0 for all i ≤ j ≤ d.

Proof. It is enough to show éi+1 = 0. Then as in the proof of Corollary 5.7, we can assume that i = d − 1.
Since by assumption é0 > 0, we must have that d > 1 and so width G(I,M) > 0. Thus there exists x ∈ I \ I2

such that x∗ is G(I,M)-cosequence. Let M̄ = (0 :M x), then M̄ is co-Cohen-Macaulay and Ndim M̄ = d − 1.
Also width G(I, M̄) ≥ d − 2. Now since éd−1(I,M) = éd−1(I, M̄) = 0 we have that P0(I, M̄) = 0 = H0(I, M̄). Now
by Corollary 5.4, n(I, M̄) ≤ −1. From Lemma 5.6 we get that n(I,M) = n(I, M̄)− 1 ≤ −2. By Corollary 5.5, we
get that éd = 0.

Lemma 5.9. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and I be an ideal of A such that `(0 :M
I) < ∞. Then

(a) éd(I,M) = éd(Ik,M) f or k ≥ 1.
(b) width G(Ik,M) ≥ 1 for k sufficiently large.
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Proof. Part (a). Note that for n sufficiently large

Pn(Ik,M) = Hn(Ik,M) = Hkn(I,M) = Pkn(I,M).

Thus for all n, we have Pn(Ik,M) = Pkn(I,M). So

éd(Ik,M) = (−1)dP0(Ik,M) = (−1)dP0(I,M) = éd(I,M).

Part (b). Since A/m is infinite, there exists an element x ∈ I \ I2 which is co-superficial for I. Therefore,
by Lemma 4.1, we can find a positive integer c such that x(0 :M In) = (0 :M In−1) for n ≥ c. If k ≥ c, then
xk(0 :M Ikn) = (0 :M Ik(n−1)) for all n ≥ 1 and so by Lemma 5.2, (xk)∗ is G(I,M)-cosequence.

The following result is a dual of Narita’s Theorem [10].

Corollary 5.10. Let M be a co-Cohen-Macaulay A-module with Ndim M = d ≥ 2, I be an ideal of A such that
`(0 :M I) < ∞. Then é2(I,M) ≥ 0.

Proof. By the proof of Corollary 5.7, we can reduce to the case d = 2. Choose k � 0, so by Lemma 5.9 we
have width G(Ik,M) ≥ 1. Again by Lemma 5.9, we get é2(I,M) = é2(Ik,M) ≥ 0.

Lemma 5.11. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M I) < ∞
and J be a minimal reduction of I relative to M and there exists x ∈ I \ I2 such that x∗ is G(I,M)-cosequence. Then

rJ(I,M) = rJ(I, M̄)

Proof. Let r = rJ(I,M) and s = rJ(I, M̄). Suppose (0 :M̄ Is+1) = (0 :M̄ JIs). It is equal to

(0 :M Is+1) ∩ (0 :M x) = (0 :M JIs) ∩ (0 :M x).

Summing with (0 :M Is+1) and by [15, Theorem 3.2], we have

(0 :M Is+1) = (0 :M JIs) ∩ (0 :M xIs).

Therefore, (0 :M Is+1) = (0 :M JIs) and so r ≤ s. Conversely, if (0 :M Ir+1) = (0 :M JIr), we have (0 :M Ir+1)∩ (0 :M
x) = (0 :M JIr) ∩ (0 :M x) so (0 :M̄ Ir+1) = (0 :M̄ JIr). Thus s ≤ r. This completes the proof.

Theorem 5.12. Let M be a co-Cohen-Macaulay A-module with Ndim M = d and I be an ideal of A such that
`(0 :M I) < ∞ and width G(I,M) ≥ d − 1. Then

r(I,M) = n(I,M) + d.

Proof. We use induction on d. If d = 1 then, by Corollary 3.2, we have the result. Now let d > 1. Since
width G(I,M) ≥ d − 1, there exist elements x1, ..., xd−1 ∈ I \ I2 such that x∗1, ..., x

∗

d−1 form a G(I,M)-cosequence.
Let M̄ = (0 :M x1). Then as x1 is a cosequence element, M̄ is co-Cohen-Macaulay of Ndim M̄ = d − 1.
Furthermore, as G(I, M̄) � (0 :G(I,M) x∗1) we have width G(I, M̄) ≥ d − 2. So by induction hypothesis

r(I, M̄) = n(I, M̄) + d − 1.

By Lemmas 5.6 and 5.11, we obtain r(I,M) = n(I,M) + d.

Corollary 5.13. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that `(0 :M
I) < ∞ and width G(I,M) ≥ d − 1. Then for 1 ≤ i ≤ d

(1) éi(I,M) = 0 i f and only i f r(I,M) ≤ d − 1.
(2) r(I,M) = max{i | éi(I,M) , 0} i f n(I,M) ≤ 0.
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Proof. Part (1), by Theorem 5.12 we have r(I,M) ≤ i − 1 if and only if n(I,M) < i − d. But by Corollaries 5.5
and 5.7, n(I,M) < i − d if and only if éi(I,M) = 0. The second part follows from the first part and Corollary
5.5.

Lemma 5.14. Let x1, ..., xr ∈ Ik
\ Ik+1 such that x∗i = xi + Ik+1 , 0. Then x∗1, ..., x

∗
r is G(I,M)-cosequence if and only

if x1, ..., xr is M-cosequence and (0 :M Ikn) + (0 :M x1, ..., xr) = (0 :M Ik(n−1)(x1, ..., xr)) for all n ≥ 1.

Proof. By using induction and [15, Theorem 3.2] the result immediately follows.

Proposition 5.15. Let M be a co-Cohen-Macaulay A-module with Ndim M = d, I be an ideal of A such that
`(0 :M I) < ∞. Then width G(Ik,M) ≥ width G(I,M) for k ≥ 1.

Proof. Let x1, .., xr ∈ I \ I2 such that x∗1, ..., x
∗
r is a G(I,M)-cosequence. Then (x∗1)k, ..., (x∗r)k is also G(I,M)-

cosequence and we have (x∗i )
k = (xk

i )∗ for i = 1, ..., r. Thus (xk
1)∗, ..., (xk

r)∗ is a G(I,M)-cosequence and so by
Lemma 5.14, we have xk

1, ..., x
k
r is M-cosequence. Therefore

(0 :M Ikn) + (0 :M xk
1, ..., x

k
r) = (0 :M Ik(n−1)(xk

1, ..., x
k
r)).

Hence
(0 :M (Ik)n) + (0 :M xk

1, ..., x
k
r) = (0 :M (Ik)n−1(xk

1, ..., x
k
r)).

Thus (xk
1)∗, ..., (xk

r)∗ is a G(Ik,M)-cosequence.
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