STAR-MENGER AND RELATED SPACES, II

Ljubiša D. Kočinac

Abstract. Some covering properties of topological spaces which are defined in terms of possibility to choose from a given sequence of covers (of some kind) a cover of the same or a different sort are considered. In particular we are interested in preservation of such properties in the preimage direction under several sorts of continuous mappings. The properties include the classical concepts: the Menger property, Rothberger's property and so on. For example, it is shown that the Menger property (in all finite powers) is an inverse invariant of closed irreducible finite-to-one mappings.

0. Introduction and definitions

In this paper we use the usual topological notation and terminology as in [1] and [4] and assume that all spaces are Hausdorff and all mappings are continuous surjections.

Let \mathcal{A} and \mathcal{B} be collections of subsets of a topological space X. Then the symbol $S_1(\mathcal{A},\mathcal{B})$ denotes the selection hypothesis: for each sequence $(A_n:n\in\mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(B_n:n\in\mathbb{N})$ such that for each $n,\ B_n\in A_n$ and $\{B_n:n\in\mathbb{N}\}$ is an element of \mathcal{B} . The symbol $S_{\text{fin}}(\mathcal{A},\mathcal{B})$ denotes the selection hypothesis that for each sequence $(A_n:n\in\mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n:n\in\mathbb{N})$ such that for each $n\in\mathbb{N}$, B_n is a finite subset of A_n and $\bigcup_{n\in\mathbb{N}} B_n$ is an element of \mathcal{B} (see [8],[14]).

In [9] we introduced the following selection hypotheses:

Received February 23, 1999 2000 Mathematics Subject Classification. 54D20, 54C10. Supported by the Serbian Scientific Foundation, grant N⁰ 04M01 **0.1.** Definition. Let A and B be collections of families of subsets of a space X. Then:

(a) The symbol $S_1^*(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ such that for each n, $\mathcal{U}_n \in \mathcal{U}_n$ and $\{St(\mathcal{U}_n, \mathcal{U}_n) : n \in \mathbb{N}\}$ is an element of \mathcal{B} ;

- (b) The symbol $S_{fin}^*(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n , and $\bigcup_{n \in \mathbb{N}} \{St(\mathcal{V}, \mathcal{U}_n) : \mathcal{V} \in \mathcal{V}_n\} \in \mathcal{B}$;
- (c) Let K be a family of subsets of X. Then we say that X belongs to the class $SS_K^*(A, B)$ if X satisfies the following selection hypothesis: for every sequence $(U_n : n \in \mathbb{N})$ of elements of A there exists a sequence $(K_n : n \in \mathbb{N})$ of elements of K such that $\{St(K_n, U_n) : n \in \mathbb{N}\} \in B$.

When K is the collection of all one-point [resp., finite, compact] subspaces of X we write $SS_1^*(A, B)$ [resp., $SS_{fin}^*(A, B)$, $SS_{comp}^*(A, B)$] instead of $SS_K^*(A, B)$. \square

Here, as usual, for a subset A of a space X and a collection \mathcal{P} of subsets of X, $St(A,\mathcal{P})$ denotes the star of A with respect to \mathcal{P} , that is the set $\bigcup \{P \in \mathcal{P} : A \cap P \neq \emptyset\}$; for $A = \{x\}, x \in X$, we write $St(x,\mathcal{P})$ instead of $St(\{x\},\mathcal{P})$.

Let us introduce now the following definition:

0.2. Definition. Let \mathcal{A} and \mathcal{B} be collections of subsets of a space X and let \mathcal{K} be a family of subsets of X. Then we say that X belongs to the class $\mathbf{NSS}_{\mathcal{K}}^*(\mathcal{A},\mathcal{B})$ if X satisfies the following selection hypothesis: for every sequence $(\mathcal{U}_n:n\in\mathbb{N})$ of elements of \mathcal{A} there exists a sequence $(K_n:n\in\mathbb{N})$ of elements of \mathcal{K} such that for each neighborhood O_n of $K_n, n\in\mathbb{N}$, we have $\{St(O_n,\mathcal{U}_n):n\in\mathbb{N}\}\in\mathcal{B}$.

When K is the collection of all one-point [resp., finite, compact] subspaces of X we write $NSS_1^*(A, B)$ [resp., $NSS_{fin}^*(A, B)$, $NSS_{comp}^*(A, B)$] instead of $NSS_K^*(A, B)$. \square

Note that all the selection hypotheses mentioned above have the games (of lenght ω) for two players, ONE and TWO, associated with them (see [14], [15], [9]). For example, the game $G_{\text{fin}}(\mathcal{A}, \mathcal{B})$ corresponding to the selection hypothesis $S_{\text{fin}}(\mathcal{A}, \mathcal{B})$ is played as follows: in the n-th round ONE chooses an element $A_n \in \mathcal{A}_n$ and TWO responds choosing a finite $B_n \subset A_n$. TWO wins the game if $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$; otherwise, ONE wins.

