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A STUDY OF A NEW CLASS OF IDEALS IN SEMIRING

M. K. Sen, P. Mukhopadhyay and Shamik Ghosh

Abstract. In this paper we would like to introduce a new class of ideals in
semirings. Then defining a new form of regularity, compatible with this new
class of ideals, our aim is to explore the possibilities of establishing a new
ideal theory in semirings, going alongside the existing literature of semiring
theory.

1. Introduction

In this paper by a semiring we mean a non-empty set S together with
two binary operations ‘+’ and ‘-’ (usually denoted by juxtaposition) such
that (5,4) is a commutative semigroup and (.5, -) is a semigroup, which are
connected by ring-like distributivity. An additively cancellative semiring is
called a halfring. An inversive semiring 5 is a semiring in which (5, +) is
an inversive semigroup, i.e. for each a € S there is a unique element a’ € §
such that a+a'+a =a and @’ + a+ o' = &' [7]. It is well-known [5] that in
al inversive semiring 5, we have (ab)’ = a’b = ab’ and (a +0) =a' + . A
semiring &5 is called E-inversive, if for every a € S, there exists z € § such
that a4z € E1(S), where E*(S) denotes the set of all additive idempotents
of a semiring 5. The set of all multiplicative idempotents of a semiring S
is denoted by E°(S). An element s € § is called a zeroid element of S if
s+a = a, for some a € §. We denote by Z(5), the set of all zeroid elements
of 5. If § is a semiring with zero 0, then 0 € Z(5). If Z(S) # @ and Z(S)
1s a proper subset of .S, then § is called non-zeroic [2]. The zero element of
5, denoted by 0, is called an absorbing zeroif -0 =0-a=0foralla € S.
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A k-ideal [3] I of a semirnig 5 is an ideal of S such thatifa€ JTandz € §
and a+ z € I, then z € I. An h-ideal [6] J of a semiring 5, is an ideal of
S such that, if z,2,€ § with 41,43 € J such that z + ¢; + z = i3 + 2z implies
z € J. An ideal I of a semiring is called full if E+(S) C I. A subsemiring H
of a direct product of two semirings S and T is called a subdirect product
of S and T if the two projection mappings m; : H — § given by m1(s,t) = s
and my : H — T given by my(s,t) =t are surjective. Throughout the paper
N stands for the set of natural numbers.

2. p-ideals of a semiring

It is well-known that a ring R contains only one additive idempotent,
namely the zero element. In a semiring § with additive idempotents, the set
E*(§) forms an ideal of S, which is not necessarily a k-ideal of 5. Another
generalization of zero element in the theory of semirings is the concept of
zeroid, Z(S) of a semiring §. Clearly, Z(R) = {0} for any ring R. We point
out that Z(9)is a k-ideal of S. In fact, it is the smallest h-ideal of 5. Now, let
us consider the set PT(5) = {z € § : nz = (n+ 1)z for some n € N} which
consists of some additively periodic elements of 5. Clearly, P*(R) = {0} for
any ring R. We note that PT(9) is an ideal of 5, which is not necessarily a
k-ideal, but P*(9) satisfies the following property:

Proposition 2.1. In a semiring S, let a € PY(S) such that for some b € §
and some n € N, a+ nb= (n+ 1)b holds. Then be P*(S5).

Proof. We must have ma = (m + 1)a for some m € N, whence ma +
mnb = m(n + 1)b implies (m + 1)a + mnb + nb = m(n + 1)b 4 nb, so that
(m 4+ 1)(n + 1)b = (mn + m + n)b gives that b € P*¥(5). O

This motivates the following definition.

Definition 2.2. An ideal I of a semiring S is called a p-ideal if for some
z€S,n€EN,nz+a=(n+ 1)z and a € I implies z € I.

In particular, if S is inversive, then the definition boils down to the fol-
lowing: if for some z € §,a+ 2z =22,a € [ then z € I.

