ON CERTAIN PROPERTIES OF A CLASS OF UNIVALENT FUNCTIONS

Milutin Obradović and Nikola Tuneski

Abstract. We consider certain properties of the class of univalent functions defined earlier in [4].

1. Introduction and preliminaries

Let H denote the class of functions analytic in the unit disc $\Delta = \{z : |z| < 1\}$ and let $A \subset H$ be the class of normalized analytic functions f in Δ such that f(0) = f'(0) - 1 = 0. Further, let

$$S^*(\beta) = \left\{ f \in A : \operatorname{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} > \beta, 0 \le \beta < 1, z \in \Delta \right\}$$

denote the class of starlike functions of order β . We put $S^* \equiv S^*(0)$ (the class of starlike functions). Also, let

$$K = \left\{ f \in A : \operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, z \in \Delta \right\}$$

be the class of convex functions in Δ . It is well-known that these classes belong to the class of univalent functions in Δ (see, for example [2]).

In [4] the first author has shown that the class of functions defined by the condition

(1)
$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \lambda, \ z \in \Delta,$$

Received September 3, 1998

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent, starlike of order β , convex.

where $0 < \mu < 1$, $0 < \lambda \le \frac{1-\mu}{\sqrt{(1-\mu)^2 + \mu^2}}$, is the subclass of the class S^* .

In this paper for this class we consider starlikeness of order β and convexity. Also, we give a sufficient condition for $f \in A$ to be in the class defined by (1).

For our results we need the following lemmas.

Lemma A ([3]). Let ω be a nonconstant and analytic function in Δ with $\omega(0) = 0$. If $|\omega|$ attains its maximum value on the circle |z| = r at z_0 , we have $z_0\omega'(z_0) = k\omega(z_0)$, $k \ge 1$.

Lemma B ([6]). Let $p \in H$. Then for k, a complex number satisfying $\operatorname{Re} k \geq -|k|^2$, we have

$$|p(z) + kzp'(z)| < J$$
 implies $|p(z)| < \frac{J}{k+1}$, $z \in \Delta$.

Lemma C ([6]). Let $0 < \mu < 1$, $0 < \lambda \le \frac{1-\mu}{\sqrt{(1-\mu)^2 + \mu^2}}$ and let Q be a function defined on Δ satisfying the condition

$$Q(z) \prec \frac{\lambda \mu}{1 - \mu} z, \quad z \in \Delta.$$

Suppose that

$$\beta \equiv \beta(\mu, \lambda) = \frac{1 - \mu - \lambda \sqrt{(1 - \mu)^2 - \mu^2}}{1 - \mu + \mu \lambda}.$$

If $p = 1 + p_1 z + \cdots \in H$ satisfies

$$Q(z)(\beta + (1-\beta)p(z)) + (1-\beta)(p(z)-1) \prec \lambda z, \quad z \in \Delta,$$

then $\operatorname{Re} p(z) > 0$ in Δ .

We note that Lemma C was given in [6] in a slightly different form, but we need it in this form.

Lemma D ([7]). Let $0 < \lambda_1 < \lambda < 1$ and let Q be analytic in Δ satisfying

$$Q(z) \prec 1 + \lambda_1 z$$
, $Q(0) = 1$.

If $\omega \in H$, $\omega(0) = 0$ and

$$Q(z)[1+\omega(z)] \prec 1+\lambda z,$$

then

$$|\omega(z)| \le \frac{\lambda + \lambda_1}{1 - \lambda_1} = \rho \le 1, \quad \lambda + 2\lambda_1 \le 1.$$

2. Main results

We consider first the problem of starlikeness of order β .

Theorem 1. Let $f \in A$ satisfy the condition (1), where $0 < \mu < 1$ and $0 < \lambda \le \frac{1-\mu}{\sqrt{(1-\mu)^2 + \mu^2}}$. Then $f \in S^*(\beta)$ where β is defined by (2).

Proof. If we put $Q(z) = \left(\frac{z}{f(z)}\right)^{\mu} - 1$, then we have

$$Q(z) - \frac{1}{\mu} z Q'(z) = \left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) - 1.$$

From this and the condition (1) we get

(3)
$$\left|Q(z) - \frac{1}{\mu} z Q'(z)\right| < \lambda.$$

Since $0 < \mu < 1$ implies $-\frac{1}{\mu} \ge -\frac{1}{\mu^2}$, from (3) and Lemma B we obtain that

$$Q(z) \prec \frac{\lambda \mu}{1 - \mu} z, \quad z \in \Delta.$$

On the other hand, since

$$\left(\frac{z}{f(z)}\right)^{\mu+1}f'(z)-1=Q(z)(\beta+(1-\beta)p(z))+(1-\beta)(p(z)-1)\prec\lambda z,$$

where $\frac{zf'(z)}{f(z)} = \beta + (1-\beta)p(z)$, we have by Lemma C that $\operatorname{Re} p(z) > 0$, i.e. $f \in S^*(\beta)$ where β is defined by (2).