The game G associated with the selection hypothesis $NSS_{\mathcal{K}}^*(\mathcal{A}, \mathcal{B})$ is played in the following way: in the n-th round ONE chooses an element $A_n \in \mathcal{A}_n$ and TWO responds by choosing an element $K_n \in \mathcal{K}$. TWO wins

if for each neighborhood O_n of K_n , $n \in \mathbb{N}$, $\{St(O_n, \mathcal{U}_n) : n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

In this paper \mathcal{A} and \mathcal{B} will be the following collections of subsets of a space (X, \mathcal{T}) :

- \mathcal{O} the collection of open covers of X;
- C the collection of (not necessarily open) covers of X;
- Ω the collection of ω -covers of X. An open cover \mathcal{U} of X is an ω -cover [5] if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U} ;
- Γ the collection of γ -covers of X. An open cover \mathcal{U} of X is a γ -cover [5] if it is infinite and for every $x \in X$ the set $\{U \in \mathcal{U} : x \notin U\}$ is finite;
 - \mathcal{D} the collection of $\mathcal{U} \subset \mathcal{T}$ whose union is dense in X;
 - \mathcal{F} the collection of $\mathcal{U} \subset \mathcal{T}$ for which $X = \bigcup \{\overline{\mathcal{U}} : \mathcal{U} \in \mathcal{U}\};$
 - \mathcal{I} the collection of $\mathcal{U} \subset \mathcal{P}(X)$ such that $X = \bigcup \{ \operatorname{int}(\mathcal{U}) : \mathcal{U} \in \mathcal{U} \}$.

Recall that a space X is said to have the Menger property [11], [6], [7] (resp. the Rothberger property [13]) if the selection hypothesis $S_{fin}(\mathcal{O}, \mathcal{O})$ (resp. $S_1(\mathcal{O}, \mathcal{O})$) is true for X (see also [12], [8], [14]).

A space X is said to have: (1) the star-Rothberger property (SR), (2) the star-Menger property (SM), (3) the strongly star-Rothberger property (SSR), (4) the strongly star-Menger property (SSM), (5) strongly star-K-Menger property (SS_KM) if it satisfies the selection hypothesis: (1') $S_1^*(\mathcal{O}, \mathcal{O})$, (2') $S_{\text{fin}}^*(\mathcal{O}, \mathcal{O})$, (3') $SS_1^*(\mathcal{O}, \mathcal{O})$, (4') $SS_{\text{fin}}^*(\mathcal{O}, \mathcal{O})$, (5') $SS_{\text{comp}}^*(\mathcal{O}, \mathcal{O})$ (see [9]).

We shall say that X has: (i) the nearly strongly star-Menger property (NSSM), (ii) the nearly strongly star-Rothberger property (NSSR), (iii) the nearly strongly star-K-Menger property (NSS $_K$ M) if it satisfies:

(i) $NSS_{fin}^*(\mathcal{O}, \mathcal{O})$, (ii) $NSS_1^*(\mathcal{O}, \mathcal{O})$, (iii) $NSS_{comp}^*(\mathcal{O}, \mathcal{O})$.

A continuous mapping $f: X \to Y$ is said to be *irreducible* if the only closed subset F of X satisfying f(F) = Y is F = X. f is *finite-to-one* if for each $y \in Y$ the set $f^{\leftarrow}(y)$ is finite in X. For $A \subset X$ we denote by $f^{\#}(A)$ the set $\{y \in Y : f^{\leftarrow}(y) \subset A\} = Y \setminus f(X \setminus U)$.

In this paper we shall need the following simple (but useful) lemma.

Lemma A. If $f: X \to Y$ is a closed irreducible finite-to-one mapping and \mathcal{U} is an ω -cover of X, then $f^{\#}(\mathcal{U}) := \{f^{\#}(\mathcal{U}) : \mathcal{U} \in \mathcal{U}\}$ is an ω -cover of Y.

