FILOMAT (Nis) 13 (1999), 157172

ON SOME PROPERTIES OF
REVERSE POLISH NOTATION

Predrag V. Krtolica and Predrag S. Stanimirovié

Abstract. An extension of the reverse Polish notation, as well as the ex-
tension of the corresponding algorithms for transforming infix expressions to
the postfix ones and vice versa, are suggested. Further, some properties of
reverse Polish notation are investigated. These properties are important in
the simplification of the corresponding infix expression. A software imple-
menting improved algorithms for the infix to postfix transformation and vice
versa is developed. ’

1. Introduction

Years ago, reverse Polish notation became the complementary part of
many textbooks in computer science (e.g. [1], [5], [6], [7]). By this notation,
the arithmetic expression was noted in a postfix manner, instead of using
the usual infix notation.

For example, the infix expression

a-+b
in reverse Polish was noted like
ab + .

Also, the algorithms for transforming a postfix expression to the infix
one, and vice versa, are well known (see e.g. [1], [5], [6], [7]). Usually, these
algorithms include stack usage and they could be restated as the following:

Received January 27, 1999

2000 Mathematics Subject Classification. 68Q40.
Key words and phrases. Reverse Polish notation, grasp ef the operator.

157

158 Predrag V. Krtolica and Predrag S. Stanimirovi¢

The algorithm for transforming an infix expression to the postfix
one:

(11) Examine the current element of the infix expression.

(2I) If the current element is an operand, send it to the output and go to
Step (61).

(31) If the current element is the left parenthesis, push the element and
go to Step (6I).

(41) If the current element is an operator then do the following:

if it has the higher priority than top of stack push that operator,

else pop the operator from stack, send it to the output, and repeat
Step (4I).

Note that we assume the parenthesis as the lowest priority ele-
ment, and if the stack is empty that it should be treated as top of
stack with the lowest priority.

(5I) If the current element is the right parenthesis, then pop operators
from stack and send them to the output until the left parenthesis is
poped (which is not supposed to be sent to the output).

(61) If there are more elements of the input expression, take the next and
go to the Step (2I). Otherwise, pop the rest of the stack, send it to
the output, and stop.

The algorithm for transforming a postfix expression to the infix
one:

(1P) Examine the current element of the expression.

(2P) If the element is an operand, push it.

(3P) If the element is the binary operator, then pop two operands, execute
the operation and push the result; but, if the element is the unary
operator, then pop the only one operand from the stack, execute
operation and push the result [1].

(4P) If there are more elements of the input expression, take the next and
go to Step (2P).

(5P) If the input expression is exhausted, then the infix expression is in
top of the stack; pop it and stop.

Note that in the second algorithm, at the end we have the value of the
input postfix expression if we deal with the operand values, but the sym-
bolic infix expression if we use stack of strings instead. Actually, instead of
operands or the parts of the expressions we can push the pointers to the cor-
responding strings. In this way, we are able to get the symbolical expression
back in the infix form.

The algorithms restated above could be extended to process n-ary op-
erators. Of course, the list of these operators should be known, as well as

On some properties of reverse Polish notation 159

the number of required arguments. For illustration purposes we introduce
operator fun which has three arguments - fun(z,y, 2z). Now, the algorithms
should be restated as the following:

In the algorithm for transforming the infix to the postfix expression we
include the additional step, let us say, (3Ia):

(3Ia) If the element of the expression is comma go to the Step (6I).

In the algorithm for transforming the postfix to the infix expression the
Step (3P) is changed:

(3Pa) If the element is the binary operator, then pop two operands, execute
the operation and push the result; but, if the element is the unary
operator, then pop the only one operand from the stack, execute the
operation and push the result. If the element is n-ary operator (it
means threenary in our case), pop n operands, execute the operation
(i.e. make the string representing function call - fun(z,y,z2) if the
x, y and z are the three top operands) and push the result.

