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INEQUALITIES FOR LINEAR COMBINATIONS OF
RANDOM VARIABLES WITH LAPLACE DISTRIBUTION

Snezana Jakovljevié

Abstract. We present some known results of Schur—convexity for distri-
bution functions of linear combination of independent random variables. In
addition, we present some new particular results for the Laplace distribution.

1. Introduction

Let x and y be vectors in R™, and let Z[;], Y[ denote the i-th largest
component of x, y respectively. Then we say that x < y (x is majorized by
y) if (see [6] for details)

k k n n
Z-’E[i]SZy[f],k=1,2,---,n—1, Zfﬂ[i]:z:y[i]-
=1 =1 1

i= =1

A function f of n arguments is Schur-convex on a set A C R" if, for all
X,y € A,
x<y = f(x) < f(y).

A function f is Schur—concave if

x<y = f(x)2f(y)-

A function f is Schur—concave if — f is Schur-convex.
Let f be a Schur—convex function on a convex set A. Then

Tit - +Ta

(1) f(z1,29,...,2,) 2 f(m,m,...,m), m= -

We can apply Schur—convexity to produce useful inequalities that are
sometimes very hard to prove using other methods.
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Consider Xj,..., X, independent random variables with the same dis-
tribution. Let

F(Cl,...,cn;t)=P(61X1+"'+C-,1,ant) C-iz[], i=1,2,...,n

We investigate Schur—convexity of this function with respect to (€155+ «5Cn)s
because it leads to interesting conclusions about the behaviour of tail prob-
abilities for the linear combination of random variables (see [1] or [2]).

For symetric absolutely continuous distributions a general result is known.
Let f be the common density of Xi,..., Xn. Proschan [8] showed that if f
is symetric about zero and log f is concave , then the function

(2) F(cl,...jcn;t):P(61X1+---+chﬂSt)

is Schur—concave in (c1,...,¢,) for every ¢ > 0.

For positive random variables with nonsymetric distributions very little
is known. Bock, Diaconis and Perlman [1] proved some results regarding
Gamma and Weibull distribution. Their results may be summarized as fol-
lows.

Let X; have a Gamma(a, ) density

T :e"'amm“'lﬁ» T r) = 7 .
() @20, f@=0¢<0

By a result in [1], for n = 2, function F defined in (4) is Schur-convex in ¢
if t < afcr + ¢2)/B and is Schur—concave for ¢ > (a + 3)(e1 + c2)/B.

For a general n and the same Gamma distribution, it is proved in [1]
that F is Schur—convex in ¢ in region

st
¢: min ¢; > ,
1<i<n na+1

and this function is Schur—concave in ¢ for

(nex+ 1)(er -+ ca)
3 :

If X1, X, are independent random variables with a Weibull density
f(z) = 182" 1", (2 > 0) f(z) =0, (¢ £0),

then (according to [1]) the function F (for n = 2) is Schur—concave in cif

e ((+5)"

where C(8) = 2(1/F) — 1 for 0 < # < 1 and C(f) = 1for § > 1.

b3
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2. Laplace’s random variables

In this part we give two different proofs for result related to Laplace
distributions. The first proof is simpler then the other one, but the second
gives the method for proving the results of this type (see [1] and [7]).

Theorem 1. Let X and Y be independent random variables with
Laplace distribution, i.e. both variables has the same density

| lz—a
g(m):ﬁe' A

Then the function
Fleg,e0,2) = PleaX + ¥ £2), ea+ea=1, c1,e2>0,

is Schur—convex in (¢, ¢) if z < p and it is Schur—concave in (e, ¢g) if 2 > p.
In the proof of this theorem we require the following simple result.

Let (p(t)—l—l-e — 5% . Then ¢(t) > 0 for ¢ < 0.

Indeed, it is clear that cp(O) = 0. We shall prove that function (%) have
no zeros on interval (—oo,0). The equation ¢(t) = 0 is equivalent to

b2
o

-+

(3) el =

B2
—

The right side in (3) is positive for —2 < t < 2. Therefore, (3) can have
real solutions only on interval (—2,2). In this case (3) is equivalent to

(4) P(t) =log(2 +¢) —log(2—-t)—t=0, -2<t<2.

It is clear that #(0) = 0. Suppose now that the equation ¢(f) = 0 has at

least one solution « € (—2,0]. Then the function 4 defined by (4) would

also have root «, and we would have

$(0) = 9(a) =0.

By Rolle’s theorem this would imply that the derivative ¢’ has one root
on interval (—2,0]. However, this is not possible because root of 7' is 0
only. This means that equation %(0) = 0 does not have solutions on interval
(=2,0].

For t < —2, we have 375 < 1, so that ¢(t) > 0 for ¢ < —2. It follows that
@(t)>0fort <0 because equatlon ©(t) = 0 have no solutions on (—2,0].
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Proof of Theorem 1. It is easy to show that, for —oo < < 00, A > 0,
we have for ¢; # ¢

1 628(2_‘“)/CJA _ cge(z—,u.}/cz)\

2 ? z < ,U,,
(5) F(Cl)cbz) = —(z ,u‘s/clk —c2 e—(z w)/ca A
1= , 22 [
2(c1 — c3)
and
LB gemnn, o p
6) F (1 L z) =3 2 B
U Liz—=p\ _g(pya
Sy ) ff o > .
1 3 ( 3 e i B2
First, we can prove the Theorem 1 by using a result of Proschan [7].
|z — 4l
Indeed, from the density function of X: g(z) = ﬁe_ A fort=z-—upu,
we get
1t
(7) (t)——e A, —o0 <1< o0.

