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MAXIMUM LIKELIHOOD ESTIMATION
FOR THE FAREX(1) MODEL

Biljana C. Popovié! and Miroslav M. Ristié

Abstract. The estimation of the unknown parameters of the model FAREX(1) are
given in this paper. As the likelihood function of the model is not differentiable, the
maximum of this function is determined by means of modified Hooke-Jeeves’ method.
Three different modifications of the method are compared and the results are given
in tables and figures.

1. Introduction

The model FAREX(1) is one of the first order autoregressive time series with
exponential marginal distribution and it has been defined by Maligi¢ [1] as follows:
The stationary sequence of random variables {X,, n € {0,£1,%£2,...}} which is
defined by the equation

X - { aXnp-1 with probability p,
" | BX._1 + e, with probability 1 — p,

is so called FAREX(1) if and only if

0 with probability ((f:jj))f ;
en =14 FE, with probability %7
p(f—a)
(I-p)e?

aF, with probability

where 0 < p<a < B < 1and {E,, n € {0,£1,£2,...}} is the sequence of i.i.d.
random variables with () distribution.
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As the consequence of this definition, X, has the same () marginal distribution

for each n.
Further on we shall suppose that A is known and, for the simplicity, is equal 1.
The likelihood function of the model FAREX(1) was presented by Popovi¢ [2].
Let (X1, X3,...,X,) be a sample of size n from this model. The likelihood function

of the sample is given by

i

flz1,@a,...,20) = e " uz1) H {pﬁ(mk —azp_1) + (a ~p)§5(:rk — Brr_1)+
k=2

+u(zk — BEir-1) [(1 = fe~lzv—Pm=a) 4 Pﬂo;ae_(ik:i:#] } ; (1.1)

where 6(z) is Dirac’s delta function and u(z) is Heviside’s unit function.

In this paper, we shall use the method of maximum likelihood estimation to
estimate unknown parameters o, # and p which define autoregressive time series
FAREX(1). The estimate of & was already presented in [2] and it was given in
analytic manner but, the estimates of # and p will be defined by means of numerical
methods.

Smith [4] has used numerical gradient method to solve the problem of maxi-
mum likelihood estimation. Some modifications of the likelihood function has pro-
duced a differentiable function. This will not be of any use when the parameters of
FAREX(1) are to be discussed.

2. Maximum likelihood estimation

Let us suppose that we have a sample (X1, X3, ...,X,). Popovi¢ [2] has shown

that
4 : Xk
= min
2<k<n X

is a good estimate of . The goodness of fit of & to & has been discussed in [2] also.
So, we shall estimate p and 8 now.

First of all, we shall approximate the values of the function §(z) by the values of
the function é.(z) which follows

Mw):{%; ol <e

0 , otherwise.

If we set this into (1.1), we shall have the function

f*(.I‘l,.’Eg, A En) = e_-’l?lu(g_r;l) H {p(ﬁe(ﬂ:k = CE.’Bk_l) + (Oé - p)-z—ée(ﬂ’}k e ﬁwk_l)-i—

k=12

o
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which will be used as the approximation to the likelihood function of the model
FAREX(1). Applying natural logarithm to both sides of (2.1), we shall have

In f*(z1,22,...,%n) =1n (e’""u(ml)) + g(z1, 22, oy DB

where

g(1,82s -, T 0, P, ) = ) 10 {pﬁe(wk — azk1) + (o - p)gée(mk - frr-1)+
k=2

— o (s —Bzp—1)
+u(zy — BTr-1) [(1 — e ey +Pﬂaz £ = ] } . (2:2)

So, we shall now search for the maximum of (2.2) instead for the maximum of (1.1)-

As the original Hooke-Jeeves’ method converges slowly, we shall use some modifi-
cations of this model which make the convergence to be faster. The first modification
of Hooke-Jeeves’ method (MHJ1) will be as follows:
Compute &. )
Set the initial values for § and 3.
Set the step vector A = (Ap, Ag).
et ¢ which will induce the approximation of é-function.
Set # which will be used as the upper bound of the error.
Compute max = g(1,...,Tn; &, 5, B).
While /A2 4+ A% > 6 do:
a. If there exist s € {—1,1}, 0 < p+ iA, < &, such that

_-q_czg.ﬂ»bwwn-n

g(mlﬂ 2 amn;&'nﬁ‘l' %AP'}B) > g(mla * & .,In;d,ﬁ,ﬁh),

then set p = p + i1dp.
b. If there exist j € {—1,1}, & < § + jAg < 1, such that

g(mla ' -awn;d7ﬁ$ﬁ +.?A,B) > g(wla .. -amn;&aﬁ:ﬁ)s

then set 3 = ,3 + jAg.
c. Else, set A, = A,/2 and Ag = Ag/2.
8. pand 3 will be the maximum likelihood estimators.

Now, for the same reason, to improve the rate of the convergence of MHIJ1, the
method MHJ1 will be modified to MHJ2:

Compute &.

Set the initial values for § and 3.

Set ¢ which will induce the approximation of é-function.
Set @ which will be used as the upper bound of the error.
Compute max = g(z1,- ..,mn;é,ﬁ,[}).