We observe that in any halfring, every ideal is p-ideal. But all p-ideals are
not k-ideals, as the ideal I = 3Z7 \ {3} is not a k-ideal, in the halfring Zg
of all positive integers with zero. We also note that k-ideals are not p-ideals
in general. Indeed, in the semiring (Z*, max, min), I, = {1,2,...,,n} is
a k-ideal for any n € Zt but not a p-ideal. We now present few natural
examples of p-ideals in different classes of semirings.

Proposition 2.3. In an inversive semiring S, E1(S) is a p-ideal. In fact,
any full ideal of S is a p-ideal.
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Proof. In fact, for any e € E*(S5), e+z = 2z implies et+(z+z')=2z+z' =2
whence ¢ € ET(§)asz+a' € ET(S)forallz e 5. O

Proposition 2.4. In an E-inversive semiring 5 every full k-ideal is a p-
ideal.

Proof. Let I be a full k-ideal of §, ie. E*(S) C I. For some a € I, let
a+nz = (n+1)z,n € N. Clearly there exists y € S such that nz +y =€ €
E*(S) (as § is E-inversive). So, a+(nz+y) = (nz+y)+rie ate=1z+te
whence z + ¢ € I, as a + e € I, as I is full; but I is also a k-ideal of 5,
whence z € I. Consequently, I is a p-ideal of §. [

Proposition 2.5. In a non-zeroic semiring S, the zeroid Z(S) is a p-ideal

of 5.

Proof. Let z € S such that a+nz = (n+1)z for some a € Z(5) and n € N.
Since a € Z(8), a+y =y for some y € 5. Hence, a+nx +y = (n+1l)z+y
so that y + nz = nz + ¢ + y which implies z € Z(5). Hence Z(S) is a
p-ideal. 0O

Proposition 2.6. In an inversive semiring § an ideal I is a p-ideal if and
only if I = I + E*(S).

Proof. For any p-ideal I, a + (a+e) = 2(a+e)forallae I, ec Et(S)
implies a + e € I so that I + Et(§5) CI. Again, a = a + (¢ + o’) implies
I C I+E*+(S)since a+a' € ET(§)forall a € §. Conversely, suppose [ is an
ideal of S satisfying I = I + E+(S). Then for some A € [ a+z =2z holds,
implying that a+(z+2') = 2z+3' i.e. at+(z+2') =zie z € I+E*(S) =1,
whence [ is a p-ideal of 5. O

Corollary 2.7. In an inversive semiring S, sum of any two p-ideals is also
a p-ideal.

Proof. Follows trivially from Proposition 2.6 U
Proposition 2.8. For two p-ideals I, J of a semiring S, InJ is also so.
Proof. Straight forward. O

We observe that this result can be extended to arbitrary family of p-ideals
of §. We point out that for any two left (right) p-ideals I and J, defined
as usual, I N J is a left (right) p-ideal provided that I N J # 0. Now, in
order to search the smallest p-ideal containing a given ideal, we introduce
the following:

Definition 2.9. For any subsemiring R of a semiring §, we define

R={zeS:a+nz=(n+1)z for somen € N,a € R}.
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Proposition 2.10. For any two ideals I,J of § we see that I is a p-ideal

of § such that I = I, 1cli, ifI CJ then I c J;: indeed, I is the smallest
p-ideal of § containing I.

Proof. Let I be an ideal of a semiring §. Then defining I as in 2.9 it is
plain to see that I C I. Let ,y € I:let a+nz = (n+ 1)z for some a € T
and n € N and b+ my = (m + 1)y for some b € [ and m € N. Then,
(a+b0)+k(z+y)=(k+1)(z+y) where a + b € I, k = max(n,m) € N,
whence we have z +4 € I. Again, for some s € § it is easy to see that zs € I
and sz € I hold. Thus I C ] indicates I C I. To prove the reverse inclusion,

let z € [. Then there exists some a € [ such that a + nz = (n + 1)z, for
some n € N. Again, as a € I, there exists b € I such that b+ma = (m+1)a
for some m € N. Now through some calculations it can be shown that
b+ rz = (r+ 1)z, where b € I, r = mn 4+ m + n € N, which indicates that
I & I whence [ = 1.

