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STAR-MENGER. AND RELATED SPACES, II
Ljubisa D. Koéinac

Abstract. Some covering properties of topological spaces which are defined
in terms of possibility to choose from a given sequence of covers (of some
kind) a cover of the same or a different sort are considered. In particular
we are interested in preservation of such properties in the preimage direction
under several sorts of continuous mappings. The properties include the clas-
sical concepts: the Menger property, Rothberger’s property and so on. For
example, it is shown that the Menger property (in all finite powers) is an
inverse invariant of closed irreducible finite-to-one mappings.

0. Introduction and definitions

In this paper we use the usual topological notation and terminology as in

(1] and [4] and assume that all spaces are Hausdorff and all mappings are
continuous surjections.

Let A and B be collections of subsets of a topological space X. Then
the symbol S1(A, B) denotes the selection hypothesis: for each sequence
(An : n € N) of elements of A there exists a sequence (B, : n € N) such
that for each n, B, € A, and {B, : n € N} is an element of B. The
symbol Sgy, (A, B) denotes the selection hypothesis that for each sequence
(An : n € N) of elements of A there is a sequence (B, : n € N) such that for
each n € N, B, is a finite subset of A, and Unen Br is an element of B (see

(8], [14]).

In [9] we introduced the following selection hypotheses:
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0.1. Definition. Let .A and B be collections of families of subsets of a space
X. Then:

(a) The symbol S;(.A, B) denotes the selection hypothesis that for each
sequence (U, : n € N) of elements of .A there exists a sequence (U, : n € N)
such that for each n, U, € U, and {St(U,,U,) : n € N} is an element of B;

(b) The symbol S (A,B) denotes the selection hypothesis: for each
sequence (U : n € N) of elements of A there is a sequence (V,, : » € N) such
that for each n € N, V, is a finite subset of U,, and UnentSt(Viln) : V €
Vn} € B;

(c) Let K be a family of subsets of X. Then we say that X belongs to the
class S5k (A, B) if X satisfies the following selection hypothesis: for every
sequence (Un : n € N) of elements of A there exists a sequence (K, : n € N)
of elements of K such that {St(K,,U,) : n € N} € B.

When K is the collection of all one-point [resp., finite, compact] sub-
spaces of X we write S5](A, B) [resp., 85, (A, B), SS%,mp(A, B)] instead
of SS§(A,B). O

Here, as usual, for a subset A of a space X and a collection P of subsets
of X, St(A,P) denotes the star of A with respect to P, that is the set
U{PeP:ANP#D}; for A={z}, z € X, we write St(z,P) instead of
St({z},P).

Let us introduce now the following definition:

0.2. Definition. Let A and B be collections of subsets of a space X and
let K be a family of subsets of X. Then we say that X belongs to the
class NSSk (A, B) if X satisfies the following selection hypothesis: for every
sequence (U, : n € N) of elements of A there exists a sequence (K, : n € N)
of elements of K such that for each neighborhood O, of K,,, n € N, we have
{5t(On,Uy,) : m € N} € B.

When K is the collection of all one-point [resp., finite, compact] subspaces
of X we write NSSj(A, B) [resp., NSSE (A, B), NSSZ, (A, B)] instead
of NSSE(A4,B). O

Note that all the selection hypotheses mentioned above have the games
(of lenght w) for two players, ONE and TWO, associated with them (see [14],
[15], [9]). For example, the game Ggn(A, B) corresponding to the selection
hypothesis Sgn(A, B) is played as follows: in the n-th round ONE chooses
an element A, € A, and TWO responds choosing a finite B, C A,,. TWO
wins the game if | J, .y Bn € B; otherwise, ONE wins.

The game G associated with the selection hypothesis NSSk (A, B) is

played in the following way: in the n-th round ONE chooses an element
A, € A, and TWO responds by choosing an element K, € K. TWO wins
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if for each neighborhood O, of K,, n € N, {St(O,,U,) : n € N} € B;
otherwise, ONE wins.