Set change=true.

gbm#\uml—l
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7. While change=true do:
a. Set change=false.
b, Set A = (AP,Aﬁ).
c. While A, > 6 do:
If there exist i € {~1,1},0 < p+ tA, < @, such that

9(81, -y Tn; &+ 10, B) > g(21, ..., 201 6, , )

’

then set § = p+ 1A, and change=true. Else, set A = &y /2.
d. While Az > 8 done:

If there exist j € {—1,1}, & < B+ jAp < 1, such that

g(xla Ty ,v’!,'n;&,ﬁ,,é-f-jﬂg) > g(mla o '1mn;é1ﬁ}ﬁ):

then set 4 = Fei + jAp and change=true. Else, set Ag = Agf2.
8. p and § will be the maximum likelihood estimators.

|
The modification MHJ?2 is inadequate in some way. In fact, it can happen that
p goes far away from the exact value for the certain value of 3, and after the value
of 3 has been solved, p will be near to its exact value. It will be demonstrated in
Section 3.
If we define the modification MHJ3 where we shall first search for maximum
according to 4 and after that according to p, the similar problem can be recognized.
But, in the both cases, the estimators for p and B will approach to é.
The modification MHJ3 follows the algorithm:
Compute é.
Set the initial values for $ and B.
Set € which will induce the approximation of d-function.
Set 6 which will be used as the upper bound of the error.
Compute max = g(zy,...,z,; &, p, B).
Set change=true.
While change=true do:
a. Set change=false.
b. Set A = (A,, Ap).
c. While Ag > 6 do:

If there exist 7 € {-1,1}, & < g + JAg < 1, such that

MR e e

g(mlaaxnaévﬁ’ﬁ"}_jAﬁ) > g(xls--'yxn;&’ﬁ’)é)z

then set 4 = B + 7Ap and change=true. Else, set Ag = Ag/2.
d. While A, > 8 do:

If there exist i € {1, 1L, 0<p+ tA, < @&, such that

9(z1,e s n; 8, p+ 80, B) > g(21, ..., 203 6, B, B),

then set p = p + 1Ap and change=true. Else, set A = Ny 2.
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8. pand 3 will be the maximum likelihood estimators.

All three modifications depend on the value of ¢. The smaller it is, the slower

the convergence is.

3. Examp

le

We shall consider the time series FAREX(1) with true values p = 0.8,a = 0.9 i
B = 0.98. For all three methods & = 0.9, and that will be the estimator for & for
all five samples which we shall consider of sam

respectively.

ple sizes 50, 100, 500, 1000 and 2000

Asitis0<p< aand o < f§ < 1, we can use &/2 and (1 + &)/2, as the initial

values p and J respectively. Further on we shall define vector A =
and the error bound 6 = 0.000001. As we have remarked the rat

(&/4,(1-a)/4)

e of convergence

mostly depends on e. We shall use ¢ = 0.005 and compare the modifications. The

results follow:

TABLE 1. The modification MHJ1.

Sample size P J}
50 0.82567921 | 0.98912258
100 0.82919655 | 0.97999992
500 0.80836887 | 0.97999992
1000 0.80745735 | 0.97999992
2000 0.81301060 | 0.97999992

TABLE 2. The modification MIIJ2.

Sample size P J6;
50 0.82587147| 0.97999878
100 0.82800350 | 0.97423553
500 0.80836887 | 0.97999878
1000 0.80745735 | 0.97999878
2000 0.81301060 | 0.97999878

TABLE 3. The modification MHJ3.

Sample size P I}
50 0.82587147| 0.97999878
100 0.82800350 | 0.97423553
500 0.80836887 | 0.97999878
1000 0.80745735 | 0.97999878
2000 0.81301060 | 0.97999878
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The model defined in this example is illustrated in Figure 1. for the sample sizﬂ
50. The rate of convergence for three modifications is presented in figures 2, 3 and

4.

T B

Ficure 1. Sample simulation of size 50. |
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FIGURE 2. The rate of convergence of three modifications.
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Ficure 3. Convergence of the estimator p.
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FicurE 4. Convergence of the estimator B.

If we set € to be less, for example ¢ = 0.0005, the convergence in all thr
modifications will be slower. On the contrary, if we set € to be greater than ﬁrsi1
proposed, the estimators of the parameters will oscillate. ‘

If we consider FAREX(1) defined for the real values a = 0.04, B = 0.08 ai
p = 0.025, then good results of the estimation procedure will be achieved for ¢ = 0
The less values of ¢ will make the estimation procedure unsuccessful. This conﬁrlf

the importance of the choice of €.
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4. Discussion

For the estimation of the unknown parameters p and (3 we could use some other
nongradient method, Powell’s method for instance. But our efforts were concen-
trated to show what are the possibilities of solving the problem of maximum likeli-
hood estimation of the parameters of the model FAREX(1) which is only one of the
exponentially marginally distributed time series, but almost general one of order
one. The Hooke-Jeeves’ method was chosen because of its simplicity and reliability.

The lack of this method is that the convergence depends too much on the choice of
€.
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