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FUZZY B-OPEN SETS AND
FUZZY B-SEPARATION AXIOMS

Biljana Krsteska

Abstract. The concepts of fuzzy b-open sets, fuzzy b-continuous mappings
and fuzzy weakly b-continuous mappings are introduced. Further fuzzy sep-
aration axioms have been introduced and investigated with the help of fuzzy
b-open sets.

1. Introduction

Since semiopen sets were introduced by Levine [9] in 1963, many stud-
les have been done on this topic. The preopen sets were introduced by
Mashhour, Abd El-Monsef and El-Deep [10] in 1982. Mashhour [11] in 1983
defined the class of semipreopen sets.

As a generalization of these notions, in fuzzy topology Azad [2], Singal
[13] and Park [12] have introduced the fuzzy semiopen sets, fuzzy preopen
sets and fuzzy semipreopen sets, respectively.

The class of b-open sets was introduced and studied by Andrijevic (1] in
1996.

Here we introduce the class of fuzzy b-open sets and establish some of
their properties. Also we discuss the relationship between this class and the
classes above mentioned.

In the Section 3 we show that the concept of fuzzy b-open sets is weaker
than any one of the concepts of fuzzy semiopen or fuzzy preopen sets. On
the other hand, it is stronger than the concept of fuzzy semipreopen sets.

Received June 20, 1998
2000 Mathematics Subject Classification. 54A40.

Key words and phrases. Fuzzy topology, fuzzy b-open set, fuzzy b-continuous map-
ping, fuzzy weakly b-continuous mapping, fuzzy b-T; axioms.

115




116 Biljana Krsteska

In the Section 4 and the Section 5 new weaker forms of fuzzy continuity:
fuzzy b-continuity and fuzzy weak b-continuity are introduced. In addition,
following the concept used in [4, 5, 14] we discuss the relations between these
new weaker forms and some other weaker forms of continuity defined earlier.

The separation axioms in fuzzy tpological spaces were studied by many
authors, see e.g. [6, 7, 13]. Here, in the Section 6 we give an extension
of fuzzy separation notions using the fuzzy b-open sets. By means of nu-
merous examples, we point out the non-coincidence of different notions of
b-separation.

2. Preliminaries

We now introduce some basic notions and results that are used in the se-
quel. In this work by (X, 7) or simply by X we will denote a fuzzy topological
space (fts) due to Chang [3]. The interior, closure, and the complement of a
fuzzy set A will be denoted by intA, clA and A€, respectively.

Definition 2.1. Let A be a fuzzy set of an fts X. Then A is called

(1) a fuzzy semiopen set if and only if there exists a fuzzy open set U such
that U < A <clU [2]; ‘

(2) a fuzzy preopen set if and only if A <int(clA) [13];

(3) a fuzzy semipreopen set if and only if there exists a fuzzy preopen set
U such that U < A <clU [12].

The family of all fuzzy semiopen sets, fuzzy preopen sets and fuzzy
semipreopen sets of fts (X,7) will be denoted by FSO(r), FPO(r) and
FSPO(T), respectively.

Lemma 2.1. Let A be a fuzzy set of an fts X. Then A is

(1) a fuzzy semiopen set if and only if A < cl(intA)[2];

(2) a fuzzy semipreopen set of X if and only if A < cl(pintA)[12]. ||

Definition 2.2. Let A be a fuzzy set of an fts X. Then A is called

(1) a fuzzy semiclosed set if and only if A° is a fuzzy semiopen set [2];

(2) a fuzzy preclosed set if and only if A° is a fuzzy preopen set [13];

(3) a fuzzy semipreclosed set if and only if A® is a fuzzy semipreopen set
[12].

The family of all semiclosed sets, fuzzy preclosed sets and fuzzy semi-
preclosed sets of (X, 7) will be denoted by FSC(r), FPC(7) and FSPC(r),
respectively.