The program which transforms any infix expression to the postfix one
and vice versa, in the beginning accepts the string representing the input
expression and then separates different elements of the expression. The
elements of the expression could be operators +, —, *, / , * (which means
exponenting by constant integer exponent), left and right parenthesis, unary
operators, i.e. standard function names (neg, plus, sin, cos, tan, ctg, log,
exp, sqri; this list could be easily extended), and operands both variables
and constants (integer and fixed point real values). We get an array of
strings which represents expression elements. After that, the operator of
exponenting (e.g. z”3) is replaced by repeated multiplication (z * z * z).

Now, the function which actually makes the transformation to the postfix
notation is called.

The other function transforms the begotten postfix expression back to the
infix form. Recall that we use pointers to strings, instead of values of the
operands, to get the symbolical infix expression.

Example 1.1. In this example we show the application of an expression
containing threenary operator fun.

You entered the following expression

x"2+x*cos (fun(x1,x2,x3))/x

This expression in postfix is
xx*xx1x2x3funcos *x/+

Now, we transform postfix expression back to infix
x*x+x*cos (fun(xi,x2,x3))/x

160 Predrag V. Krtolica and Predrag S. Stanimirovié

The paper is organized as the following. In the second section, we ob-
serve and prove some properties of reverse Polish notation concerning the
transformation of such an expression back into the infix form. In the third
section, a few useful rules which can be used in the simplification of the infix
form are formulated. A few implementation details are also presented.

2. Properties of the Extended Reverse Polish Notation

We suppose that the input expression is transformed into the reverse
Polish notation, where all of its elements (variables, constants and operators)
are separated. Hence, we actually deal with an array of strings representing
the elements of the input expression. We denote this array of expression
elements as postfiz, where postfiz[i], for each ¢ > 0, is a string which
denotes an expression element, i.e. a variable, a constant, or an operator.

Definition 2.1. The grasp of the element postfiz[i] is the number of its
preceding elements which form operand(s) of the element postfiz[i]. We
denote the grasp of the element postfiz[:] by GR(postfiz[i]). Integer 1 is
called the index of the element postfiz[i]. Index ¢ of the element post fizi]
will be alternatively denoted by I N D(post fiz[i]).

Remark 2.1. The element postfiz[i] in the array postfiz, representing the
reverse Polish notation of the corresponding expression, can be the opera-
tor or the simple operand (variable or constant). We concern every simple
operand as 0-ary operator, and assume that its grasp is zero.

Example 2.1. For example, the grasp of the operator + in ab+ is two,
because two preceding elements should be the operands of the operation +.
In some more complex postfix expression

(2.1) 122 sqgrt * [neg = sqrt x sqrt = [
which is the reverse Polish of the expression
neg(1/(2 + sqri()))/(sart(c) * sqri(c))

the grasps of the operators contained in this expression are given in the
following table: :

post fiz[3] = sqrt
post fiz[4] = *
postfiz[5] = /
postfiz[6] = n

post fiz[10] = sqrt
postfiz[ll] = *
postfiz[12] = / 12

p]
Y
B O T L

On some properties of reverse Polish notation 161

Definition 2.2. The grasped elements of the operator postfiz[i] are the
grasping left preceding elements in the array post fiz which form operand(s)
of the operator post fiz[i]. The index of the most left element among them
is called the left grasp bound. The left grasp bound of the operator post fiz[i]
is denoted by LG B(post fiz[i]).

Definition 2.3. The element postfiz[i] is called the main element or head
for the expression formed by post fiz[i] and its grasped elements.

Remark 2.2. An arbitrary element postfiz[i] can be considered as the op-
erator acting on operands argi,...,arg,. Heads of these operands will be
denoted by opy,... ,op,.

Example 2.2. Consider the expression (2.1). The element post fiz[12] = /
has two following arguments:

argr =1 2 z sqrt * [neg, args =z sqrt = sqri *
Heads of these arguments are
op1 = neg = post fiz[6], opy = * = post fiz[11].
Similarly, the operator neg = post fiz[5] takes the operand
arg1r =1 2 z sgrt *
whose head is

opy = * = post fiz[4].