It is a routine matter to check that for two ideals I, J of § with I C J
we have [ C J. Also, we observe that if I is a p-ideal then I = I. Indeed,
for « € I there exists a € I such that a +nz = (n+ 1)z, showing that z € T
sothat TCT. O

We point out that in case of an inversive semiring 5, for an ideal [ of §
we have [ = {z € S|a+ z = 2z for some a € I}. It is worth noticing that in

a semiring § with absorbing zero 0, we have {0} = PT(5).

Corollary 2.11. In an inversive semiring S, we have [ = I + E+(8) for
any ideal 1.

Proof. We see that I + ET(5) C I follows, since forany a € I, a+ e € I for
any e € E*(S). Indeed, a + (e + a) = 2(a + €) shows that a + e € I. Now,
let z € 1. Then for some a € I, a+ 2z = 2z implies a+z+2' =22+ 2' =z
sothat r € I+ E*(S),as 2+ ' € E¥(S) forallz e §. O

Proposition 2.12. Let a semiring S be a subdirect product of a distributive
lattice D and a ring K. Then I is a full ideal of 5 if and only if I is a p-ideal
of §.

Proof. Let S be a subdirect product of a distributive lattice D and a ring R.
Then as in [1], it can be easily seen that 5 is an inversive semiring, whence
any full ideal of S is a p-ideal of § (by 2.3). Conversely, let I be a p-ideal of
the semiring 5. As I # {0}, there exists some a € I, so that a = (y,r) for
some ¥ € D and r € R. Now, idempotents of S are of the form (a,0) for
each @ € D. As [ is an ideal of 5, (y,7)(e,0) = (ye,0) € I. We see that
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(ya,0) + (@,0) = (ya + «,0) = (a,0) = 2(«,0) which implies (a,0) € I for
all @ € D. Hence I is a full ideal of §. O

3. p-regular semirings

In this section we define p-regularity of a semiring S and try to obtain
several characterizations of p-regularity of S in connection with p-ideals of
.

Definition 3.1. A semiring S is called p-regular, if for each a € § there
exists some b € § such that

(3.1) na + aba = (n + 1)a for some n € N.
If § is an inversive semiring this relation reduces to

(3.2) a + aba = 2a.

We point out that any multiplicative regular semiring 5 [i.e. in which
(S,-) is regular semigroup] is p-regular, but the converse is not necessarily
true, as it is evident from the following example. Moreover, this example
shows that even there exists semirings satisfying (3.1), but not (3.2).

Example 3.2. We define a relation p on Z* as follows: mpn if and only if,
cither m = n or m,n > 6 and 3 devides (m — n), for all m,n € Z*. Tt is
a routine matter to verify that p, as defined above, is a congruence on Zt.
We have the congruence classes as follows: 1p = {1}, 2p = {2}, 3p = {3},
4p = {4},5p = {5},6p = {6}, 7p = {3n+Tn € Zf}, 80 = {3n+8ln € Z7 },
9p = {3n+ 9|n € Z}}. Then we consider § = ZT /p; for convenience, we
write ap as @, for all @ = 1,2,...,9. We see that § = {z € Z¥|z <
7} U {7,8,9}. Under usual addition and multiplication of classes it can
be easily seen that S is a semiring. Now we observe that 1-T-1 =1
39+9.2.2=42:33+3.1-3=43;44+44-1-4=245+5-2-5=2
64+6-1-6=26,7-1-7=7;8-2-8=89-1-9=9