Definition 2.3. Let A be a fuzzy set of an fis X. Then,

sintA= {B | B < A, B €FS0(7)}, is called the fuzzy semi-interior of A
[2];

sclA= {B | B > A, B €FSC(7)}, is called the fuzzy semiclosure of A [2];

pintA= {B | B < A,B €FPO(7)}, is called the fuzzy preinterior of A
[13];




Fuzzy b-open sets and fuzzy b-separation axioms 117

pelA={B| B >

spintA={B | B
of A [12]; :

spclA= {B | B > A, B €FSPC(7)}, is called the fuzzy semipreclosure of
A [12].

Lemma 2.2. [13] Let A be a fuzzy set of an fis X. Then,

(1) pelA® = (pintA)°;

(2) pintA® = (pclA)°. ||

Lemma 2. 3. Let A be a fuzzy set of an fts X. Then,

(1) pclA> AV cl(intA);

(2) pintA < A Aint(clA). ||

Definition 2.4. [15] Let f be a mapping from a set X into a set Y. Let
A and B be fuzzy sets of X and Y respectively. Then f(A) is a fuzzy set of
Y defined by

A, B €FPC(7)}, is called the fuzzy preclosure of A [13];
< A, B €FSPO(T)}, is called the fuzzy semipreinterior

SUPge-1(y) A(2), I fTH(y) #0
0, otherwise '

) ={

and f~Y(B) is a fuzzy set of X, defined by
f~YB)(z) = B(f(z)), for each z € X.

Lemma 2.4. [2] Let f : X — Y be a mapping. For any fuzzy sets A and
B of X and Y receptively, the following statements hold:

(1) ff71(B) < B;

(2) FUA(A) > 4

(3) F(A%) > F(AY

() (B = 1(B)

(5) If f is injective, then f~1f(A) = A;

(6) If f is surjective, then ff~1(B) = B;

(7) If f is bijective, then f(A®) = f(A)°. ||

Definition 2.5. Let f : (X, ) — (Y, 72) be a mapping from an fts (X, 1)
into an fts (Y, ). The mapping f is called

(1) fuzzy continuous if f~1(B) is a fuzzy open set of X, for each B € [3];

(2) fuzzy semicontinuous if f~1(B) is a fuzzy semiopen set of X, for each
B € [2];

(8) fuzzy precontinuous if f~1(B) is a fuzzy preopen set of X, for each
B € 7[13];

(4) fuzzy semiprecontinuous if f~1(B) is a fuzzy semipreopen set of X,
for each B € m5[12];

(5) fuzzy weakly continuous if f~(B) <intf~'(clB), for each B € 72[2].

Lemma 2.5. [2] Let g : X — X x Y be a graph of a mapping f : X —Y.
If A is a fuzzy set of X and B is a fuzzy set of Y, then ¢7'(A x B) =
AN fH(B) |
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Definition 2.6. [8] A fuzzy set of an fts X is called a fuzzy singleton
if it takes the zero value for all pownts z in X exzcept one point. The point
at which the fuzzy singleton takes the non-zero value is called a support and
the corresponding element of (0,1), is called its value. A fuzzy singleton with
value 1 is called a crisp fuzzy singleton.

Definition 2.7. [7] An fis X is called fuzzy To(FTy) if and only if for
each pair of fuzzy singletons P1, p2 with different supports, there ezists a fuzzy
open set U such that py < U < p; orpy < U < ps.

3. Fuzzy b-open sets and fuzzy b-closed sets

Definition 3.1. Let A be a fuzzy set of an fts X. Then A is called

(1) a fuzzy b-open set if and only if A <pcl(pintA ),

(2) a fuzzy b-closed set if and only if A > pint(pcld).