Lemma 2.1. Assume that post fiz[i] is n-ary operator which takes operands

whose heads are opy, . ..op,, respectively. Then, the following statements are
valid:

(a) GR(postf’ia:[i]) = i — LG B(post fiz[i]).
(b) GR(postfiz[i])=n+ kz_:l GR(opi)= TH“kzl(IND(OPk)fLGB(OPk))-
(c) LGB(postfiali])=i—n— kZijl(IND(opk) — LG B(opy)).

(d) i = IND(postfiz[i]) = n+ 3> IND(ops) + p,
k=1

LGB(post fizli]) = kf; LGB(opy) + p,
=1

for some integer p.

j—1
(e) opn—; = postfix I:z' - Y. GR(opp—_k)—J— 1] g 3=l e i — e
k=1

162 Predrag V. Krtolica and Predrag 5. Stanimirovi¢

Proof. (a) It follows immediately from Definitions 2.1 and 2.2.

(b) From Definitions 2.1 - 2.3 it is quite clear that the heads opy, ... ,0ps
and its grasped elements are the grasped elements of the element post fiz[i].
Hence,

i
GR(postfiz[t]) =n+ Z GR(opy).
k=1
From (a), for every k = 1,...,n the grasp of opy is equal to
IND(opy) — LG B(opx).

Then, we have

G R(post fiz[i])) = n + Z(IND(opk) — LG B(opy)).
k=1

(c) This part easily follows from (a) and (b).
(d) From part (c) we obtain the identity

i — LG B(post fizli]) = n+ Y IND(opx) — »_ LGB(ops)-
k=1

k=1
Since i and LG B(postfiz[i]) as well as IN D(opy) and LG B(opi), k =
1,...,n are non-negative integers, we have

i=n+ E IN D(opi) +p, LGB(postfiz[i]) = Z LGB(opk) + p,
k=1 k==

where the integer p is equal to

p=i—n— Y IND(opx)=LGB(postfiz[i]) - >~ LG B(opy)-

k=1 k=1
(e) For each j = 0,...,n— 1, position of the head op,—; can be obtained
subtracting the number
i—1
2 R AT
k=1

from i = I N D(post fiz[i]). The number

J—1
Z GR(opn—k)
k=1

contains the grasps of the previous heads opn—k, £ = 0,...,j — 1, and the
number j + 1 represents locations of op,—k, £k = 0,...,7 — 1 as well as
locations of op,—; and post fiz[i]. O

On some properties of reverse Polish notation 163
Lemma 2.2. If the grasp of an arbitrary n-ary operator post fiz[i] is greater
than n, then at least one of its arguments heads is also an operator.

Proof. Assume that the grasp of n-ary operator post fiz[i] = flargs,...,arg,)
is greater than n. If opy,...,op, are heads of argy,... ,arg,, respectively,
then according to Lemma 2.1, we get

GR(postfiz[i]) = n + Z GR(opy) > n.

k=1
This implies the existence of an integer k¥ € {1,...,n} which satisfies
GE(opk) > 0. Consequently, opy is also the operator. O

In the case n = 2 we obtain the following.

Corollary 2.1. If the grasp of any binary operator post fiz[i] is greater than
2, then at least one of the two preceding elements in reverse Polish notation
of the ezpression (post fiz[i—1] and post fix[i—2]) is also the operator (unary
or binary).

Theorem 2.1. Assume that the grasp of an arbitrary binary operator
post fiz[i] is greater than 2.

(a) If the difference between the grasp of the operator postfiz[i] and the
grasp of its first preceding operator is equal to 2, then it is not necessary to
insert parenthesis around at least one of the two operands of the operator
post fiz[i]. Specifically,

(i) if the difference of index i and the indez of the first preceding operator
with respect to post fix[t] is equal to 1, then it is not necessary to
insert parenthesis around the first ezpression-operand of the operator
post fiz(t];

(ii) if the difference of indez i and the index of the first preceding operator
with respect to post fiz[i] is equal to 2, then it is not necessary to in-
sert parenthesis around the second ezpression-operand of the operator
post fiz[i].