Ly
5

n o

Since 222 =4z >4 > 2s02-T-2 # 2VZ € 5. Also, as 2+ 222 =
2442 > 6 > 4 = 2(2), we have 24+ 2-F-2 # 22 Vz € S. Similar is the
case for 3. Again, 4z4 = 16z > 4 indicates 4-T-4 # 4 VT € §. Hence
for each @ € §, there exists some & € S such that na 4 aba = (n + 1)a but
a + aba = 2a does not hold for all @ € § (eg. 2 € 5) and aba = a does
not hold for all @ € S (eg. 4 € §). Now, it is also interesting to see that
25 = {2,4,6,7,8,9} is an ideal of S which is not a p-ideal as 74 5=95
but 5 ¢ 25. We assert that 25 = §. Indeed, 7+ 71 = 81, 6+ 23 = 33,
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9 +25 = 35, shows that 1,3,5 € 25 whence 25 = §. But T+ 1 = 27T has
the only solution T = T and also T+ 3 = 23 has the only solution T = 3 in
§. Therefore, {z € Sla+ z = 2z for some a € 25} # 95 ={z € Sla+nz =
(n+ 1)z for some n € N and a € 25} O

It is well-known that the zero element of a ring is regular (in the sense
of usual literature of ring theory). We point out that P*(S5) is p-regular for
any semiring S with an absorbing zero.

Proposition 3.3. A sufficient condition for Z(5) of a non-zeroic semiring
S to be p-regular is Z(S) C E°(S).

Proof. Indeed, in a non-zeroic semiring S, satisfying the given condition,
b+ bbb = 2b for any b € Z(9), proving our claim. O

However the following examples show that the condition is not necessary.

Example 3.4. a) Any additively idempotent semiring with an absorbing
zero is p-regular. b) Any additively idempotent semiring with zero multipli-
cation is p-regular. ¢) Inclines [4] are p-regular. The following semiring .5 is
not p-regular but the corresponding zeroid Z(S) is p-regular.

d) A subdirect product S of a distributive lattice D and a non-regular
ring is a semiring which is not p-regular. But, Z(S§) = D x {0}, showing
that Z(.5) is p-regular.

Proposition 3.5. In a p-regular semiring S, every ideal of S is p-regular.

Proof. Let I be an ideal of a p-regular semiring 5. Let a € I. Then there
exists some b € § such that na+aba = (n+1)a for some n € N. Now, since [
is an ideal we have bab € I, whence n(n+1)a+ababa = na+ naba+ababa =
n®+ (na+aba)ba = n*a+(n+1)aba = n(na+aba)+aba = n(n+1)a+aba =
n*a 4 (na + aba) = n*a + (n + 1)a = (n* + n 4 1)a which shows that I is
p-regular. O

Proposition 3.6. In a p-regular semiring S, if for some a,b € S we have
na + aba = (n + 1)a, for some n € N, then

(3.3) ma + a(bab)a = (m + 1)a for some m € N and

(3.4) m!(bab) + (bab)a(bab) = (m' + 1)bab for some m' € N.

Proof. We observe that (3.3) follows from Proposition 3.5 where m = n? +
n € N. Now, to justify the condition (3.4) we see that na+aba = (n+1)a, so
we have nbab -+ babab = (n+1)bab which implies n(n+ 1)bab+ (n+1)babab =
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(n + 1)%bab, i.e. (n? 4 n)bab + bab((n + 1)a)b = (n? + 2n + 1)bab, ie.
n2bab+ nbab+bab(na+aba)b = (n? +2n+1)bab, i.e. n2bab+ nbab-+nbabab+
(bab)a(bad) = (n* + 2n + 1)bab, i.e. nbab + n(nbab + babab) + (bab)a(bad) =
(n? +2n+ 1)bab, i.e. nbab + nb(na + aba)b+ (bab)a(bab) = (n? + 2n + 1)bab,
i.e. nbab+ n(n + 1)bab+ (bab)a(bab) = (n? 4 2n + 1)bab, i.e. (n® +2n)bab+
(bab)a(bab) = (n® + 2n + 1)bab, i.e. m!(bab) + (bab)a(bab) = (m' + 1)bab,
where m' = n?2 +2ne N. O

Definition 3.7. In a semiring S an element e is called p-idempotent if
ne + €2 = (n + 1)e for some n € N.