In this paper A and B will be the following collections of subsets of a
space (X,7):

O — the collection of open covers of X;
C — the collection of (not necessarily open) covers of X;
2 — the collection of w-covers of X. An open cover I of X is an w-cover

[5] if X does not belong to Z and every finite subset of X is contained in a
member of I4;

I' — the collection of y-covers of X. An open cover ¥ of X is a y-cover
[5] if it is infinite and for every # € X the set {U €U : z ¢ U} is finite;
D — the collection of ¥ C 7 whose union is dense in X;

F — the collection of &/ C T for which X = | {U : U € U};
J — the collection of & C P(X) such that X = | {int(V): U € U}.

Recall that a space X is said to have the Menger property [11], [6], [7]
(resp. the Rothberger property [13]) if the selection hypothesis Sgq (O, ©)
(resp. S1(0, 0)) is true for X (see also [12], [8], [14]).

A space X is said to have: (1) the star-Rothberger property (SR), (2) the
star-Menger property (SM), (3) the strongly star-Rothberger property (SSR),
(4) the strongly star-Menger property (SSM), (5) strongly star-K-Menger
property (SSx M) if it satisfies the selection hypothesis: (1°) S(®,0), (2')
Sa(0,0), (37) 853(0,0), (£) $53,(0, 0), (5") 550y (O, 0) (see [3]).

We shall say that X has: (i) the nearly strongly star-Menger property
(NSSM), (ii) the nearly strongly star-Rothberger property (NSSR), (iii) the
nearly strongly star-K -Menger property (NSSg M) if it satisfies:

(i) NSS5,(0,0), (ii) NSS3(0, 0), (iii) NSSZ,,,,(0, 0).

A continuous mapping f : X — Y is said to be irreducible if the only
closed subset F' of X satisfying f(F) Yis F=X. fis finite-to-one if for
each y € Y the set f<(y) is finite in X. For A C X we denote by f#(A)
theset {y €Y : f~(y) C A} =Y\ f(X\U).

In this paper we shall need the following simple (but useful) lemma.

Lemma A. If f: X — Y is a closed irreducible finite-to-one mapping and
U is an w-cover of X, then f*(U):= {f#(U):U € U} is an w-cover of Y.

Proof. Because f is closed irreducible for each U € U, f#(U) # Y and all
elements of f#(U/) are nonempty open sets. These elements form an w-cover
of Y. Indeed, let F' be a finite subset of Y. The set f*“(F) is finite in X
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take a set U € U containing it. So, for each y € F we have f(y) C U which
means y € f#(U) and consequently F' C f#(U). O

We shall also use the following result from [1;VI.110]:

Lemma B. If f : X — Y is a closed irreducible mapping and U is an open
subset of X, then f(U) = f#(U) (and U = f=f#(U)). O

1. Remarks

We give the following diagram which gives relationships between some
here defined properties. Recall that a space X is said to be strongly starcom-
pact [starcompact] (see [3], [10]) if for every open cover U of X there is a finite
subset A of X [a finite V C U] such that St(4,U) = X [St(UV,U) = X].

Let us note that each property from the diagram (and also NSSR) is an
invariant of continuous mappings.

|] SR —p lSM

| i 0

| f SSkM  =>  NSSgM
| 1 ﬂ ro
| SSR =5 SSM = NSSM
l T Pl i

| Rothberger — Menger = Lindelof
T / fr

starcompact < strongly starcompact <= compact
Diagram 1

Considering the definition of SSM spaces it might expect that the follow-
ing natural definition would give a new concept: A space X is extra strongly
star-Menger if for each sequence {U, : n € N} of open covers of X thereis a
finite set F' such that X =,y SH(F,U,). (So, we require all finite sets in
the definition of SSM spaces to be equal to the same set F.) But this gives
nothing new because of:
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1.1. Proposition. A space X is extra SSM if and only if it is strongly
starcompact.