(b) In the opposite case, when the difference between the above men-
tioned grasps is greater than 2, the parenthesis should be inserted around
both expression-operands. The exception is in the case when one of the
erpression-operands is unary operator call. In this case, the parenthesis could
be omitted.

Proof. Let the operator postfiz[i] take the arguments with heads op; and
opy.

164 Predrag V. Krtolica and Predrag S. Stanimirovié

(a) In accordance with Lemma 2.2, for the case n = 2, at least one of the
argument heads op; and op; is also the operator. From part (e) of Lemma
2.1 we get opy = post fiz[i — 1].

(i) According to suppositions, opy = post fiz[i —1] is an operator. In view
of Lemma 2.1, we get

9 = GR(post fiz[i]) — G R(post fiz[i — 1]) = 2 + GR(op1)

Hence, G R(op;) = 0, which implies that op is a simple operand.
(i) In this case, op; = postfiz[i— 2] is an operator. According to Lemma
2.1, we get

2 = GR(post fiz[i]) — GR(postfiz[i - 2]) = 2+ GR(ops).

Hence, GR(op;) = 0, which implies that opy = post fiz[i — 1] is a simple
operand.

(b) Assume that op, = postfiz[i — 1] is an operator. From Lemma 2.1
one can verify the following:

GR(post fiz[i]) — GR(postfiz[i — 1]) = 2+ GR(op1) > 2.

Hence, GR(op1) > 0, which implies that op is not a simple operand. The
case when the operand op; = post fiz[i — 2] is an operator can be proved in
a similar way. O

3. Simplification Rules and Implementation Details

In this section we propose a few rules for the simplification of the infix
expression which is derived from a postfix expression. Also, we describe a
few toutines for the application of these rules.

The value of left grasp bound for post fiz[i], equal to
LGB(postfiz[i]) =t —n — Z(IND(opk) — LG B(opy))
k=1

can be calculated by applying the effective procedure listed below in the
C++ like pseudocode:

On some properties of reverse Polish notation 165

void left_bound(int z, int *ind)
{
do {
*ind = *ind-1;
if (is_unary_operator(postfix[*ind]))
left_bound(1l,ind);
else
if (is_binary_operator(postfix[*ind]))
left_bound(2, ind);
else
if (is_nary_operator(postfix[*indl))
left_bound(n,ind);

while (z2);

}

The parameter z is the arity of the operator, while the ind is the pointer
to the index of the operator whose grasp is calculated. In the function call
time, *ind has the value of the index i of the operator post fiz[i] for which we
calculate the left grasp bound. When the function is done, *ind is the index
of the corresponding left grasp bound. The functions is_unary_operator,
is_binary_operator, and is_nary_operator recognize the unary, binary,
and m-ary operator, respectively.

The grasp G R(post fiz[i]) of an arbitrary element post fiz[i] of the reverse
Polish notation can be calculated as it follows:

int grasp(int i)
{
int* ptr_lgb;
int start = i;
ptr_lgh = &start;
if (is_unary_operator(postfix[i]))
left_bound(i,ptrlgb);

else

if (is_binary.operator(postfix[i]))

left_bound(2, ptr_lgh);
else
if (is_nary.operator(postfix[i]))
left_bound(n, ptr_lgb);

return (i - *ptr_lgb);

}

166 o Predrag V. Krtolica and Predrag S. Stanimirovié

Main simplification rules, which are used for the elimination of the unnec-
essary parenthesis in the infix expression, can be formulated as the following.

of the expression, during postfix to infix transformation, is the binary +,
then it is not necessary to insert the parenthesis around its operands.

(b) If the current operator post fiz[i] in the reverse Polish notation of the
expression is the binary —, then the following is valid:

(i) The parenthesis are not necessary around the first argument;
(i) The parenthesis around the second argument are necessary only if
the element post fiz[i — 1] is one of the binary operators + or —.