Proof. Because f is closed irreducible for each $U \in \mathcal{U}$, $f^{\#}(U) \neq Y$ and all elements of $f^{\#}(\mathcal{U})$ are nonempty open sets. These elements form an ω -cover of Y. Indeed, let F be a finite subset of Y. The set $f^{\leftarrow}(F)$ is finite in X;

take a set $U \in \mathcal{U}$ containing it. So, for each $y \in F$ we have $f^{\leftarrow}(y) \subset U$ which means $y \in f^{\#}(U)$ and consequently $F \subset f^{\#}(U)$. \square

We shall also use the following result from [1;VI.110]:

Lemma B. If $f: X \to Y$ is a closed irreducible mapping and U is an open subset of X, then $f(\overline{U}) = \overline{f^\#(U)}$ (and $\overline{U} = \overline{f^+f^\#(U)}$). \square

1. Remarks

We give the following diagram which gives relationships between some here defined properties. Recall that a space X is said to be $strongly\ starcompact\ [starcompact\ [starcompact\]\ (see [3], [10])\ if for every open cover <math>\mathcal U$ of X there is a finite subset A of X [a finite $\mathcal V\subset \mathcal U$] such that $St(A,\mathcal U)=X\ [St(\cup\mathcal V,\mathcal U)=X\].$

Let us note that each property from the diagram (and also NSSR) is an invariant of continuous mappings.

5	SR	\Rightarrow	$^{\downarrow}_{ m SM}$		
Ĩ	\uparrow		介		
Ï	\uparrow		$\mathrm{SS}_K\mathrm{M}$	\Longrightarrow	${\rm NSS}_K{\rm M}$
Ī	\uparrow		\uparrow		\uparrow
Ī	SSR	\Longrightarrow	SSM	\Rightarrow	NSSM
	1	1	1		
Î	Rothberger	\Rightarrow	Menger	\Longrightarrow	Lindelöf
↑		7	\uparrow		

 $starcompact \Leftarrow strongly starcompact \Leftarrow compact$

Diagram 1

Considering the definition of SSM spaces it might expect that the following natural definition would give a new concept: A space X is extra strongly star-Menger if for each sequence $\{\mathcal{U}_n:n\in\mathbb{N}\}$ of open covers of X there is a finite set F such that $X=\bigcup_{n\in\mathbb{N}}St(F,\mathcal{U}_n)$. (So, we require all finite sets in the definition of SSM spaces to be equal to the same set F.) But this gives nothing new because of:

1.1. Proposition. A space X is extra SSM if and only if it is strongly starcompact.

Proof. Let X be extra strongly star-Menger and let \mathcal{U} be an open cover of X. Apply the assumption to the sequence $(\mathcal{U}_n \equiv \mathcal{U} : n \in \mathbb{N})$ and find a finite set $F \subset X$ with $St(F,\mathcal{U}) = X$.

Conversely, if X is strongly star compact and $(\mathcal{U}_n : n \in \mathbb{N})$ is a sequence of open covers of X, then for a fixed $k \in \mathbb{N}$ there is a finite F such that $St(F,\mathcal{U}_k) = X$. Consequently, $X = \bigcup_{n \in \mathbb{N}} St(F,\mathcal{U}_n)$. \square

Let us mention two results which show that in some classes of spaces some of the properties in the diagram coincide. The second result is also a new characterization of the Menger property for subsets of the real line. We omit the (simple) proof of the first assertion.

Recall that a space X is mesocompact if for each open cover \mathcal{U} of X there is an open refinement \mathcal{V} which is compact-finite (in the sense that every compact subset of X intersects only finitely many members of \mathcal{V}).

- 1.2. Theorem. A mesocompact space X is SSM if and only if it is SS_KM .
- 1.3. Theorem. For a paracompact (Hausdorff) space X the following are equivalent:
 - (a) X is a nearly strongly star-Menger space;
 - (b) X is a strongly star-Menger space;
 - (c) X is a strongly star-K-Menger space;
 - (d) X is a star-Menger space;
 - (e) X is a Menger space.

Proof. We have to prove only that (a) implies (b), because $(b) \Longrightarrow (a)$ is obvious and the other equivalences are shown in [9]. Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a sequence of open covers of a paracompact nearly strongly star-Menger space X. For every $n \in \mathbb{N}$ let \mathcal{V}_n be an open locally finite refinement of \mathcal{U}_n . Since X is nearly strongly star-Menger there exists a sequence $\{F_n : n \in \mathbb{N}\}$ of finite subsets of X witnessing for $(\mathcal{V}_n : n \in \mathbb{N})$ that fact. For each n there is a neighborhood O_n of F_n which meets only finitely many elements of \mathcal{V}_n . Pick a point from each of these intersections and denote by K_n the set of all such points. We get a finite subset of X satisfying $St(K_n, \mathcal{V}_n) = St(O_n, \mathcal{V}_n)$ so that we have $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{V}_n) = \bigcup_{n \in \mathbb{N}} St(O_n, \mathcal{V}_n) = X$. For every $V \in \mathcal{V}_n$ let U_V be a member of \mathcal{U}_n such that $V \subset U_V$. Then $\bigcup_{n \in \mathbb{N}} St(K_n, \mathcal{U}_n) = X$ which means that X is a strongly star-Menger space. \square

