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Abstract. In this note we present some properties of Istratescu’s measure
of noncompactness on metric linear spaces. As applications of these results
we prove that Kuratowski’s and Istratescu’s measures of noncompactness of
the unit ball in £7 and L? (0 < p < 1) spaces equal to 2.

Introduction

The theory of measures of noncompactness has many applications in
Topology, Functional analysis and Operator theory (see [1], [5] and [9]).

Let (X,d) be a metric space, z € X, A C X and r > 0, By P(X) we
denote the set of all subsets of X , by diam(A) the diameter of the set A and
by B(z,r) the closed ball {y € X : d(z,y) < r}. Ais a r— discrete set, if
d(z,y) > r for any z,y € A.

Definition. Let (X, d) be a metric space. A measure of noncompactness on
X is an arbitrary function ¢ : P(X) — [0, 00] which satisfies the following
conditions:

1) $(A) = oo if and only if A is an unbounded set;

2) §(4) = §(2);

3) $(A) =0 if and only if A is a totally bounded set;

4) from A C B it follows #(A) < ¢(B);
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5) if X is complete, and if {Bn}nen i5 a sequence of closed subsets of
X such that B4y C B, for each n € N and lim,_,oc ¢(B,) = 0, then
K = (),en Bn is a nonempty compact set.

The most important examples of measures of noncompactness are:
1) Kuratowski’s function
o(A) = inf{r >0| AC ;S S CX, diam(5;) <r1<¢<
n, n€ N}
2) Hausdorff’s function
x(A) =inf{e > 0 : A has a finite e~ net in X };
3) inner function of Hausdorff
xi(A) = inf{e > 0 : A has a finite e— net in A};
4) function of Istratescu
I(A) =inf{e > 0 : A contains no infinite e— discrete set in A}.
Relations between this functions are given by following inequality, which
are obtain by Danes [6]:

x(4) £ xi(4) < I(A4) < o(A) < 2x(4). ‘

Proposition 0. (see Rolewicz [10]) Let X be a metric linear space. Then
there exists a metric d on X which is equivalent to the original metric on X
such that function |.|| : X — [0,+00) defined by |z|| = d(z,0) has following
proporties:

1) |z|| = 0 if and only if z = 0;

2) |zl = | - =||;

3) |z + yll < |zl + |yll;

4) 0 < |a| < |B] implies |az|| < |Bz]|.

The mapping |.|| is said to be an F— norm or paranorm. If there exists a
number p, 0 < p < 1, such that |tz|| = |¢|?|z|| for any scalar ¢t and = € X it
is said that |.|| is a p-norm and X is a p-normed space.

Let X be a Hausdorff topological vector space. A set A C X is bounded if
for each neighborhood of zero U there is a scalar a such that A C al/. The
space X is locally bounded if it contains a bounded neighborhood of zero. X
is a locally bounded space if and only if X is metrizable and p-normable.

The following lemma was proved in [4].

Lemma. If X is locally bounded Hausdorff topological vector space, @ C X
a bounded subset, |.|| a p-norm on X and @ an arbitrary scalar then

a(8Q) = |8P(Q)-

The corresponding result for Hausdorff measure of noncompactness was
obtained in [3].
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Results

Proposition 1. If Q, Q1 and () are bounded subsets of arbitrary metric
linear space X and z € X, then:

1) I{Q1 + Q2) < I{Q1) + 1(Q2);

2) I(z + Q) = I(Q)
Proof.
1) Let ¢ > 0 be an arbitrary positive real number and the sequence {z} an
[I(Q1) + I(Q2) + €]— discrete set in @y + Q3, where 2; = 2; + yi, ©; €
and y; € Q3. Then for all ¢ # j:

I(Q1 +Q2) — € < |z — 2| < |wi — 25l + [vi — ysl-

An arbitrary I(Q)+ e~ discrete set in {2;} is a finite set and so, one of its
point, say z1, is a cluster point for sequence {z;} and there is a subsequence
of {2;} which tends to z}. We.denote this sequence by =}, i = 2,3,---.
We can assume that all members of the sequence {z!} satisfy the condition
|z} — z}|| < I(Q1) + . We can apply this method to the sequence {z1}
and so we obtain a point 22 and a subsequence {a?} of {z}} which satisfies
|z? — 23|| < I(Q1) + ¢ for any 4. Further, by induction, we obtain sequences
{23}, {z},... Let u; = z!. From |u; — uj|| < I(Q1) + ¢, it follows that there
exists a subsequence {v;} C {y;} which is I(Q; +Q2)— I(Q1) — 2e— discrete
in set Q,. Mence, I(Q1 + Q2) — I[(Q1) — 2¢ < I(Q2), for any £ > 0, which
implies I(Q1 + Q2) < I(Q1) + 1(Q2)

2) From 1) follows I(z + Q) < I({z}) + [(Q) = 1(Q), which implies

IQ)=I(-z+2+Q) < I(z+ Q). Hence, I(z+ Q) = I(Q).