Theorem 2. Let $f \in A$ and let

(4)
$$\left| \frac{zf'(z)}{f(z)} - \frac{1}{\mu + 1} \frac{zf''(z)}{f'(z)} - 1 \right| < \frac{\lambda}{(1 + \mu)(1 + \lambda)}, \quad z \in \Delta,$$

where $0 \le \mu \le 1$, $0 < \lambda \le 1$. Then

$$\left| \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z) - 1 \right| < \lambda.$$

Proof. Let's put $\left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) - 1 = \lambda \omega(z)$. Then ω is analytic in Δ and $\omega(0) = 0$. After logarithmic differentiation, we have

(5)
$$\frac{zf'(z)}{f(z)} - \frac{1}{\mu+1} \frac{zf''(z)}{f'(z)} - 1 = -\frac{1}{1+\mu} \frac{\lambda z \omega'(z)}{1+\lambda \omega(z)}.$$

We want to prove that $|\omega(z)| < 1$, $z \in \Delta$. If not, then by Lemma A there exists z_0 , $|z_0| < 1$, such that $|\omega(z_0)| = 1$ and $z_0\omega'(z_0) = k\omega(z_0)$, $k \ge 1$. If we put $\omega(z_0) = e^{i\theta}$, then from (5) we have

$$\left| \frac{z_0 f'(z_0)}{f(z_0)} - \frac{1}{\mu + 1} \frac{z_0 f''(z_0)}{f'(z_0)} - 1 \right| = \frac{\lambda}{1 + \mu} \frac{k}{|1 + \lambda e^{i\theta}|} \ge \frac{\lambda}{(1 + \mu)(1 + \lambda)}$$

which is a contradiction to (5). Now we get $|\omega(z)| < 1$, $z \in \Delta$, which gives the desired conclusion.

We note that for μ and λ given in Theorem 1, the condition (4) implies starlikeness. Especially, for $\mu = 0$ we have

$$\left| \frac{zf'(z)}{f(z)} - \frac{zf''(z)}{f'(z)} - 1 \right| < \frac{\lambda}{1+\lambda} \implies \left| \frac{zf'(z)}{f(z)} - 1 \right| < \lambda, \quad z \in \Delta,$$

and for $\mu = 1$:

$$\left|\frac{zf'(z)}{f(z)} - \frac{1}{2}\frac{zf''(z)}{f'(z)} - 1\right| < \frac{\lambda}{2(1+\lambda)} \implies \left|\left(\frac{z}{f(z)}\right)^2 f'(z) - 1\right| < \lambda, \quad z \in \Delta.$$

(for the class defined by the condition $\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < \lambda, z \in \Delta$, see the paper [5]).

Theorem 3. Let $f \in A$ satisfy the condition (1) with $0 \le \mu < \frac{1}{2}$ and $0 < \lambda \le \frac{1-\mu}{1+\mu}$. Then f is convex at least in $|z| < r = \max\{\min\{r_0, r_1\}, r_2\}$, where

$$(5) r_0 = \frac{\lambda}{1 + \sqrt{1 - \lambda^2}}$$

and r_1, r_2 are the smallest positive roots of the equations

(6)
$$\lambda_1 \lambda r^2 - (\lambda_1 + 2\lambda)r + 1 = 0$$

and

(7)
$$\lambda_1 r^3 - r^2 - (\lambda_1 + 2r_0)r + 1 = 0,$$

respectively, and where

(8)
$$\lambda_1 = \frac{(1+\mu)\lambda}{1-\mu-\mu\lambda}.$$

Proof. From the condition (1) we have that $\left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) = 1 + \lambda \omega(z)$, where $\omega(0) = 0$ and $|\omega(z)| < 1$, $z \in \Delta$. From the above equation we obtain

$$(1+\mu)\left(1-\frac{zf'(z)}{f(z)}\right)+\frac{zf''(z)}{f'(z)}=\frac{\lambda z\omega'(z)}{1+\lambda\omega(z)},$$

which implies that

(9)
$$\left| \frac{zf''(z)}{f'(z)} \right| \le (1+\mu) \left| \frac{zf'(z)}{f(z)} - 1 \right| + \frac{\lambda |z| |\omega'(z)|}{1 - \lambda |\omega(z)|}.$$