Remark 3.1. Immediately from the Definition 3.1, it follows that a fuzzy
set A is fuzzy b-open if and only if A€ is fuzzy b-closed,

The family of all fuzzy b-open and fuzzy b-closed sets of (X,7) will be
denoted by FBO(r) and FBC(r), respectively. The family FBO(7) contains

7; it may not be a fuzzy topology on X, but it is closed under arbitrary
unions.

Theorem 3.1. Let (X,7) be an fis. Then,
FSO()UFPO(r) CFBO(1) CFSPO(7).
Proof. Let A be a fuzzy preopen set. Then A = pintA. From A < pcld =
pel(pintA) it follows that A is a fuzzy b-open set. If A is a fuzzy semiopen

set then A < el(intd) = pel(intA) < pel(pintA). The proof of the second
inclusion follows from A<pcl(pintA)< cl(pintA). ||

The next example shows that the inclusions can not be replaced by equal-
ities.

Example 3.1. Let X = {a,, ¢} and A, B, C be fuzzy sets of X defined
as follows:

A(a) =0,5  A(b)=0,2  A(c)=0,6,
B(a)=0,3 B(b)=0,4 B(c)=0,3,
Cla)=0,5 C(B)=0,5 C(c)=0,5,
D(a)=0,2 D()=0,6 B{e] =0,2.

Let 7 = {0,A,B,AV B, A A B, 1}. By easy computation it can be shown
that D is fuzzy semipreopen, but not fuzzy b-open. The fuzzy set C is fuzzy
b-open, but C is neither fuzzy semiopen nor fuzzy preopen.

Lemma 3.2. Let {A4|le € I}, be a family of fuzzy sets of an fis X.
Then,
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(1) Vaer pel(As) <pel(Vaerd);

(2) Vaerpint(Aq) <pint(VaerA).

Proof. We prove only the statement (1). From pcl(4qy) < pel(Vaerda),
for every a € I we obtain Vaerpcl(As) <pel(Vaerda)- ||

Theorem 3.3. Let X be an fis.

(1) Any union of fuzzy b-open sets is a fuzzy b-open set.

(2) Any intersection of fuzzy b-closed sets is a fuzzy b-closed set.

Proof. We prove only the statement (1). Let {A,}ser be a family
of fuzzy b-open sets. Then A, <pcl(pintA,), for each a €l. Hence Vaer
Aq < Vaerpel(pintA,) <pcl(pint(VaerAa))- ||

Definition 3.2. Let A be a fuzzy set of an fts X.

(1) The union of all fuzzy b-open sets contained in A is called the fuzzy
b-interior of A, denoted by bintA.

(2) The intersection of all fuzzy b-closed sets containing A is called the
fuzzy b-closure of A, denoted by bclA. :

Theorem 3.4. Let A and B be fuzzy sets of an fts (X, 7). Then,

(1) A e FBO(T) & A=biniA, A eFBC(T) & A=bclA;

2) A < B & bintA<bintB, A < B ¢ belA<belB.

Proof. Tt follows from the Definition 3.2 and the Theorem 3.3. ||

The next statement gives the relationship between the operators fuzzy
b-interior and fuzzy b-closure.

Theorem 3.5. Let A be a fuzzy set of an fts X. Then:

(1) bclA® = (bintA)S;

(2) bintA® = (belA)°.

Proof. (1) (bintA)°=(v{d|d<A, de FBO(7)})°

= A{d® |d<A, de FBO(r)} =
=A{c|c>A®, c€ FBC(r)}=bclA®.

(2) (bclA)® = (bel(A®)®)® = ((bintA®)®)°=bintA°. ||

Theorem 3.6. Let A be a fuzzy set of an fts X. Then,

(1) intA<pintA<bintA<spintA< A <spclA<belA<pclA<clA;

(2) intA<sintA<bintA<spinitA< A <spelA<belA<sclA<LclA.

Proof. Tt follows from the definitions of the corresponding operators. ||

4. Fuzzy b-continuity

Definition 4.1. A mapping f : (X, 1) — (Y, 72) from an fts X into an
fts Y is called fuzzy b-continuous if f~'(B) EFBO(my), for each B € Ty.