So, for paracompact spaces we have

 $SSR \Longrightarrow NSSR \Longrightarrow NSSM \Longleftrightarrow SSM \Longleftrightarrow SS_KM \Longleftrightarrow SM \Longleftrightarrow M.$

2. $S_{fin}(A, B)$

Very simple examples show that the Menger property is not an inverse invariant of continuous irreducible mappings. For instance, take any bijection $f: D(c) \to [0,1]$. But we have:

2.1. Theorem. If $f: X \to Y$ is a closed irreducible finite-to-one mapping from a space X onto a Menger space Y, then X is also a Menger space.

Proof. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of open covers of X. Let $\mathbb{N}=N_1\cup N_2\cup \cdots \cup N_n\cup \cdots$ be a partition of \mathbb{N} into countably many pairwise disjoint infinite subsets. For every $n\in\mathbb{N}$ let \mathcal{V}_n be the set of elements of the form $U_{n_1}\cup \cdots \cup U_{n_k}, \ k\in\mathbb{N}, \ n_1< n_2<\cdots < n_k\in N_n, \ U_{n_i}\in \mathcal{U}_{n_i}$ for all $i=1,2,\ldots,k$. The sequence $(\mathcal{V}_n:n\in\mathbb{N})$ is a sequence of ω -covers of X. By Lemma A $(f^\#(\mathcal{V}_n))_{n\in\mathbb{N}}$ is a sequence of open (ω) covers of Y. Using the fact that Y is in $\mathbf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$ choose for each $n\in\mathbb{N}$ a finite set $\mathcal{W}_n\subset\mathcal{V}_n$ such that $\bigcup_{n\in\mathbb{N}}\{f^\#(\mathcal{W}): \mathcal{W}\in\mathcal{W}_n\}$ is an open cover of Y. Then one can easily see that $X=\bigcup_{n\in\mathbb{N}}\bigcup f^\leftarrow f^\#(\mathcal{W}_n)\subset\bigcup_{n\in\mathbb{N}}\bigcup \mathcal{W}_n$. But elements of \mathcal{W}_n 's may be augmented to a sequence of finite subsets of \mathcal{U}_n 's witnessing for $(\mathcal{U}_n)_{n\in\mathbb{N}}$ that X is in $\mathbf{S}_{\mathrm{fin}}(\mathcal{O},\mathcal{O})$. \square

2.2. Example. The Menger property is not an inverse invariant of open finite-to-one mappings.

Let $X_1 = [0, \omega_1)$, $X_2 = [0, \omega_1]$, $X = X_1 \oplus X_2$, $Y = X_2$ and let $f: X \to Y$ be the mapping sending each point of X into the naturally corresponding point of Y. Then f is an open finite-to-one mapping, Y is a Menger space (because it is compact), but X is not Menger (because it is not Lindelöf). Let us mention that X is an SSM space which is not metacompact, because by Theorem 2.4 in [9] a metacompact SSM space is a Menger space. \square

2.3. Example. The Menger property is not an inverse invariant of perfect mappings.

Let $X = [0, \omega_1) \times [0, \omega_1]$, $f : X \to [0, \omega_1]$. Then f is a perfect mapping onto a Menger space $[0, \omega_1]$, but X is not a Menger space. \square

Using the reasoning similar to those from the proof of Theorem 2.1 one proves:

2.4. Theorem. $S_{fin}(\Omega,\Omega)$ is an inverse invariant of closed irreducible finite-to-one mappings. \square

We shall mention now some consequences of this theorem and Theorem 2.1. For this we need some notation and terminology. For a Tychonoff space X $C_p(X)$ denotes the space of all continuous real-valued functions

on X with the pointwise topology. Recall that a space X has countable fan tightness if for each sequence $(A_n; n \in \mathbb{N})$ of subsets of X and each point $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ there is a sequence $(B_n : n \in \mathbb{N})$ such that for each n, B_n is a finite subset of A_n and $x \in \overline{\bigcup_{n \in \mathbb{N}} B_n}$ [2]. The symbol

$$\mathcal{A} \to [\mathcal{B}]_2^2$$

denotes the statement; for each member $A \in \mathcal{A}$ and for every coloring $f: [A]^2 \to \{1,2\}$ there are $i \in \{1,2\}$, a $B \subset A$ in \mathcal{B} and a finite-to-one function $g: B \to \omega$ with: for all x and y in B, $g(x) \neq g(y)$ implies $f(\{x,y\}) = i$ (see [14]).

