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A SUFFICIENT CONDITION FOR UNIVALENCY FOR
FUNCTIONS
WITH INTEGRAL REPRESENTATION

Horiana Ovesea

Abstract. In this paper we prove the analyticity and the univalence of
the functions which are defined by means of integral operators. In particular
cases we find some known results.

1. Introduction

We denote by U, = { z € C : |z2| < r } the disk of z-plane, where

r€(0,1], Uy = U and I = [0, 00).

Let A be the class of functions f analytic in U such that f(0) = 0, f(0) =
1. Let S denote the class of function f € A, f univalent in U. The usual
subclasses of S consisting of starlike functions and a-convex functions will
be denoted by 5* respectively M,,.

Definition 1.1. ([2])Let f € A, f(2)f'(2) # 0 for 0 < |2| < 1 and let
a > 0. We denote by

2f'(2) zf"(z)
f(2) f'(z)
If ReM (o, f) > 0in U, then f is said to be an a- convez function (f € My).

(1) M(e,f)=(1-0)

+ af + 1)

Theorem 1.1. ([2]). The function f € M, if and only if there ezists a
function g € S5* such that

@ f()= (g [ —Q-Qd)
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Definition 1.2. ([5]) Let f € A. We said that f €85 (a,b) of

of'(z)

® 75

a

< b, lz| < 1,

where
(4) a€C, Rea>b, |a—1| <b.

Theorem 1.2. ([1]) Let f € A. Ifforallz€ U

2["(2)
f(z)

then the function f is univalent in U .

(3) (A-12%

<1

2. Preliminaries

Theorem 2.1. ([4]) Let I(z,t) = ay(t)z + ag(t)z® + ..., ai(t) # 0 be ana-
lytic in U, for allt € I, locally absolutely continuous in I and locally uniform
with respect to U,. For almost all t € | suppose

0L(z,t)
at

where p(z,t) is analytic in U and satisfies the condition Rep(z,t) > 0 for all
zeU,tel. If|a1(t)] —» oo fort — oo and {L(2,t)/a1(t)} forms a normal
Jamily in U,, then for each t € I the Junction L(z,t) has an analytic and
univalent extension to the whole disk U.

(6) 2X&D_ oy

az bl vz E U’l"1

3. Main results

Theorem 3.1. Let f, g € A and let the numbers a € C, 8 > 0, such that
la—pl<B. If

Lo | ) a ) .
(%) 3 ( 1) e + 1) +1 ,8'51, Vze U,

then the function

B HE= (a /ozga_l(“)f’(u)du)l/a

is analytic and univalent in U, where the principal branch is intended.
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Proof. Let us prove that there exists a real number r € (0, 1] such that the
function L : U, x I — C defined formally by

(9) L(z1) =

etz 1/
- [a [ e s e e-*)::ga-l(e-tz)f'(e_tz)}
0

is analytic in U, for all ¢t € [I.

Since g € A, the function A(2) = Qizfl is analytic in U and h(0) = 1. Then
there is a disk U,,, 0 < ry < 1, in which h(z) # 0 for any z € U;, and we
choose the uniform branch of (h(z))®~! equal to 1 at the origin, denoted by
hy.

For the function

—t

ho(z,1) = af/Oe ) w* T hy(u) f'(u)du

we have hg(z,1) = 2%ha(z,1) and is easy to see that hs is also analytic in
U,,. The function

h4(z’t) = h3(2,t) 4 %(E(Zﬁfl)t _ e—t)e—(a—l)ihl(E—tz)ff(e—tz)
is analytic in U,, and we get

ha(0,1) = (28—0)t {E 1 %y 20t
1(0,t) = e t(1-3)

Let us prove that hy(0,?) # 0 for any t € I. We have h4(0,0) = 1. Assume
now that there exists to > 0 such that h4(0,%0) = 0. Then e**% = (a - j3)/a
and since 1 — 3/« is a real number only in the case a@ € R, from |a — 8| <
we get 1 — 3/a < 1. It follows that e?f% < 1 and in view of 8 > 0, #, > 0
this inequality is imposible. Therefore, there is a disk U,,, r2 € (0,7m] in
which h4(z,t) # 0 for all ¢ € I. Then we can choose an uniform branch of
[ha(z,1)]Y/* analytic in U,, denoted by hs(z,t), which is equal to

" ) 1/a
Ct.1(t) = e(_ﬂé_l)t % + (1 — %)8_2’81{'

at the origin and for a;(t) we fix the principal branch ( ¢1(0) =1).
From this considerations it results that the relation (9) may be written as

L(z,t) = zhs(z,t) = a1(t)z + ag(t)z: + ...
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and then the function L(z,t) is analytic in U,,.

Since |a@ — 8] < @ is equivalent with Re28/a > 1 it results that
lim e |@1(t)| = co. We saw also that ay(t) # 0 for all ¢ € 1.

It is easy to prove that L(z,t) is locally absolutely continous in I, locally
uniformly with respect to Uy, and that {L(z,¢)/a:(¢)} is a normal family in
Upy, 73 € (0, 72). It follows that the function p(z,) defined by (6) is analytic
in U, r € (0,73, for all £ > 0.