Proof. Let X be extra strongly star-Menger and let 4 be an open cover of
X. Apply the assumption to the sequence (U, =U : n € N) and find a finite
set F C X with St(F,U) = X.

Conversely, if X is strongly star compact and (i, : n € N) is a sequence
of open covers of X, then for a fixed & € N there is a finite F' such that
St(F,Uy) = X. Consequently, X = |J, .y St(F,U,). O

Let us mention two results which show that in some classes of spaces some
of the properties in the diagram coincide. The second result is also a new
characterization of the Menger property for subsets of the real line. We omit
the (simple) proof of the first assertion.

Recall that a space X is mesocompact if for each open cover U of X there
is an open refinement V which is compact-finite (in the sense that every
compact subset of X intersects only finitely many members of V).

1.2. Theorem. A mesocompact space X is SSM if and only if it is SSx M.

1.3. Theorem. For a paracompact (Hausdorff) space X the following are
equivalent:

(a) X is a nearly strongly star-Menger space;

(b) X is a strongly star-Menger space;

(¢) X is a strongly star-K-Menger space;

(d) X is a star-Menger space;

(e) X is a Menger space.

Proof. We have to prove only that (a) implies (b), because (b) = (a) is
obvious and the other equivalences are shown in [9]. Let {{/, : n € N} be a
sequence of open covers of a paracompact nearly strongly star-Menger space
X. For every n € N let V,, be an open locally finite refinement of I/,,. Since
X is nearly strongly star-Menger there exists a sequence {F, : n € N} of
finite subsets of X witnessing for (V, : n € N) that fact. For each n thereis a
neighborhood O, of F;, which meets only finitely many elements of V,. Pick
a point from each of these intersections and denote by K, the set of all such
points. We get a finite subset of X satisfying St(K,,V,) = 5t(On, Vn) so
that we have |, oy St(Kn, Va) = Unen 5t(On, Va) = X. For every V € V,
let Uy be a member of Uy, such that V' C Uy. Then (J, oy SH(Kr,Un) = X
which means that X is a strongly star-Menger space. O

So, for paracompact spaces we have

SSR —> NSSR — NSSM < SSM < SSxgM <= SM <— M.
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2. Sgn(A,B)

Very simple examples show that the Menger property is not an inverse in-
variant of continuous irreducible mappings. For instance, take any bijection
f: D(e) — [0,1]. But we have:

9.1. Theorem. If f : X — Y is a closed irreducible finite-to-one mapping
from a space X onto a Menger space Y, then X is also a Menger space.

Proof. Let (Uy)nen be a sequence of open covers of X. Let N=N, UN U
...UN, U ... be a partition of N into countably many pairwise disjoint
‘ufinite subsets. For every n € N let V, be the set of elements of the form
Up, U--UUp,, k € N,n < mg < -+ < mg € Np, Un. € Uy, for all
i=1,2,...,k The sequence (Vn : n € N) is a sequence of w-covers of X.
By Lemma A (f#(V.))nen is a sequence of open (w-) covers of Y. Using the
fact that Y is in Sgn(O, O) choose for each n € N a finite set W, C V,, such
that |J n{f¥(W): W € W, } is an open cover of Y. Then one can easily
see that X = Upen U FfFWn) C Unen | W,.. But elements of Wn’s may
be augmented to a sequence of finite subsets of U,,’s witnessing for (U )nen
that X is in Sga(0,0). O

2.2. Example. The Menger property is not an inverse invariant of open
finite-to-one mappings.

Let X1 = [U,wl), Xz = [0,0.)11, X = X1 @Xg, Y = Xg and let f X -V
be the mapping sending each point of X into the naturally corresponding
point of Y. Then f is an open finite-to-one mapping, Y is a Menger space
(because it is compact), but X is not Menger (because it is not Lindelof).
Let us mention that X is an SSM space which is not metacompact, because
by Theorem 2.4 in [9] a metacompact SSM space is a Menger space. U