In Theorem 1 we obtained that

$$\left(\frac{z}{f(z)}\right)^{\mu} \prec 1 + \frac{\mu\lambda}{1-\mu}z,$$

and since the condition (1) is equivalent to

$$\frac{zf'(z)}{f(z)}\left(\frac{z}{f(z)}\right)^{\mu} \prec 1 + \lambda z,$$

by Lemma D we have

$$\frac{zf'(z)}{f(z)} < 1 + \rho z,$$

where
$$\rho = \frac{\lambda + \frac{\mu\lambda}{1-\mu}}{1 - \frac{\mu\lambda}{1-\mu}} = \frac{\lambda}{1-\mu-\mu\lambda}$$
 if $\lambda + \frac{2\mu\lambda}{1-\mu} \le 1$ $(\iff \lambda \le \frac{1-\mu}{1+\mu})$ and $0 < \mu < \frac{1}{2}$. Also

(11)
$$|\omega'(z)| \le \frac{1 - |\omega(z)|^2}{1 - |z|^2}$$
 (see, for example [1]).

By using (9), (10) and (11) we have the next estimation

$$\left|\frac{zf''(z)}{f'(z)}\right| \leq \frac{(1+\mu)\lambda|z|}{1-\mu-\mu\lambda} + \frac{\lambda|z|}{1-|z|^2} \frac{1-|\omega(z)|^2}{1-\lambda|\omega(z)|}, \quad z \in \Delta.$$

If we consider the function $\Phi(|\omega|) = \frac{1-|\omega(z)|^2}{1-\lambda|\omega(z)|}$, with $|\omega(z)| \leq |z|$, then we can conclude that the function Φ has the property:

(13)
$$\Phi(|\omega|) \le \begin{cases} \frac{1-|z|^2}{1-\lambda|z|}, & |z| \le r_0 \\ 2\frac{r_0}{\lambda}, & r_0 \le |z| < 1 \text{ (also for } |z| < 1) \end{cases}$$

where r_0 is defined by (5). Now, from relation (12), (13) and notation (8) we have that

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \lambda_1 |z| + \frac{\lambda |z|}{1 - \lambda |z|} < 1 \ (|z| \le r_0),$$

and

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \lambda_1 |z| + \frac{2r_0|z|}{1 - |z|^2} < 1 \ (|z| \le 1)$$

are satisfied for |z| < r, where r is defined in the statement of the theorem.

Examples. 1° If we put $\mu = 0$, $\lambda = 1$, then we have that the function $f \in A$ for which $\left|\frac{zf'(z)}{f(z)} - 1\right| < 1$ is convex at least in $|z| < \frac{3-\sqrt{5}}{2}$.

2° For $\mu = 1/9$, $\lambda = 4/5$ we have that $r_0 = 1/2$, $r_1 = \frac{61 - \sqrt{1921}}{40} = 0.4292...$, $r_2 = 0.4281...$ i.e. a function $f \in A$ which satisfies the condition $\left| \left(\frac{z}{f(z)} \right)^{10/9} f'(z) - 1 \right| < \frac{4}{5}$ in Δ , is convex at least in $|z| < r_1$.

Acknowledgement. The work of the first author was supported by Grant No. 04M03 of MNTRS through Math. Institute SANU.

References

- [1] L. V. Ahlfors, Conformal invariants, McGraw-Hill Book Company, 1973.
- [2] P. L. Duren, Univalent functions, Springer-Verlag, 1983.
- [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc (2) 3 (1971), 469-474.
- [4] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (2) (1998), 329-335.
- [5] M. Obradović and S. Ponnusamy, New criteria and distortion theorems for univalent functions, Reports of the Department of Mathematics, University of Helsinki, Preprint 190, June 1998.
- [6] S. Ponnusamy, Differential subordinations concerning starlike functions, Proc. Indian Acad. Sci. (Math. Sci.) 104, 2 (1994), 397-411.
- [7] S. Ponnusamy and V. Sing, Convolution properties of some classes of analytic functions, SPIC Science Foundation (1991).

M. Obradovic

Department of Mathematics, Faculty of Technology and Metallurgy 4 Karnegijeva Street

11000 Belgrade, Yugoslavia

E-mail: obrad@elab.tmf.bg.ac.yu

N. Tuneski

Department of Mathematics, Faculty of Mechanical Engineering University of "St. Curil and Methodius", Karpos II, b.b.

91000 Skopje, R. Macedonia

E-mail: ntuneski@yahoo.com