2.5. Corollary. Let X and Y be Tychonoff spaces and let $f: X \to Y$ be a closed irreducible finite-to-one mapping. If Y has any of the properties (a) - (d) below so does X:

(a) Y has the Menger property in all finite powers;

(b) $C_p(Y)$ has countable fan tightness;

(c) ONE does not have a winning strategy in the game $G_{fin}(\mathcal{O}, \mathcal{O})$ (played on Y);

(d) Y satisfies $\Omega \to [\Omega]_2^2$.

Proof. (a) By Theorem 3.9 in [8] Y^n has the Menger property for all $n \in \mathbb{N}$ if and only if Y is in $\mathbf{S_{fin}}(\Omega, \Omega)$. By Theorem 2.4 X is also in $\mathbf{S_{fin}}(\Omega, \Omega)$ and thus for all $n \in \mathbb{N}$ X^n has the Menger property.

(b) In [2], it was shown that $C_p(X)$ has countable fan tightness if and

only if X^n has the Menger property for each positive integer n.

(c) This is a consequence of Theorem 2.4 and a result of Hurewicz (see Theorem 4 in [15]): Y has the Menger property if and only if ONE does not have a winning strategy in $G_{\text{fin}}(\mathcal{O}, \mathcal{O})$.

(d) By Theorem 6.2 in [8] (d) is equivalent to the assertion Y is in

 $S_{fin}(\Omega,\Omega)$. \square

Call a space X almost Menger [almost Rothberger] if it satisfies the selection hypothesis $\mathbf{S}_{fin}(\mathcal{O},\mathcal{F})$ [$\mathbf{S}_1(\mathcal{O},\mathcal{F})$].

It is not difficult to prove (see the proof of Theorem 3.4):

2.6. Theorem. The almost Menger property is an inverse invariant of closed irreducible finite-to-one mappings. \Box

We also have:

2.7. Theorem. $S_{fin}(\mathcal{D}, \mathcal{D})$ is preserved in the preimage direction under closed irreducible mappings. \square

2.8. Remark. This class (and also the class $S_1(\mathcal{D}, \mathcal{D})$) is not an inverse invariant of open mappings. The Souslin line S belongs to the class $S_1(\mathcal{D}, \mathcal{D})$ and consequently to $S_{\text{fin}}(\mathcal{D}, \mathcal{D})$. But it is well known that S^2 is not ccc and thus $S^2 \notin S_{\text{fin}}(\mathcal{D}, \mathcal{D})$. \square

3.
$$S_1(A,B)$$

3.1. Theorem. If $f: X \to Y$ is a closed irreducible mapping from a space X onto a space Y in $S_1(\mathcal{C}, \mathcal{J})$, then X is in $S_1(\mathcal{O}, \mathcal{F})$.

Proof. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of open covers of X. Then $(f(\mathcal{U}_n):n\in\mathbb{N})$ is a sequence of covers of Y. Since Y satisfies $S_1(\mathcal{C},\mathcal{J})$, for each $n\in\mathbb{N}$ there is an element $U_n\in\mathcal{U}_n$ such that $Y=\bigcup_{n\in\mathbb{N}}\inf f(U_n)$. We are going to prove $X=\bigcup_{n\in\mathbb{N}}\overline{U_n}$.

Let $x \in X$. Then $y = f(x) \in \operatorname{int} f(U_k)$ for some positive integer k. Let us prove $x \in \overline{U_k}$. Suppose $x \notin \overline{U_k}$. Let G be a neighborhood of x such that $G \cap U_k = \emptyset$. We have $f^{\#}(G) \cap f(U_k) = \emptyset$. On the other hand, by Lemma B, $y = f(x) \in \overline{f^{\#}(G)}$ and consequently $y \in \overline{f^{\#}(G)} \cap \operatorname{int} f(U_k)$; this implies $f^{\#}(G) \cap f(U_k) \neq \emptyset$ and we have a contradiction. Therefore, $x \in \overline{U_k}$, i.e. X is in $S_1(\mathcal{O}, \mathcal{F})$. \square

3.2. Theorem. If $f: X \to Y$ is a closed irreducible mapping from a space X onto a space Y in $S_1(\mathcal{F}, \mathcal{D})$, then X is also in $S_1(\mathcal{F}, \mathcal{D})$.