The reason for (a) and the first part of (b) originates in the fact that
post fiz[i] is the lowest priority operator and all of the possible operators
in expression-operands are the operators of the same or higher priority, and
they will be applied before the current operator. If the expression-operands
contain only the operands of the same priority, for the well-known associa-
tivity, the parenthesis are redundant.

The second part of (b) is justified as the following. If postfiz[i — 1] is
not one of the binary operators + or —, then the second argument of the
postfiz[i] is a product, a quotient, or an unary operator call. All of them
have the higher priority than post fiz[i] and this case is reduced to the case
(a).

From Theorem 2.1 we get the following rules. In these rules we assume
that postfiz[i] is an binary operator which takes two operands arg; and
argy whose heads are op; and op,, respectively.

Rule 1. (a) If the current operator postfiz[i] in the reverse Polish notation
|
!

Rule 2. Let the grasp of the operator post fiz[i] be greater than 2.

(1) If GR(post fiz[i]) — GR(post fiz[i — 1]) = 2 and post fiz[i — 1] is an
unary or binary operator, then it is not necessary to insert parenthe-
sis around the first expression-operand arg;, which is determined by
the head op; = post fiz[i — GR(post fiz[i — 1]) — 2].

(ii) If GR(post fiz[i]) — GR(post fiz[i — 2]) = 2 and post fiz[i — 2] is an
unary or binary operator, then it is not necessary to insert parenthe-
sis around the second expression-operand argy, which is determined
by the head op; = post fiz[i — 1].

(iii) The exception of the case (i) is raised when postfiz[i] = * and
postfiz[i — 1] = * or postfiz[i — 1] = /. Also, the exception of
the case (ii) is raised when postfiz[:] = + and postfiz[i — 2] = * or
postfiz[i — 2] = /. Then, the parenthesis are not necessary around
both operands arg; and args. There is another exception of the case
(ii), when post fiz[i] = / and post fiz[i — 2] = * or post fiz[i — 2] = /.

On some properties of reverse Polish notation 167

Then, there is no need for the parenthesis around both of the argu-
ments.

Rule 3. Let the grasp of an arbitrary binary operator postfiz[i] be greater
than 2 and the difference between its grasp and the grasp of the first pre-
ceding operator be greater than 2. Then the parenthesis should be inserted
around both expression-operands arg; and argy. The exceptions are aroused
in the following cases:

(i) One (or both) of the expression-operands arg; and args is unary
operator call, i.e. when at least one of the heads opy, op; is unary
operator. Then, the parenthesis should be omitted around this (or
both) argument(s).

(i) The operator postfiz[i] = * and one (or both) of the heads of its ar-
guments are # or /. Then, the parenthesis should be omitted around
this (or both) argument(s).

(iii) The operator postfiz(i] = / and op; = * or op1 = /. Then, the
parenthesis should be omitted around the first argument arg.

From Definition 2.1 immediately follows Rule 4.

Rule 4. Tf post fiz[i] is a binary operator and G R(post fiz[i]) = 2, then both
of its operands, arg; and args, are simple and parenthesis around them could
be omitted.

Tt seems that Rules 1-4 cover all the possible cases concerning the omitting
or the inserting parenthesis while the postfix expression is converted into the
infix one. So, we make the following conjecture.

Conjecture 3.1. The Rules 1-4 remove all unnecessary parenthesis.

The Rules 1 to 4 could be employed in the following pseudocode routines
to avoid the insertion of unnecessary parenthesis.