In the case of an inversive semiring S this definition reduces to e + €2 =
9¢. Clearly any multiplicatively idempotent element of S is p-idempotent.
However, the converse fails as can be seen from the following:

In Example 3.2, 4 is p-idempotent but not multiplicatively idempotent.

Proposition 3.8. In a semiring S, p-idempotents are p-regular.

Proof. Let e € S be a p-idempotent, ie. ne+e? = (n+1)efor somen € N.
Then we have ne? + e = (n+ 1)e* i.e. n(ne + €*) + e* = n{ne +€2) + e?
ie. n(n+ e+ e =n(n+1)e+ e ie. (n? + n)e+e® = ne+ (ne+¢€) =
nle+(n+1)eie. (n?+n)e+eee= (n? 4 n + 1)e whence e is p-regular. U
Theorem 3.9. A semiring S with 1g is p-regular if and only if for every
right p-ideal A and left p-ideal B we have AN B = AB.

Proof. Let S be a p-regular semiring. Obviously AB C A and AB C B so
that AB C A = A and AB C B = B. Hence AB C AN B. Conversely, let
a € ANB, then na+aba = (n+1)a, for some b € S,n € N. Now, aba € AB
whence a € AB and consequently, AN B C Z—E, so that AN B = AB.

Let us now assume that the given condition holds. Then for any a € 5,

acadnla= 255 a implies that there exists some zy € c::-gﬁ, such that
(i) zy + na = (n + 1)a for somen € N.
We also have ¢ € a5 and Y€ Sa so that

(i) ary + mz = (m+ 1)z

(ii1) roa+ ky = (k+ 1)y

for some 71,72 € § and m,k € N. Now, from (ii) we have ary + mzy =
(m 4+ 1)zy, whence ary + (mn+m+ n)a=(mn+m+n+1)a... [by (1)],
ie.

(iv) ariy + (mn+m+ n)a = (mn+m+n+1)a [by (1)]-
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Again, from (iii) we have arirqa + karyy = (k + 1)aryy i.e.
arirea+karyy+k(mn+m+n)a = (k+1)ariy+k(mn+m+n)a  [by (iv)]

from which we can show that pa+arirea = (p+1)a where p = kmn+km +
kn+k+mn+m+n€N,ie pa+ara=(p+ 1)a where r = riry € 5.
Since a was chosen arbitrarily we conclude that S is p-regular. [

Definition 3.10. A p-ideal B of a semiring 5 is called idempotent if B =
B

Theorem 3.11. A multiplicatively commutative semiring S is p-reqular if
and only if every p-ideal is idempotent.

Proof. Let S be a p-regular semiring which is multlphcatlvely commutative.
Then by Theorem 3.9 with A = B, we have AN A = Ad ie. A = A
and hence A is an idempotent. Conversely, let A, B be any two p-ideals
of §. Usmg idempotence of p-ideals of § we get AN B = (frﬂ—jé)2 Let
a € (AN B)2 so that there exists some b € (AN B)? such that b + na =
(n 4+ 1)a for some n € N; let b = blbg, where by,by; € AB; then we have
biby + na = (n+ 1)a whence a € AB as b by € AB, so that AN B C AB.
Again, AB C A and AB C B shows that AB C AN B, i.e. AB CA[‘]B =
AN B. Consequently, AB = AN B. Hence the p-regularity of S follows from
3.9. O

Theorem 3.12. In a multiplicatively commutative semiring 5 with 1g, the
condition Sab = San Sb, a, b € § is equivalent to p-regularity of 5, where
Sa is the p-ideal generated by a.

Proof. In a semiring with given conditions we may have Sa? = San Sa for
any a € 9, L.e. Sa? = Sa whence we have a € Sa2 so that, for some s € §,
sa® 4+ na = (n+1)a,n € N;ie na+asa= (n+1)a, Whence S is p-regular.