Remark 4.1. The following statements for the mapping f : X — Y,
where X and Y are fts, are valid:

(1) If f is fuzzy semicontinuous or f is fuzzy precontinuous, then fis a
b-continuous mapping.
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(2) If f is fuzzy b-continuous, then f is a fuzzy semiprecontinuous map-
ping.

The following example shows that the reverse statement may be not true.

Example 4.1. We consider the Example 3.1. If we put 1, = {0,C,1}
and f=id:(X,7) — (X,m) we conclude that f is fuzzy b-continuous but
[ is neither fuzzy semicontinuous nor fuzzy precontinuous. If we put m =
{0, D, 1}, then f=id:(X,r) — (X, 7) is fuzzy semiprecontinuous, but not
fuzzy b-continuous.

Theorem 4.1. Let f : (X,m1) — (Y, 72) be a mapping from an fis (X, 1)
into an fts (Y, 7). Then the following statements are equivalent:

(1) [ is a fuzzy b-continuous mapping.

(i) f~Y(B) is a fuzzy b-closed set of X for each fuzzy closed set B of Y.

(111) f(bclA) <clf(A), for each fuzzy set A of X.

(iv) belf 1(B) < f~1(clB), for each fuzzy set B of Y.

(v) f~'(intB) <bintf(B), for each fuzzy set B of Y.

(vi) There exists a base § for 75 such that f~Y(B) is fuzzy b-open set of
X for each B € (3.

(vii) There erists a base § for Ty such that f~(B) is fuzzy b-closed set of
X for each B® € j.

Proof. (i)<(ii) Let B be a fuzzy closed set of Y. Then B¢ is fuzzy open
set of Y. According to the assumption f~!(B¢) is a fuzzy b-open set of X.
From the Lemma 2.4 we conclude that f~!(B) is a fuzzy b-closed set of X.

(i)« (iii) Let A be a fuzzy set of X. Then clf(A) is a fuzzy closed set of
Y, and from (ii), we obtain f~*(clf(A)) is a fuzzy b-closed set of X. Thus,
belA<belf~1 f(A) <bclf~!(clf(A)) = f~1(clf(A)). Hence f(bclA)<clf(A).

(ili)&(iv) Let B be a fuzzy set of Y. According to the assumption we have
F(bAf~1(B)) <cl(ff~1(B))< <clB. Thus belf-1(B)< f-1 f(belf~1(B))<
R

(iv)« (v) Let B be a fuzzy set of Y. From (iv) we obtain f~1( cIB ¢) >
belf “3(B¢) = bcf ~!( B )¢, hence f~! (intB)= f~1( cIB ©)* < ( bel f!
(B) ©)¢ =bint f~! (B).

(v)&(i) Let B be a fuzzy open set of Y. Then B=intB. From (v) we obtain
F7H(B)= £ (intB) < < bint f~1 (B) < 71 (B). Thus f~*(B)=bint f~(B).
Hence f is a fuzzy b-continuous mapping.

(i) (vi) Obvious.

(vi)&(i) Let C be a fuzzy open set of Y. Then there exists a subfamily
f1 of @ such that C=Vpgep, B, and f~1(C)=Vpes, f~1(B). According to the
assumption f~1(B) is a b-open set. Thus f~'(C) is a b-open set as a union
of fuzzy b-open sets, hence f is a fuzzy b-continuous mapping.

(vi)=(vii) Can be easily proved. ||




Fuzzy b-open sets and fuzzy b-separation axioms 121

Theorem 4.2. Let f : X — Y be a mapping from an fts X into an fis
Y. Then the following statements are equivalent:

(i) f is fuzzy b-continuous.

(i) pint(pclf~Y(B)) < f~1(elB), for each fuzzy set B of Y.

(iii) f(pint(pclA)) <clf(A), for each fuzzy set A of X.