Proof. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of elements from \mathcal{F} . Then, according to Lemma B, $(f^{\#}(\mathcal{U}_n):n\in\mathbb{N})$ is a sequence of elements of \mathcal{F} in Y. Applying the fact that Y satisfies $S_1(\mathcal{F},\mathcal{D})$, for each $n\in\mathbb{N}$ take an element $U_n\in\mathcal{U}_n$ such that $Y=\overline{\bigcup_{n\in\mathbb{N}}f^{\#}(U_n)}$. Then, again by Lemma B and using the fact that f is closed, it follows

$$X = f^{\leftarrow}(\overline{\bigcup_{n \in \mathbb{N}} f^{\#}(U_n)} = \overline{\bigcup_{n \in \mathbb{N}} f^{\leftarrow} f^{\#}(U_n)} \subset \overline{\bigcup_{n \in \mathbb{N}} U_n}.$$

This witnesses membership of X to the class $S_1(\mathcal{F}, \mathcal{D})$. \square

The following two statements show that both the Rothberger property and almost Rothberger property are inverse invariants of closed irreducible finite-to-one mappings. Since the proofs are quite similar we show only the second assertion.

- **3.3.** Theorem. Let f be a closed irreducible finite-to-one mapping from a space X onto a space Y. Then X is in the same class as Y in the following cases:
 - (1) Y is a Rothberger space;
 - (2) Y is in $S_1(\Omega, \Omega)$.
 - (3) Y is in $S_1(\mathcal{O}, \mathcal{D}) \equiv S_1(\Omega, \mathcal{D})$. \square

3.4. Theorem. If f is a closed irreducible finite-to-one mapping from a space X onto an almost Rothberger space Y (i.e. $Y \in S_1(\mathcal{O}, \mathcal{F})$), then X is also almost Rothberger.

Proof. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of open covers of X. Working as in the proof of Theorem 2.1 construct the sequence $(\mathcal{V}_n:n\in\mathbb{N})$ of ω -covers of X. By Lemma A $(f^\#(\mathcal{V}_n))_{n\in\mathbb{N}}$ is a sequence of open $(\omega$ -) covers of Y. Using the fact that Y is in $S_1(\mathcal{O},\mathcal{F})$ choose for each $n\in\mathbb{N}$ a set $V_n\in\mathcal{V}_n$ such that $Y=\bigcup_{n\in\mathbb{N}}\overline{f^\#(V_n)}$. Then, as can be easily verified, $X=\bigcup_{n\in\mathbb{N}}\overline{V_n}$. But each V_n is of the form $U_{n_1}\cup\cdots\cup U_{n_k}$, $k\in\mathbb{N}$, $n_1< n_2<\cdots< n_k\in N_n$, $U_{n_i}\in\mathcal{U}_{n_i}$ for all $i=1,2,\ldots,k$ (see the proof of Theorem 2.1). So, elements V_n will give a sequence of elements of \mathcal{U}_n 's (one from each) which guarantees that X is in $S_1(\mathcal{O},\mathcal{F})$. \square

Sets satisfying the selection hypothesis $S_1(\Omega, \Gamma)$ are called γ -sets; every γ -set has Rothberger's property [5].

3.5. Theorem. γ -sets are preserved in the preimage direction by closed irreducible finite-to-one mappings.

Proof. Let $f: X \to Y$ be a closed irreducible mapping from a space X onto a γ -set Y and let $(\mathcal{U}_n)_{n \in \mathbb{N}}$ be a sequence of ω -covers of X. Then $(f^{\#}(\mathcal{U}_n))_{n \in \mathbb{N}}$ is a sequence of ω -covers of Y so that there are $f^{\#}(U_n) \in f^{\#}(\mathcal{U}_n)$, $n \in \mathbb{N}$, such that $\{f^{\#}(U_n): n \in \mathbb{N}\}$ is a γ -cover of Y. We prove that $\{U_n: n \in \mathbb{N}\}$ is a γ -cover of X. Let $x \in X$. Then f(x) belongs to all but finitely many elements of $\{f^{\#}(U_n): n \in \mathbb{N}\}$, say $f^{\#}(U_{n_1}), \ldots, f^{\#}(U_{n_k})$. Clearly, x belongs to all the sets U_n for $n \notin \{n_1, \ldots, n_k\}$. \square