" When X is a normed space statement 1) from Proposition 1 was obtained
by Nina A. Yerzakova (see [1]). This result is the solution of Danes’s con-
jecture from [6].

Proposition 2. If X is locally bounded Hausdorff topological vector space,
Q C X a bounded subset, ||| a p-norm on X and a an arbitrary scalar then

1(aQ) = |’ I(Q)
for some p, 0 < p < 1. |
Proof. Let § # 0. From
|8z — Byl = 18"l -yl

follows that for every finite e— discrete subset of Q, there exists one |B|Pe—
discrete subset of 3Q and for every finite |§|Pe— discrete subset of G, there
exists one e— discrete subset of @, which implies that I(8Q) = |8|P1(Q).
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Applications

(s.0]
A real (or complex) sequence {z,} belongs to £? (0 < p < 1)if 3 |z,[P <
i=1
o0. £ (0 < p < 1) is complete locally bounded metric linear space which is
not normable. This space is p-normable with p-norm defined by

00
Hendl = D l2alP < oo
i=1

Distance between two elements of this space are defined by d(z,y) = |z —y||.

L. Jovanovi¢ and V. Rakotevi¢ (8] proved that x(B(0,1)) = 1 in P spaces
(0 < p < 1). An extension of this result to the class of locally bounded
spaces is given in [3].

Let (X,A, ) be a measure space, such that p(X) < co. A measurable
real (or complex) function f defined on X belongs to LP(X, A, ) (0 < p < 1)
if [ |f|Pdp < 00, LP(X,A,pu) (0 < p < 1) is a complete locally bounded
metric linear space which is not normable. This space is p-normable with
p-norm defined by

£l = /X |fIPdu < oo.

Distance between two elements of this space are defined by d(z,y) = |z —y||-
By LP we denote the space LP(X, A, p1), where u is non atomic measure.
Furi and Vignoli [7] proved that o(B(0,1)) = 2 in infinite dimensional
normed spaces.
Now, we prove that in €7 and L? (0 < p < 1) spaces

a(B(0,1)) = I(B(0,1)) = 2.
This fact is not true for p > 1. For example in L% spaces I(B(0,1)) = 27
(see [1]).
Proposition 3. In £? space (0 < p < 1) is I(B(0,1)) = 2.

Proof. From triangle inequality it follows diam(B(0,1)) < 2 which implies
I(B(0,1)) < 2. Let {e;|t € N'} C P be the standard bases of £7. Since this
set is 2—discret we have 7(B(0,1)) > 2. So I(B(0,1)) = 2.

Proposition 4. In L? (0 < p < 1) space, the equality I(B(0,1)) = 2 holds.

Proof. From Danes’s inequality, it follows I(B(0,1)) < 2x(B(0,1)) = 2. Let
{A;]i € N'} C A be a sequence of mesurable sets such that pu(4;) = 27 u(X).
Such sequence exists beacause u is non atomic. Let

. #(An)_%.
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Let {f;|2 € N} C LP be a sequence of functions defined by |

t,, forz e A,
0, forze Af.

fi(ﬂf):{

2. So I(B(0,1)) = 2.

Proposition 5. In P and L? (0 < p < 1) spaces, the equality a(B(0,1)) =

|
Since {fi}iear C LP is infinite and d(f;, f;) = 2 for i # j we have I(B(0,1)) > i
|
2 holds. ‘

Proof. From Danes’s inequality and propositions 3,4 follows

2= I(B(0,1)) < a(B(0, 1)) < 2x(B(0, 1)) = 2.

Corollary. Let X be either {7 or L? for somep (0 < p < 1). Then, for
any zo € X and r > 0, the equality a(B(zq,7)) = 2r holds. ‘

Proof. For r > 0 conditions |z|| < 1 and IT%.’E” < r are equivalent, which
implies B(0,7) = r» B(0,1). So,

a(B(zg,r)) = a(zo + B(0,7)) = o B(0,7)) =
= a(r? B(0,1)) = ra(B(0,1)) = 2r.
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