Proof. (i)¢(ii) Let B be a fuzzy set of Y. Then f~'(cIB) is a fuzzy
b-closed set, hence f~'(cIB)> >pint(pclf~!(cIB))>pint(pclf~1(B)).

(ii)<>(iii) Let A be a fuzzy set of X. Let us put B=f(A), then A< f~1(B).
According to the assumption we obtain pint(pclA)<pint(pcl f~! (B)) < f~!
(cIB). Hence, f( pint(pclA) ) < cdB=clf(A).

(iii)«> (7) Let D be a fuzzy closed set of Y. According to the assumption,

f(pint(pclf~1(D))<clf f~1(D)<clD=D,

Thus pint(pelf~1(D))< f~! f(pint(pclf = (D))< f-(D).

Hence f~!(D) is a fuzzy b-closed set. ||

Theorem 4.3. Let f : X — Y be a bijective mapping from an fts X
into an fis Y. The mapping f is fuzzy b-continuous if and only if intf(A)<
f(bintA), for each fuzzy set A of X.

Proof. Let f be fuzzy b-continuous and let A be a fuzzy set of X. Then
ffl(intf(A)) is a fuzzy b-open set of X. From Theorem 4.1, since f is injective
we have f~!(intf(A)) <bint{~!(intf(A)) <bintf~! f(A)= bmtA Again, since
f is surjective, - we obtain, intf(A)
= ff Y intf(A) ) < f (bintA).

Conversely, let B be a fuzzy open set of Y. Then intB=B. According to
the assumption, f(bintf~1(B))> >intff~1(B)=intB=B. This implies that
71 f(bintf=1(B)) > f~1(B). Since f is injective we obtain bint f~1 (B)=
f71f (bint f=1 (B) > f~! (B). Thus bint f~1 (B)= f~! (B). Hence f is
fuzzy b-continuous. ||

Theorem 4.4. Let f: X — Y and g : Y — Z be mappings, where X,
Y and Z are fis’s. If f is fuzzy b-continuous and g is fuzzy continuous, then
qf is fuzzy b-continuous.

Proof. It follows from the relation (gf)~!(B)=f"1(g~*(B)), for each
fuzzy set B of Z. ||

Corollary 4.5. Let X, X; and X5 be fts’s and let p; : X1 X X9 — X,
(1 = 1,2) be the projections of X1 x Xy onto X;. If f : X — X1 x X, is fuzzy
b-continuous, then p;f is also fuzzy b-continuous.

Proof. It follows from the fact that p; (: = 1,2) are fuzzy continuous
mappings. |

Theorem 4.6. Let f: X — Y be a mapping from an fts X into an fts Y.
If the graph g : X — X XY of f is fuzzy b-continuous, then f is also fuzzy
b-continuous.
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Proof. From the Lemma 2.5, for each fuzzy open set B of Y, f~1(B)=1
Af~1(B)=g~'(1xB). Since g is fuzzy b-continuous and 1xB is a fuzzy open
set of XxY, f~1(B) is a fuzzy b-open set of X and hence f is fuzzy b-
continuous. ||

5. Fuzzy weak b-continuity

Definition 5.1. A mapping f : (X,m) — (Y,72) from an fis X into an
fts Y is called fuzzy weakly b-continuous if f~Y(B) <bintf~1(bclB), for each
B E Ty .

Remark 5.1. It is obvious that fuzzy b-continuity implies fuzzy weak
b-continuity. From the next example we conclude that the implication is not

reversible.
Example 5.1. Let X={a,b,c} and A, B, D be fuzzy sets of X defined as

follows:

A(a)=0,4 A(b)=0,2 A(c)=0,1;
B(a)=0,5 B(b)=0,5 B(c)=0,5
D(a)=0,3 D(b)=0,2 D(c)=0,6.