4. Star-covering properties

4.1. Example. The SSM property is not an inverse invariant of irreducible finite-to-one mappings.

Let $T = [0, \omega_1] \times [0, \omega] \setminus \{(\omega_1, \omega)\}$ be the Tychonoff plank. Let X denote the Dieudonné plank: the underlying set is T and open sets in X are all singletons of $[0, \omega_1) \times [0, \omega)$ and all sets of the form $U_{\alpha}(\beta) = \{(\beta, \gamma) : \alpha < \gamma \leq \omega\}$ and $V_{\alpha}(\beta) = \{(\gamma, \beta) : \alpha < \gamma \leq \omega_1\}$ (see [16]). It is known that X is metacompact non-Lindelöf space, hence X is not a Menger space. Since the Dieudonné topology is finer than the Tychonoff topology the identity mapping $i: X \to T$ is continuous, and obviously irreducible finite-to-one. It was shown in [9] that T is an SSM space. But X cannot be such a space because otherwise, by Theorem 2.4 in [9] which states that every metacompact SSM space is a Menger space, it would be a Menger space. \square

- **4.2.** Example. There is a consistent example of an SSM space X whose product with a compact space Y is not SSM [9]. So, the SSM property is not an inverse invariant of perfect mappings. \square
- **4.3.** Theorem. Let $f: X \to Y$ be a closed irreducible mapping. If Y is in $SS^*_{fin}(\text{int}\mathcal{C}, \Omega)$, then X is in $SS^*_{fin}(\overline{\mathcal{O}}, \Omega)$.

Proof. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of open covers of X. Then the sequence $(f(\mathcal{U}_n))_{n\in\mathbb{N}}$ is a sequence of covers (from \mathcal{C}) of Y. Apply the fact $Y \in SS^*_{fin}(\operatorname{int}\mathcal{C},\Omega)$ and find a sequence $(B_n)_{n\in\mathbb{N}}$ of finite subset of Y such that $\{St(B_n,\operatorname{int} f(\mathcal{U}_n)): n\in\mathbb{N}\}$ is an ω -cover of Y. We shall prove that $\{St(f^{\leftarrow}(B_n),\overline{\mathcal{U}_n}): n\in\mathbb{N}\}$ is an ω -cover of X.

Let K be a finite subset of X. Then $f(K) \subset St(B_m, \inf f(\mathcal{U}_m))$ for some $m \in \mathbb{N}$. Working similarly as in the proof of the corresponding part of Theorem 3.1 (see also the proof of Theorem 4.4) one proves $K \subset St(f^{\leftarrow}(B_m), \overline{\mathcal{U}_m})$

which is enough to finish the proof. \Box

4.4. Theorem. Let $f: X \to Y$ be a closed irreducible finite-to-one mapping. If Y is in $SS^*_{fin}(\Omega, \mathcal{O})$ (resp. $SS^*_{fin}(\Omega, \Omega)$, $SS^*_1(\Omega, \Omega)$), then X is in the same class.

Proof. We consider only the first class. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a sequence of ω -covers of X. Then the sequence $(f^{\#}(\mathcal{U}_n))_{n\in\mathbb{N}}$ is a sequence of ω -covers of Y. Apply the fact $Y \in \mathbf{SS}^*_{\mathrm{fin}}(\Omega, \mathcal{O})$ and choose for each $n \in \mathbb{N}$ a finite set $B_n \subset Y$ such that $\bigcup_{n\in\mathbb{N}} St(B_n, f^{\#}(\mathcal{U}_n)) = Y$. It is enough now to prove $X = \bigcup_{n\in\mathbb{N}} St(f^{\leftarrow}(B_n), \mathcal{U}_n)$.

Let $x \in X$. Then $y = f(x) \in St(B_k, f^{\#}(\mathcal{U}_k))$ for some $k \in \mathbb{N}$. So, there is a $U \in \mathcal{U}_k$ such that $y \in f^{\#}(U)$ and $f^{\#}(U) \cap B_k \neq \emptyset$. Then $x \in f^{\leftarrow}(y) \subset f^{\leftarrow}f^{\#}(U) \subset U$ and $U \cap f^{\leftarrow}(B_k) \supset f^{\leftarrow}f^{\#}(U) \cap f^{\leftarrow}(B_k) = f^{\leftarrow}(f^{\#}(U) \cap B_k) \neq \emptyset$. Thus $x \in St(f^{\leftarrow}(B_k), \mathcal{U}_k)$. \square

4.5. Theorem. The classes $S_{fin}^*(\Omega, \mathcal{O})$, $S_1^*(\Omega, \mathcal{O})$ and $S_1^*(\Omega, \Omega)$ are inverse invariants of closed irreducible finite-to-one mappings.