In order to prove that the function p(z,t) has an analytic extension with
positive real part in U, for all ¢ € I, it is sufficient to prove that the function
w(z,t) defined in U, by

_ p(z,t) -1
wlat) = T

can be continued analytically in U and |w(z,t)] < 1forall z € U and t € I.
After computation we obtain

1 s g3t ( I)E_tzg’(e“fz) e tzf"(e7tz)
—_— a el

Jé) gle~tz) f(e~tz)

From (7) we deduce that the function w(z, ) is analytic in the unit disk U.
We have w(z,0) = 0 and for z =0, ¢ > 0 since |a — 3| < 8 we get

(10) w(z,t) =

o

1—e 28 ‘ la — 3|
w(0,t)|=|——(a-3)| <« —— < 1.
|w(0,%)] ‘ 5 (e—h) 5
Let us denote u = efe. Then |u| = e~! and taking into account the

relation (7) we have

; — |28 wa'(u o
|w(e“3,t)|:¢_l(a_l) g'( )+ f"(u)

g g(w) — fi(u)
Using the maximum principle for all z € U \ {0} and ¢ > 0 we conclude that

lw(z,t)| < 1 and finally we have |w(z,t)| < 1forall z€ U and ¢ € I.
From Theorem 2.1 it results that the function

i (a /Ozga_l(")f'(u)du)l/a

+1—ﬁ"§1

is analytic and univalent in U and then the function H defined by (8) is
analytic and univalent in U.
For particular choices of f and g we get the following
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Corollary 3.1, Let f € A andleta € C, 8 >0, la— B < 8. If

1|2 |2£12) |, .
1) 5|y te A S! Vz €U,

then the function

EECHUS U“‘lf'(u)du)” :

is analytic and univalent in U.

Proof. If we take g(z) = 2, from (7) we obtain the relation (11).
Corollary 3.2. Let f€ A and let & > 1. If

zf"(z
(13) (11|22

—| <1 Vze U,
then the function F defined by (12) is analytic and univalent in U.

= ?

F'(2)

Proof. It is easy to see that the function ¢ : (0,00) — R,
o(z) = (1 - a®*)/z, 0 < a < 1is a decreasing function.

If 8 > 1 we have

1—|2|*f

g
Then , from 3 > 1, if the inequality
= ”(Z)

15) (1—|2|? t+a-p0
(1) (-1 |

is true, from (14) it results that (11) is also true and then, from corollary 3.1,
the function F defined by (12) is analytic and univalent in U. In particular
case a = B, from (15) we get (13) and we observe that the condition (13)
is just Becker’s univalence criterion, but here the conclusion of corollary 3.2
gives us not only the univalence of the function f (a = 1), but also the

univalence of the function F defined by (12).
For the function f € A, f(z) = z, from theorem 3.1 we get the following

Theorem 3.2. Let g € A and leta € C, 3> 0, la — Bl < 6. If
1— |2/?#

16) ———

(16) 5

then the function

(17) G(z) = (a /O ga_l(u)du)lfa

is analytic and univalent in U.

(14) <1-|eff

<1

IRt AC .
(a l)g(z) +1 ﬁ'ﬁl, Yz e U,
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Remark. For 8 = 1, from theorem 3.2 we find a result from paper [3].
Corollary 3.3. Letge A, a € C, B>0,|la-8|<p. If

zg’(z)_ﬁ—l' i)
9(2) a-1/"|la-1]"

then the function G defined by (17) is analytic and univalent in U.

Vze U,

Corollary 3.4. Let « € C, f > 0 and let g € 85%(a,b), where
a=(8-1)/(a-1), b= B/|la—1]|. If one of the hypothesis

i) la—pl<B for Be(0,-1++7
i) |la—gl <8 and |a- 1| <(1-8)/BRe(1-a), for B e (1 —\/5,1/2)
is true, then the function G defined by (17) is analytic and univalent in U.

Proof. For this choise of @ and b we must test if the conditions (4) are
satisfied. Since [a — | < 8 we get immediately la —1] < b and the condition
Rea > b take place only in the case § < 1/2.

For the function f € A4, F{g) = szl, from theorem 3.1 we get the following

Theorem 3.3. Let g€ A and let a € C,B8>0,|la-0|< 8. If

1—|z|%8
B

then the function

(19) G(z) = (a/[) %(}Qdu)l/a

is analytic and univalent in U.

(18)

azﬁgg) gﬁ~ <1, VzelU,

The operator (19) is just the integral operator introduced by Prof. P. T.
Mocanu in the integral representation of a-convex functions.

Corollary 3.5. Letg€e A, a e C, 8 > 0, la—pl < 8. If

, Vz e U,

then the function G defined by (19) is analytic and univalent in U,
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Remark . Let 3> 0, a € (0, 28) and let g € S*(g ﬁ). Then the function

o? o

G defined by (19) is analytic and univalent in U.

Indeed, if we consider @ = #/a and b = §3/|e|, the conditions (4) are satisfied
for a € (0, 208).

If in theorem 3.1 we take f = g, we have

Corollary 3.6. Let fe A, yeC, 8 >0, Rey > 1/(28). If
(20) | M(, £)= By < Bl

Jor all z € U, then the function f is univalent in U.

Proof. For vy = 1/a, from |a — B| < 8 we get Rey > 1/(26) and

1—|z|%

) ) L

57 TV 4

_1-1]o* 2f"(z) _ )
= V(L*fw))+“ T

If the condition (20) is true it follows, from theorem 3.1 that the function i
is univalent in U.
Remark.For v a real number, v > 1/(23), where 8 > 0, the condition (20)

implies ReM (7, f) > 0 and from Theorem 1.1 we get that [ is a y-convex
function.
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