Let X* and Y* be independent random variables with the same density
function (7). Since the common density g(t,s) = Ag Loe(=lt=IsD/X of X* and
Y™ is simmetric about zero and log f is concave, by Proschran’s theorem it
follows that the function

(8) F*(er,e9,u) = P{enX*+ Y™ < u}

2 uferh _ ufca A
1616 CE 3 01#02, ’LL<0,
= 3 5 L. g swfe
cie a1 coe /2
1--L E >0
21 — ¢2) , 1 F 2, U
and
L1\ _f3a-pen, uco,

) F(zg )_{1——(1—;) e~ /A 4> 0.
is Schur—concave in (¢1,...,¢,) for 4 > 0 and Schur—convex for v < 0. If in

(5) we put z — p = u, we get the function F*(ey, ca,u). Now, it follows that
function F is Schur-concave for z — g > 0, i.e. for z > p and Schur—convex
for z < p.
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Now we present our second proof of Theorem 1.

Since ]jm/2 Fle,1 - e1,2) = F(1/2,1/2,2), it suffices to show Schur—
c1—1

convexity (Schur-concavity) of F with respect to (c1,¢2) in the domain ¢q +
2 =1,¢1 # ¢3,01,¢3 > 0.

Let z < p. If we assume that ¢; > ¢, then by ¢1 + ¢z = 1 we have
c1 >1/2and g =1—¢;. For ¢; = ¢, from (5), we get

1 Cze(Z—u}/C/\ —_ (1 — C)ze(z*#)/(l_c)}\
(10) f(c:iz)_a 9¢—1

- To show that function F from (5) is Schur—convex it is enough to show that
f from (10) is nondecreasing in ¢ € (1/2,1].
The derivative of f with respect to ¢ is

9f(e,z) 1 1 ~(z=u)/er [ o2 Z—f Z—p
T = 2 E—QTI)Z € 2¢° — 2¢ — 2c ) + by
£ elemm/-an (zc TR Vel A ”)] |

For 1/2< e < 1and z > 0, the sign of the latter expression is the same
as the sign of

— 1 4 el=w)/ (1= (s=p) /e] dc(c~1)
(BA{ze) =1+ N e e v
Let " i
(12) f= -2 H Z—M:(z—M(c—)’A>O

(1-c)A  eA M1 - ¢)e
By substitution in (11), we get

4
A(z,c):l—}-et—m::p(t).

Now, by (12), we have that A(z,¢) > 0 for z < p, and the function fis
nondecreasing on ¢, which implies Schur—convexity of F for z < p.

Let z > p. We assume, again, that ¢; > ¢z, then by ¢; + ¢3 = 1 we have
c1 > 1/2and ¢ =1 — ¢4. For ¢; = ¢ from (5), we get
(13) F(er,e2,2) = Fer, 1 —eq,2) = Fle;1-¢,2)=1-h(e,2), 2> 0,
where
c2e—(z—p)/ch _ (1 = 6)26—(z—u)/(1—c))«
2¢ -1

hey2]=
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The function F in (13) is Schur—convex (Schur—concave) if and only if the

function h is nonincreasing (nondecreasing) in ¢ € (1/2,1].
The derivative of the function h with respect to ¢ reads:

oh(c,z) 1 —(z—n)/ch 2 z—p Z—p
9e = Be—1F [e 2¢" —2c+ 2¢ T A

|
4 e (zmm)/(=a (20 —2¢% + il e N)] .
|

A A

For 1/2 < ¢ < 1 and z > 0, the sign of the latter expression is the same
as the sign of

9 A de(ec— 1)

— [(z—p)/(1=c)A=(z—p)/cA]

(o) = L t A=+ (e - - /N
Let o § —ai

(13) b= (1-c)A )

By substitution in (14), we get

4
B(Z,C) = + E_t — 2_-}-_t = (,D(—t) i

Now we have that B(z,¢) > 0 for z > p, and the function A is nondecreasing
on ¢, which implies Schur—concavity of F' for z > p. The proof is completed. !

Corollary 1. Let X and Y be independent random variables with double
Exponential distribution, i.e. both variables have the same density g(z) =
-12~e_|$|, —00 < < 00. Then the function

F(ey,e9,2) = P(er X +e2Y < z), aat+eca=1,¢,c2>0,

is Schur—convex on (cy,¢2) if z < 0 and it is Schur—concave on (c1,¢z) if

z > 0.
It follows from Theorem 1, for p = 0 and A = 1.
Corollary 2. For X,Y, ¢1,c; as in the Theorem 1, the following in-

equalities hold:

X
PlaiX +eY <2) 2> P( ;Ygz) ifz<p
PlerX +eY £2) < P(ﬁ;—ngz) ifz>u.

Proof. Immediate by Theorem 1 and the inequality (3).
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Comment. By theorem of Proschan it follows that the function

i

F(Clu---acn;y): P(CIX1+ "'+C71Xn S 2), ci > 07?’: 1)"'anazci: 1
i=
is Schur—convex in (¢q,...,c,) for every z < u and it is is Schur—concave in

(c1,-..,¢,) for every t > p.
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