If we put 71 = {0, A, B, 1} and 7 = {0, D, 1} , then f=id:(X, ) — (X, m)
is fuzzy weakly b-continuous, but not fuzzy b-continuous.

Example 5.2. Let X={a,b,c} and A, B be fuzzy sets of X defined as
follows:

Aa)=10,3 AB)=10,1  A(c) = 0,45
B(a)=0,6  B(b)=0,7 Bl¢)=0,5

If we put 7 = {0, B, 1} and 75 = {0, A, 1} , then f=id:(X, ) — (X, ) is
fuzzy weakly continuous, but not fuzzy weakly b-continuous.
Example 5.3. Let X={a, b,c} and A, B, C be fuzzy sets of X defined as

follows:
Ala)=0,4  A(b)=0,2 A(e) = 0,1
B(a)=0,5 B(®) =05 B(c)=0,5
C(a)=0,3 c()y=0,2 C(c)=0.

fweputmy ={0,C, 1} and 7o = {0,A,B,1}, then f=idi(X,n) = (X,7)is
fuzzy weakly b-continuous, but fuzzy weakly continuous.
The Examples 5.2 and 5.3 establish the following:
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Theorem 5.1. Fuzzy weak continuity and Juzzy weak b-continuity are
independent notions. ||

In the following theorems we give some characterizations of the fuzzy
weakly b-continuous mappings.

Theorem 5.2. A mapping f : (X, 1) — (Y, 1) from an fts X into an
fts Y is fuzzy weakly b-continuous if for each B ¢ 7o, f7Y(belB) is a fuzzy
b-open set of X. '

Proof. It follows immediately from the Definition 5.1. ||

Theorem 5.3. 4 mapping f: X — Y from an fts X into an fis Y is
fuzzy weakly b-continuous if and only if for any fuzzy singleton x4 of X and
any fuzzy open set B of Y containing f(zo), there exists a fuzzy b-open set
A of X containing z, such that f(A) <bclB.

Proof. Let f be fuzzy weakly b-continuous, z, be a fuzzy singleton
of X and B be a fuzzy open set of Y such that f(z4) <B. Then z, <
f7H(B)<bint f~}(bclB). Let A=Dbint f~!(bcIB). Then A is a fuzzy b-open
set, and f(A)=f(bintf~!(bcIB))< ff~!(bclB)<bclB.

Conversely, let B be a fuzzy open set of Y and let z, be a fuzzy sin-
gleton of X such that z, < f~!(B). According to the assumption there
exists a fuzzy b-open set A of X such that z, <A and f(A)<bclB. Hence
o, <AL fLF(A)L f7Y(bclB) and z, <A=DbintA<bintf~!(bclB). Since
To is arbitrary and f~(B) is the union of all fuzzy singletons of f~1(B),
f71(B)<bint f~1(bcIB). Thus f is fuzzy weakly b-continuous. |

Theorem 5.4. Let f : X — Y be a mapping from an fts X into an fts
Y. Then the following statements are equivalent:

(i) f is fuzzy weakly b-continuous;

(ii) belf~1(bintB) < J~Y(B) for each fuzzy closed set B of Y;

(i) f~*(int B) <bintf~1(belB), for each fuzzy set B of Y:

(v) belf~*(bintB) < f~Y(clB), for each fuzzy set B of Y.

Proof. (i)&(ii) Let B be a fuzzy closed set of Y. Then B¢ is a fuzzy
open set of Y. According to the assumption, f~!(B¢) <bint f~!(bclB®).
From the Lemma 2.4 we have f~1(B)® = 4B <bint f~1(belB¢) =
(belf~!(bintB))°. Thus belf~!(bintB)< f~1(B).

(ii)«>(iii) Let B be a fuzzy set of Y. From the assumption we obtain

S71(cIB?) >bclf~1(bint(cIB®)).

Hence f~!(intB)<bint f~*(bcl(intB)) <bintf~1(bclB)).