2.3. Example. The Menger property is not an inverse invariant of perfect
mappings.

Let X = [0,w1) X [O,wn), f: X — [0,w1]. Then f is a perfect mapping
onto a Menger space [0,w;], but X is not a Menger space. O

Using the reasoning similar to those from the proof of Theorem 2.1 one
proves:

2.4. Theorem. Sgn(f2,8) is an inverse invariant of closed irreducible
finite-to-one mappings. U

We shall mention now some consequences of this theorem and Theorem
9.1. For this we need some notation and terminology. For a Tychonoff
space X Cp(X) denotes the space of all continuous real-valued functions
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on X with the pointwise topology. Recall that a space X has countable fan
tightness if for each sequence (A,;n € N) of subsets of X and each point
z € ey An there is a sequence (B :n € N) such that for each n, By, 1s a

finite subset of A, and z € |J, ¢y Bn [2]. The symbol
A — [B];

denotes the statement: for each member A € A and for every coloring f :
[A]? — {1,2} there are i € {1,2},a B C A in B and a finite-to-one function
g: B — w with: for all z and y in B, g(z) # g(y) implies f({z, y}) =i (see
[14]).

2.5. Corollary. Let X and Y be Tychonoff spaces and let f : X — Y be
a closed irreducible finite-to-one mapping. If Y has any of the properties
(a) — (d) below so does X :

(a) Y has the Menger property in all finite powers;

(b) Cp(Y) has countable fan tightness;

(¢) ONE does not have a winning strategy in the game Ggn(0, 0) (played
onY );

(d) Y satisfies @ — [Q]3.

Proof. (a) By Theorem 3.9 in [8] Y™ has the Menger property for allnm e N
if and only if Y is in Sga(,Q). By Theorem 2.4 X is also in Sgn (2, ) and
thus for all n € N X™ has the Menger property.

(b) In [2], it was shown that Cp(X) has countable fan tightness if and
only if X™ has the Menger property for each positive integer n.

(¢) This is a consequence of Theorem 2.4 and a result of Hurewicz (see
Theorem 4 in [15]): ¥ has the Menger property if and only if ONE does not
have a winning strategy in Gaa(O, O).

(d) By Theorem 6.2 in [8] (d) is equivalent to the assertion ¥’ is in
San(02,90). O

Call a space X almost Menger [almost Rothberger] if it satisfies the selec-
tion hypothesis Sgq (@, F) [S1(O, F)]. .
It is not difficult to prove (see the proof of Theorem 3.4):

2.6. Theorem. The almost Menger property is an inverse invariant of
closed irreducible finite-to-one mappings. U

We also have:

2.7. Theorem. Sgan(D,D) is preserved in the preimage direction under
closed irreducible mappings. O
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2.8. Remark. This class (and also the class Sy(D, D)) is not an inverse
invariant of open mappings. The Souslin line S belongs to the class S;(D, D)
and consequently to Sg, (D, D). But it is well known that S2 is not cce and
thus 52 ¢ Sga(D, D). O

3. S1(A,B)

3.1. Theorem. If f: X — Y is a closed irreducible mapping from a space
X onto a space Y in S1(C,J), then X is in S1(0, F).

Proof. Let (U, )ren be a sequence of open covers of X. Then (f(Un):n € N)
is a sequence of covers of Y. Since Y satisfies 51(C,J), for each n € N there
is an element U, € U, such that ¥ = U, enint f(Uy,). We are going to prove
X =Upen Un-

Let 2 € X. Then y = f(z) € intf(Uy) for some positive integer k. Let
us prove z € Uy. Suppose z ¢ Uy. Let G be a neighborhood of z such that
GNUg = 0. We have f#(G)N f(Ux) = 0. On the other hand, by Lemma
B,y = f(z) € f#(G) and consequently y € J#(G) N int f(Uy); this implies
f#(G)n f(Uy) # 0 and we have a contradiction. Therefore, z € Uy, i.e. X
isin S1(0,F). O

3.2. Theorem. If f: X — Y is a closed irreducible mapping from a space
X onto a space Y in S1(F,D), then X is also in S1(F, D).