Conversely, in a p-regular semiring S by 3.9 we have 5anSh = Sash. Now we
observe that Sab = Salgh C Sa 5b C .§?L§?J, so that Sab C §&§5; conversely,

—

let y € 3'5%, then through some calculations essentially similar to that of

3.9 we can show that y € S";L_l‘), i.e. we have 5aSb C §EE, whence the theorem
follows. 0O

Definition 3.13. A p-ideal I of a semiring 5 is said to be semiprime if and
only if I = +/I, where /T = {a € S|a™ € I for some n € N}.
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Lemma 3.14. In a commutative p-regular semiring S, every p-ideal I sat-

isfies [ = V1.

Proof. Since I C +/T is trivially true, it suffices to show the reverse inclusion
only. Let 0 # a € v/I. Then a™ € I, for some n € N. Now, as § is p-regular,
there exists some b € S such that ma + aba = (m + 1)a for some m € N,
ie. ma+a?b = (m+ 1)a, ie. ma™ ! + q"b = (m+1)a™ ', m & N. Now,
a™ € I implies a™b € I and asl is a p-ideal, so a®~! ¢ I. Repeating this
process enough number of times, ultimately, we have a € I. Consequently,
\/fgf,sothatI:\/T. |

Theorem 3.15. A commutative semiring § is p-regular if and only if every
p-ideal of S is semiprime.

Proof. The condition is necessary by Lemma 3.14. Going in the other direc-
tion, let us assume that S is a commutative semiring in which every p-ideal

I is semiprime, i.e. I =+/I. Now, for any 0 # a € 5 we consider the p-ideal
Sa?. As we know that ¢® € Sa? and every p-ideal is semiprime, we have

a€VSa? ¢ v 5e? = :S"c;ﬁ; so that for some s € S we have sa®+pa = (p+1)a

for some p € N, ie. pa + asa = (p+ 1)a for some p € N, showing the p-
regularity of the semiring §. O

Theorem 3.16. If a semiring S with 1s is p-regular, then we have for
a € 5, Sa = Se, where e is a p-idempotent of 5, i.e. every principal left
p-ideal is generated by a p-idempotent.

Proof. For any a € S, there exists b € § such that na + aba = (n+ 1)a for
some n € N. Then nba + baba = (n+ 1)ba for some n € N, shows that ba
is a p-idempotent. Let ba = e, so that we have ne + e = (n 4 1)e for some
neN. Let pe .§E; then there exists ry € § such that rie + mp = (m+1)p
for some m € N, ie. riba+ mp = (m+ 1)p, ie. rya+ mp = (m+ 1)p
for ry = rib € S, so that p € %, whence Se C Sa. To prove the reverse
inclusion, let ¢ € 3’2, ie.

(i) ra+ kt = (k + 1)¢, for some r € S and k € N.

Now, na+aba = (n+1)a implies na+ae = (n+1)a, i.e. nra+rae = (n+1)ra,
implies nra+nkt+rae = n(k+1)t+rae,i.e. (n+1)ra+nkt = rae+(nk+n)t,
ie. (n+1)ra+(n+ Dkt+nkt = se+(nk+n)t+(n+1)ktfors =ra e 9, i.e.
(n+1)(k+1)t +nkt = se+ (2nk+n + k)t [from (i)], i.e. (2nk+n+k+1)t =
se + (2nk 4+ n + k)t which implies that ¢ € S’E, ie. Sa C Se. Consequently
we have Sa = Se. 0O
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In what follows we shall study that class of inversive semirings S for which
E*(S) is a sublattice of 5 and we shall see that the above condition in 3.16
becomes necessary and sufficient for this class of semirings [cf. Theorem
3.18]. Let R be such a semiring. We note that for every a € R and for
every e € Et(R), a + ae = a; indeed, ata +ae =a+a +ae+tae=
(a+a) + ae + (ae) = (a-l—a’)—l—ae+a’e = (a+a")+ (a +a')e = a+a,
whence a + a + @' + ae = a + @' proves our claim. Now we proceed to prove
the following:

Theorem 3.17. In the semiring R with 1g, if for every a € R there exists
some p-idempotent e € R satisfying Ra = Re, then R is p-regular.