(iii)+(iv) Can be proved by using the complement.

(iv)<(i) Let B be any fuszy open set of Y. Then B€ is a fuzzy closed set
of Y. According to the assumption belf~!(bintB¢) < f~1(cIB®) = F=L{RBe).
Hence bint f~1(bclB)> f~1(B). ||

Corollary 5.5. Let f: X — Y be a mapping from an fts X into an fts
Y. If [ is fuzzy weakly b-continuous, then belf~1(B) < f~Y(elB), for each
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fuzzy open set B of Y. || .

Theorem 5.6. Let f : X — Y be a mapping from an fts X into an fis
Y. If f is fuzzy open and fuzzy weakly b-continuous then f(bclA) <clf(4),
for each fuzzy open set A of X.

Proof. Let A be a fuzzy open set of X and let f(A)=B. Since f is fuzzy
open, we conclude that B is a fuzzy open set of Y. Since A < f~1f (A)= F!
(B) and f is fuzzy weakly b-continuous, from the Theorem 5.4 we obtain bel
f~1(B) < £~ (cIB). Thus belA < f~1 (cIB). Hence f (bclA) < cIB=cli(A).

The following example shows that the composition of two fuzzy weakly
b-continuous mappings may be not fuzzy weakly b-continuous.

Example 5.4. Let X={a,b,c} and A, B, Dy, Dy be fuzzy sets of X
defined as follows:

Ala)=0,4  A(®)=0,2 Al =0,1
B(a)=10,5 B(b)=0,5 B(c) =0,5;
Di(a)=10,2 Dy(b)=0,2  Di(c)=0,6;
DE(G)ZO,B Dg(b):0,2 DQ(C):0,4;

If we put 7, = {0, Dy, 1}, = {0, A, B, 1},73 = {0, Dy, 1}, then the map-
pings f=id:(X,m) — (X,72) and g=id:(X, ) — (X,73) are fuzzy weakly
b-continuous, but ¢f is not fuzzy weakly b-continuous.

Definition 5.2. A mapping f : X — Y from an fts X into an fts Y 1is
called fuzzy b-irresolute continuous if f~Y(B) is a fuzzy b-open set of X, for
each fuzzy b-open set B of Y.

Theorem 5.7. If f : X — Y is fuzzy b-irresolute continuous and g :
Y — Z is fuzzy weakly b-continuous, then g f is fuzzy weakly b-continuous.

Proof. Let B be a fuzzy open set of Z. Then
(o)1 (B)=F~1(g='(B))< f~'(bint(g~"(bclB))=bintf~! (bint(g " (bclB))<

gbintf‘l(g‘l(bclB)):bint(gf)_l(bclB).

Thus ¢ f is fuzzy weakly b-continuous. |

6. Fuzzy b-separation axioms

Definition 6.1. An fts X is called fuzzy b — To(FBT,) if and only if
for each pair of fuzzy singletons p1, P2 with different supports, there exists a
fuzzy b-open set U such that p1 < U <p§orp LU < pi.

It is not difficult to conclude that FTp space is FBTo. The following
example shows that the converse may be not true.

Example 6.1. Let X={a,b} and A, B be fuzzy sets of X defined as
follows:
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Ala)=1/2,  A(b)=1;
Bla)=1, B(b)=0.

Let 7 = {0, A, 1}. Then B is a fuzzy b-open set but not a fuzzy open set.
By easy computation it can be shown that (X,7) is FBT, but not FTy.

Theorem 6.1. If an fts X is FBTy then fuzzy b-closures of any two crisp
fuzzy singletons, with different supports, are distinct.

Proof. Let X be FBTy and pi,py be two crisp fuzzy singletons with
different supports. According to the assumption there exists a fuzzy b-open
set U such that p; < U < p§. Then p; <bclpy < U€. Since p; is a crisp fuzzy
singleton we have p; € U¢, hence p; £ belpy. Therefore belpy #belps. ||

Definition 6.2. An fts X is said to be fuzzy b — T1(F'BTy) if and only
if for each pair of fuzzy singletons py, py with different supports, there exist
fuzzy b-open sets U and V such that py < U < p§ and ps <V < pf.