Proof. Let (Uy,).en be a sequence of elements from F. Then, according to
Lemma B, (f#(U,):n € N) is a sequence of elements of F in Y. Applying
the fact that Y satisfies S;(F, D), for each n € N take an element U, e,
such that YV = (J, oy f#(Uy). Then, again by Lemma B and using the fact
that f is closed, it follows

X == 1#@) = | rr#w) c J Un.
neN neN neN
This witnesses membership of X to the class S1(F,D). O

The following two statements show that both the Rothberger property
and almost Rothberger property are inverse invariants of closed irreducible
finite-to-one mappings. Since the proofs are quite similar we show only the
second assertion.

3.3. Theorem. Let f be a closed irreducible finite-to-one mapping from a
space X onto a space Y. Then X is in the same class as Y in the Jollowing
cases:

(1) Y is a Rothberger space;

(2) Y is in S1(Q, Q).

(3) Y isin 5;(0,D) = S4(2,D). O
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3.4. Theorem. If f is a closed irreducible finite-to-one mapping from a
space X onto an almost Rothberger space Y (i.e. Y € 51(0, F)), then X is
also almost Rothberger.

Proof. Let (Un)nen be a sequence of open covers of X. Working as in the
proof of Theorem 2.1 construct the sequence (Vn : n € N) of w-covers of X.
By Lemma A (f#(V,))nen is a sequence of open (w-) covers of Y. Using
the fact that ¥ is in 51(0, F) choose for each n € N a set Va € V, such
that ¥ = {J oy f#(Vy). Then, as can be easily verified, X = |,y Va. But
each V,, is of the form Uy U UUp, k€N, n < ng < -~ < mp €N,
Un; € Uy, for all i = 1,2,..., k (see the proof of Theorem 2.1). So, elements
Vo will give a sequence of elements of 24, (one from each) which guarantees
that X is in S1(0,F). O

Sets satisfying the selection hypothesis S1(Q,T) are called 7y-sets; every
7-set has Rothberger’s property [5].

3.5. Theorem. v-sets are preserved in the preimage direction by closed
irreducible finite-to-one mappings.

Proof. Let f: X — Y be a closed irreducible mapping from a space X onto
ay-set Y and let (U, ),en be a sequence of w-covers of X. Then (f#* (Un))nen
is a sequence of w-covers of Y so that there are f#(U,) € f#(U,), n € N,
such that {f#(U,) : n € N} is a y-cover of ¥. We prove that {U, : n € N}
is a y-cover of X. Let z € X. Then f(z) belongs to all but finitely many

elements of { f#(U,) : n € N}, say T#¥(WUny)y ..., f#(U,,). Clearly, 2 belongs
to all the sets U, for n ¢ {ny,... et O

4. Star-covering properties

4.1. Example. The SSM property is not an inverse invariant of irreducible
finite-to-one mappings.

Let T = [0,w1] X [0,w] \ {(w1,w)} be the Tychonoff plank. Let X denote
the Dieudonné plank: the underlying set is T' and open sets in X are all sin-
gletons of [0,w;) % [0,w) and all sets of the form Ua(B) ={(B,7):a<y< w}
and Vo(8) = {(7,8) : @ < 7 < wy} (see [16]). It is known that X is meta-
compact non-Lindel6f space, hence X is not a Menger space. Since the
Dieudonné topology is finer than the Tychonoff topology the identity map-
ping i : X — T is continuous, and obviously irreducible finite-to-one. It was
shown in [9] that T is an SSM space. But X cannot be such a space because
otherwise, by Theorem 2.4 in [9] which states that every metacompact SSM
space is a Menger space, it would be a Menger space. O
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4.2. Example. There is a consistent example of an SSM space X whose
product with a compact space Y is not S5SM [9]. So, the SSM property is
not an inverse invariant of perfect mappings. O

4.3. Theorem. Let f: X — Y be a closed irreducible mapping. If Y 1is in
SS, (intC,Q), then X is in 885,(0, Q).

Proof. Let (U,)nen be a sequence of open covers of X. Then the se-
quence (f(Un))nen is a sequence of covers (from C) of Y. Apply the fact
Y € SS;_(intC,Q) and find a sequence (Bp)nen of finite subset of ¥ such
that {St(Bn,intf(U,)) : n € N} is an w-cover of Y. We shall prove that
{St(f=(By),Us) : n € N} is an w-cover of X.