Proof. We consider only the first class. Let $Y \in S^*_{fin}(\Omega, \mathcal{O})$ and let $f: X \to Y$ be a closed irreducible mapping. Let $(\mathcal{U}_n)_{n \in \mathbb{N}}$ be a sequence of ω -covers of X. For the sequence $(f^{\#}(\mathcal{U}_n))_{n \in \mathbb{N}}$ of ω -covers of Y there is a sequence $(f^{\#}(\mathcal{V}_n))_{n \in \mathbb{N}}$ such that for each n, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $Y = \bigcup_{n \in \mathbb{N}} St(\cup \mathcal{V}_n, \mathcal{U}_n)$. We want to prove $X = \bigcup_{n \in \mathbb{N}} St(\cup \mathcal{V}_n, \mathcal{U}_n)$.

Take a point $x \in X$. Then $y = f(x) \in St(\cup f^{\#}(\mathcal{V}_m), \mathcal{U}_m)$ for some $m \in \mathbb{N}$, i.e. y belongs to some $f^{\#}(U) \in f^{\#}(\mathcal{U}_m)$ such that $f^{\#}(U)$ meets a $f^{\#}(V)$ in $f^{\#}(\mathcal{V}_m)$. It follows that $U \cap V \neq \emptyset$ and since $x \in U$ we have $x \in St(\cup \mathcal{V}_m, \mathcal{U}_m)$. \square

4.6. Theorem. Let $f: X \to Y$ be a closed irreducible finite-to-one mapping from a space X onto a space Y in $NSS^*_{comp}(\Omega, \mathcal{O})$ (resp. $NSS^*_{fin}(\Omega, \mathcal{O})$). Then X is also in $NSS^*_{comp}(\Omega, \mathcal{O})$ (resp. $NSS^*_{fin}(\Omega, \mathcal{O})$).

Proof. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of ω -covers of X. Then, by Lemma A, $(f^{\#}(\mathcal{U}_n) : n \in \mathbb{N})$ is a sequence of ω -covers of Y. So, there is a sequence $(K_n : n \in \mathbb{N})$ of compact subspaces of Y witnessing for $(f^{\#}(\mathcal{U}_n) : n \in \mathbb{N})$ that Y is in $\mathbf{NSS^*_{comp}}(\Omega, \mathcal{O})$. Consider the sequence $(f^{\leftarrow}(K_n) : n \in \mathbb{N})$ of compact subspaces of X. We are going to prove that this sequence witnesses for $(\mathcal{U}_n : n \in \mathbb{N})$ that X is in $\mathbf{NSS^*_{comp}}(\Omega, \mathcal{O})$.

Let $(O_n : n \in \mathbb{N})$ be a sequence of neighborhoods of $f^{\leftarrow}(K_n)$, $n \in \mathbb{N}$. Since f is closed for every $n \in \mathbb{N}$ there is a neighborhood V_n of K_n such that $f^{\leftarrow}(V_n) \subset O_n$. Since $Y = \bigcup_{n \in \mathbb{N}} St(V_n, f^{\#}(\mathcal{U}_n))$ we have (as can be easily checked)

$$X = f^{\leftarrow}(Y) = \bigcup_{n \in \mathbb{N}} St(f^{\leftarrow}(V_n), f^{\leftarrow}f^{\#}(\mathcal{U}_n)) \subset \bigcup_{n \in \mathbb{N}} St(O_n, \mathcal{U}_n),$$

i.e. X belongs to the class $NSS^*_{comp}(\Omega, \mathcal{O})$. The second assertion is shown quite similarly.

References

- A.V. Arhangel'skii, V.I. Ponomarëv, Fundamentals of General Topology: problems and exercises, Nauka, Moskva, 1974 (In Russian).
- [2] A.V. Arhangel'skii, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Doklady 33 (1986), 396-399.
- [3] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991), 71–103.
- [4] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [5] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161.
- [6] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421.
- [7] W. Hurewicz, Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193-204.
- [8] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241-266.
- [9] Lj. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421-431.
- [10] M.V. Matveev, A survey on star-covering properties, Topology Atlas, Preprint No. 330 (1998).
- [11] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberischte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421-444.
- [12] A.W. Miller, D.H. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.

[13] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55.

[14] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.

[15] M. Scheepers, Combinatorics of open covers (III): C_p(X) and games, Fund. Math. 152 (1997), 231-254.

[16] L.A. Steen, J.A. Seebach, Jr., Counterexamples in Topology, Springer-Verlag, New York Inc., 1978.

Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš Ćirila i Metodija 2, 18000 Niš, Yugoslavia E-mail: lkocinac@ptt.yu