Proof. Since
G) Ra = Re

we get a € Reie. re+a = 2afor somer € R, lLe. re? + ae = 2ae, so that
re? 4 ae + re + a = 2ae + 2a whence 2ae+2a+a' = T(62+e)+ae+a+a’
i.e.

(ii) .

2ae+a = 2retae+2a+a’ +a' = 2(?"6+a)+20,’-|-a,e = 4a+2a'+ae = 2a+ae.

Again, from (i) as e € Ra we have ba+ e = 2e for some b € § i.e. aba+ae =
9ge whence a+ aba + ae = 2ae+a = 2a+ ae [by (ii)] i.e. a+aba+ae+ae’ =
2a + ae + ae' i.e. a+ aba + ale+e')=2a+ ale+e')ie a+ aba = 2a as
a+ale+¢€') = asince e + ¢ € E¥(R) which is a sublattice of R. Hence R
is p-regular. O

Combining the previous two theorems we have,

Theorem 3.18. The semiring R with 1g is p-regular if and only if every
principal left p-ideal of R is generated by p-idempotent of R.

We now prove the following lemma, which is instrumental in proving the
next theorem.

Lemma 3.19. In the semiring R an elemente € R is @ p-idempotent if and
only if e € E°(R). :

Proof. We see that e? +(e?) = %e? 4+ 2ee’ [since €? = 2¢” +(e?)'] = e? +ee' +
e+ (e')? [since (¢')? = €] = (e+¢€')? =e+e',s0that e’ tete = e +e? +
(e?) = e* as § is inversive, which implies e? = (e +e)+e' = 2et+e =e. O
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Theorem 3.20. In the semiring R with 1g, the sum of any two principal
left p-ideals is again a principal left p-ideal.

Proof. Let us consider the left p-ideal Ra + Rb. By Theorem 3.16 we have
Ra = Re with e? = e for some p-idempotent e € R (by 3.19). We claim
that Re + Rb = Re + Re for ¢ = b(1r + €'). Indeed, for some z,y € R,
ze + yb = we + y(b + b(e + €’)) [since E+(R) is a sublattice of R] = (z +
yb)e + y(be +b) = (:c +yb)e+yb(lr+ e') = (z+yble+ yc € Re+ Re, which
implies Re+ Rb C Re + Re. Again, we see that ze+yc = ze+ yb(lg+e') =
ze + yb + ybe' = a:e—lrybl e—}-yb = (z + ybly )e+yb € Re-l—Rb which
indicates that Re + . Re o Re + Rb whence we have Re + Rb = Re + Re.

Now, we have Re = Rf for some f = f2? by 3.16 and 3.19. This gives
f = zc for some = € R. Now, fe = zce = zb(1lg + €')e = zb(e + €'e) =
zb(e® + e'e) = zb(e + €') € ET(R).

Now,let g = (1g+e')f € Rf. Weseethat f = f? = zef = zb(1g+e€')f =
zbg € Rg. Therefore Rg = Rf so that jﬁ} = R} whence we have

(i) Ra+ Rb= Re + Ry

Now, we assert that Re + RB = RF(‘;TQ). In fact, Rm) C Re+ Rg
implies Rm) C Re + 1’%-;; To show the reverse inclusion, we observe
that eg = e(lp+ €' )f = (e+ ee')f = (e* + ee')f = (e + e')ef € EF(R).
Now e=eteleg) =€’ +eg=eletg) € Rletg)and g =g+ g(ge) =
g + ge = g(e +g) € R(e + g). Hence, Re + Rg C R(e + g) implies that

Re + Rg - R(e + g) Consequently, Re + Rg = R(e + g), whence from (i)
we get Ra + Rb = R(e + g). Hence, the theorem follows. O

We would like to point out that the results proved for left p-ideals have
their obvious duals in right p-ideals also.
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