Suppose that we want to make a string res representing the application of
the operator postfiz[i] on its operands, denoted by arg-1 and arg2, while
op_1 and op_2 represent the heads of these operands. Function is low prior
recognizes when post fiz[t] is binary + or —. '

The part (a) of Rule 1 and Rule 4 can be implemented in the following
pseudocode.

if (postfix[il==’+’ || GR(postfix[il) == 2)
{
strcat(res, arg-1);
strcat(res,postfix[il);
strcat(res, arg.2);

}

168 Predrag V. Krtolica and Predrag S. Stanimirovié

The part (b) of Rule 1 and Rule 4 can be implemented in the following
psendocode.

if (postfix[i]l==’-’ || GR(postfix[i]) > 2)

{

strcat(res, arg.1);

strcat(str3,content (postfix[i]));

if (postfix[i-1]. == '+’ || postfix[i-1] == ’-*)
{
strecat(res,"(");
strcat(res, arg. 2);
strcat(res,")");

}

strcat(res, arg 2);

else

}

In the pseudocode listed below this case, using Rules 2 and 3, we make
a string res with the parenthesis insertion only when it is necessary. Note
that we illustrate usage of Rules 2 and 3 only for the case post fiz[i] = * (for
division we have the similar code).
We also note that the value GR(post fiz[i]) is equal to grasp().
if (postfix[i] == ’%?)
if (GR(postfix[i])-GR(postfix[i-1]) == 2)
{ /x Part (i) of Rule 2 %/
op_2=postfix[i-1]; op_l=postfix[i-GR(op2)-2];
strcat(res,arg.1);
strcat(res,postfix[i]);
if (GR(op-2)>2 && is not_unop(op2) &&
!(postfix[i-1] == ’*’ || postfix[i-1] == */?))
/*Part (iii) of Rule 2%/
{ /* postfiz[i — 1] is an operator */
strcat(res,"(");
strcat(res,arg.2);
strcat(res,")");
}
else /% postfiz[t — 1] is not an operator */
strcat(res,arg.2);
} /% End of part (i) of Rule 2 */
else
if (GR(postfix[il)-GR(postfix[i-2]) == 2)
{ /% Part (ii) of Rule 2 */

On some properties of reverse Polish notation 169

op-2=postfix[i-1]; op_i=postfix[i-2];
if (ismnot_unop(postfix[i-2]) &&
I (postfix[i-2]==’%’ || postfix[i-2]=="/’))
/*Part (iii) of Rule 2%/
{
strcat{res,"(");
strcat(res,arg.1);
strcat(res,")");
}
else
strcat(res,arg.1);
strcat(res,postfix[i]);
strcat(res,arg.2);
} /% End of part (ii) of Rule 2 */
else
{ /* Rule 3 */
op-2=postfix[i-1]; op-l=postfix[i-GR(op_2)-2];
if (ismot_unop(op-1) && !(op.1==’%’ || op_1=='/?))
{
strcat(res,"(");
strcat(res,arg.1);
strcat(res,")");
}
else
strcat(res,arg.1);
strcat(res,postfix[i]);
if (ismot_unop(op.2) && !(op2=="%’ || op_2=="/"))
{
strcat(res,"(");
strcat(res,arg.2);
strcat(res,")");
}
else
strcat(res,arg 2);
}

Example 3.1. This example illustrates how this software can eliminate
redundant parenthesis when transforming an expression back into the infix
form, using rules 1, 3, and 4.

You entered the following expression

(CCCx)*2)=y)/ (y+2)))

170 Predrag V. Krtolica and Predrag S. Stanimirovié

This expression in postfix is

xz*y-yz+/

Now, we transform postfix expression back to infix

(xxz-y)/(y+z)

The outmost parenthesis are omitted by virtue of the reverse Polish no-
tation. Applying Rule 4, from (z) * 2z we get z x z. Further, applying Rule
1, from (z % z) — y we get z x z — y. Finally, an application of Rule 3 gives
us necessity of parenthesis in (z * z — y) and (y + 2).

Example 3.2. In this example we show the elimination of the redundant
parenthesis using Rule 2.

You entered the following expression

(x)/(y+z)

This expression in postfix is

xyz+/

Now, we transform postfix expression back to infix
x/ (y+z)

Example 3.3. In the following table we give some more examples for the
elimination of the unnecessary parenthesis.