Let K be a finite subset of X.Then f(K) C St(Bm,intf(Um)) for some
m € N. Working similarly as in the proof of the corresponding part of Theo-
rem 3.1 (see also the proof of Theorem 4.4) one proves K C St f=(Bm),Unm)
which is enough to finish the proof. O

4.4. Theorem. Let f : X — Y be a closed irreducible finite-to-one map-
ping. IfY is in SS§,(Q,0) (resp. SS§,(2,Q), SS3(Q,Q)), then X is in

the same class.

Proof. We consider only the first class. Let (Uy)nen be a sequence of w-
covers of X. Then the sequence (f#(Uy,))nen is a sequence of w-covers of
Y. Apply the fact Y € S55,(R,O) and choose for each n € N a finite set
B, C Y such that |, ¢y S5t(Bn, f*(U,)) = Y. It is enough now to prove
X'= Upen SHF™(Ba)stn):

Let z € X.Then y = f(z) € S(By, f#(Uy) for some k € N. So, there is
a U € Uy such that y € f#(U)) and f#(U)N By # 0. Then 2 € f(y) C
FoFHU) C Uand UNF=(By) D f~ fAUINF(By) = f~(f#(UINB:) #
0. Thus z € St(f—(Bk),Ux). O

4.5. Theorem. The classes S& (Q,0), S3(Q, 0) and S3(9, ) are inverse
invariants of closed irreducible finite-to-one mappings.

Proof. We consider only the first class. Let ¥ € S (Q,0) and let f :
X — Y be a closed irreducible mapping. Let (Uy)nen be a sequence of
w-covers of X. For the sequence (f#(Uy))nen of w-covers of Y there is a
sequence (f#(Vy))nen such that for each n, Vy is a finite subset of U, and
Y = Upen SH(UVn,Un). We want to prove X = Unen SH(UVn,Un).

Take a point z € X. Then y = f(z) € St(Uf#*(Vm),Up) for some
m € N, i.e. y belongs to some f#(U) € f#(Uy) such that f#(U) meets
a [#(V)in f#(Vm). It follows that U0V # 0 and since z € U we have
2 € St(UVp,Up). O
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4.6. Theorem. Let f: X — Y be a closed irreducible finite-to-one mapping
from a space X onto a space Y in NSSZ, ., (Q,0) (resp. NSS%, (Q,0)).
Then X is also in NSSY . (Q,O) (resp. NSS%_(22,0)). :

comp

Proof. Let (U, : n € N) be a sequnce of w-covers of X. Then, by Lemma
A, (f*(Uyn) : n € N) is a sequence of w-covers of Y. So, there is a sequence
(K, :n € N) of compact subspaces of ¥ witnessing for (f#(,) : n € N)
that ¥ is in NSSZ,, (£2,0). Consider the sequence (f*(K,):n € N) of

comp

compact subspaces of X. We are going to prove that this sequence witnesses
for (U : n € N) that X is in NSS%,, (Q,0).

Let (O, : n € N) be a sequence of neighborhoods of f—(K,), n € N.
Since f is closed for every n € N there is a neighborhood V,, of K, such that
F7(Vn) C On. Since Y = U,y SUVn, f#(Un)) we have (as can be easily
checked)

X =f7(Y)= | St (Va) S (WUn)) C | SHOm Uy),

neN nEN

i.e. X belongs to the class NSSZ, (22, 0).
The second assertion is shown quite similarly. O
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