Tahle 3.1.

Input expression Output expression Applied rules

(@)) ((2x)(=) +1.23)))—437(x) | (s+3)*2*y(z+123) 437/ | 3(0)-(i) 4

(2 9)+ (57— 2 (DA 1T (7—1) | (ery+y—2+2)(=3.144y—4) | _1(a)-(b),3,4

(cos(2#(z—y)+(z+(2%x2))))*(sx(y)xz) |cos(2x(z—y)+o+2%z)sTxy*z 1,3(i1),4

(@flezp(" 2)(y)) = (2+0.5/(2)) feap(z=z)g)+ x5z [20)-(),3()-() 4

sin((ezp((z)+3)(1.2)y) Y cos(y/zw)) |sin(ecp(z+3)/[(1.2fy)) cos(y/z/w) 2(iii),3(i),4

4, The Application and Conclusion

In many applications in artificial intelligence and expert systems there
is a need for the symbolic manipulations with mathematical expressions.
Specifically, the symbolic derivation is included in many problems of the
analysis and the optimization. Symbolic derivation could be done by making
the expression tree, and then by making the corresponding tree derivative.
The building of the expression tree begins with the transforming of the
entered expression to the reverse Polish notation.

On some properties of reverse Polish notation 171

Fig. 4.1. The expression tree for the expression from Example 1.1.

Using previously described extended reverse Polish notation, which in-
cludes any n-ary operator, we get the "hybrid” expression trees as it is
shown in Fig 4.1.

The properties of the reverse Polish, discussed in Section 2, are impor-
tant in the transformation of the postfix expression to the infix one, for the
elimination of unnecessary parenthesis, so the infix expression is as simple
as possible. They give us the criteria when the parenthesis could be omitted
and, yet, preserving the rightful precedence of the operators in the target
infix expression. If there are no such criteria, we should insert parenthesis
around every operand from the stack (simple or compound) when we are
about to apply the operator.

BReferences

[1] Gries, D., Compiler Construction for Digital Computers, John Wiley & Sons, Inc.,
New York, London, Sydney, Toronto, 1971.

[2] Krtolica, P. V. and Stankovi¢, M. S., QADE ~ Program for Qualitative Analysis of
Differential Equations, Proc. of II Math. Conf. in Pristina 1996 (Lj. D. Koéinac,
eds.), Prigtina, 1997, pp. 229-243.

[3] Parker, T. S. and Chua, L. O., INSITE - A Software Toolkit for the Analysis of
Nonlinear Dynamical Systems, Proc. IEEE 75 (August 1987), 1081-1089.

[1] Parker, T. S. and Chua, L. O., Practical Numerical Algorithms for Chaotic Systems,
Springer-Verlag, New York, 1989.

[5] Sedgewick, R., Algorithms in C, Addison-Wesley Publishing Company, Reading, MA,
1990.

[6] Tanenbaum, A. S., Structured Computer Organization, Prentice Hall, Englewood
Cliffs, NI, 1990,

172 Predrag V. Krtolica and Predrag S. Stanimirovié

[7] Tremblay, J.-P. and Sorenson, P.G., The Theory and Practice of Compiler Writing,
McGraw-Hill Book Company, New York, 1985.

Predrag V. Krtolica
Department of Mathematics, Faculty of Sciences and Mathematics, University of Nis

Girila § Metodija 2, 18000 Ni§, Yugoslavia
E-mail: krca@archimed.filfak.ni.ac.yu

Predrag S. Stanimirovic
Department of Mathematics, Faculty of Sciences and Mathematics, University of Nis

Girila i Metodija 2, 18000 Ni§, Yugoslavia
E-mail: pecko@archimed.iiliak.ni.ac.yu

	1.pdf (p.1-32)
	2.pdf (p.33-62)
	3.pdf (p.63-92)
	4.pdf (p.93-122)
	5.pdf (p.123-157)
	6.pdf (p.158-177)