The following theorem gives a nice characterization for FBT; spaces.

Theorem 6.2. An fts X is FBT, if and only if every crisp fuzzy singleton
is b-closed.

Proof. We consider a crisp fuzzy singleton p; in X with support z;. For
any fuzzy singleton p; with support z different from z;, there exist fuzzy
b-open sets U; and U; such that p; < U; < p§ and p; < Uy < p§. Since
each fuzzy set can be considered as a union of the fuzzy singletons which
it contains, we have p§ = Vp<uep, hence pf = VpcpeUs. Thus pf is a fuzzy
b-open set. Hence py is fuzzy b-closed.

Conversely, let p; and p, be any pair of fuzzy singletons with different sup-
ports. We choose crisp fuzzy singletons ¢; and g; such that supp(q: )=supp(p1)
and supp(gz )=supp(p;). The fuzzy sets ¢f and g¢§ are b-open and satisfy the
conditions p; < ¢§ < pS and ps < ¢ < p§. ||

Remark 6.1. Each FBT; space is FBTy but the converse may be not
true. The fts in the next example is FBTy but it is not FBT;.

Example 6.2. Let X = {a,b} and A, B be fuzzy sets of X defined as
follows: ‘

Ala)=0, A®)=1,
B(a)=1/3, B(b) =0.

Let 7 = {0, 4, B, AV B, 1}. By easy computation it can be shown that (X, 1)
is FBTy but not FBT;.

Definition 6.3. An fis X is called fuzzy b-strong T1(FBT;) if and only
if each fuzzy singleton is a fuzzy b-closed set.
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It is obvious that each FBT, space is an FBT; space but the converse
may be not true as it is shown by the following example.

Example 6.3. Let X={a,b} and A, B be fuzzy sets of X defined as
follows:

A(a)=1/2, A(b)=0;
B(a) =1/4, B(b)=3/4;

Let 7 = {0,A4,B,AV B,A A B,1}. By easy computation it can be shown
that (X,7) is FBTy, but not FBT,.

Definition 6.3. An fis X is called fuzzy b-Hausdorff (FBT3) if for each
pair of fuzzy singletons p1, py with different supports, there ezist two Juzzy
b-open sets U and V such that py < U < ps,pa SV < py and U < V¢,

Theorem 6.3. An fts X is FBT, if and only if for each pair of fuzzy
singletons, with different supports, there exists a fuzzy b-open set U such that
p1 < U <belU< ps.

Proof. Obvious and omitted. ||

Example 6.4. Consider the fuzzy topology T on X defined by 7 = {U]
suppU¢ is finite}. Obviously, every fuzzy singleton of X is fuzzy b-closed.
Comnsequently (X, 7) is FBTj, but it is not FBT;.

Remark 6.2. The fts (X, 7) in the Example 6.3 is FBT3, but not FBT;.
Hence, we can conclude that the classes of FBT, spaces and FBT; spaces
are independent.

Definition 6.4. An fis X is called fuzzy b-Uryshon (FBT,; ) if and only
if for each pair of fuzzy singletons p1,p; with different supports, there erist
two fuzzy b-open sets U and V such that py < U < p§,pp <V < pf and
belU< (belV)©.

Clearly, an FBTz% space is an FBT; space but the converse may be not
true.

Example 6.5. Let X=I and A and B be fuzzy sets of X defined as
follows:

A= {UlU(1/2) < 1/2}

B = {U|U¢ is finite}.

Then AU B is a fuzzy topology on X. The corresponding space is FBT;
but not FBT,;.

Definition 6.5. An fts X is called fuzzy b-regular (FBR) if and only if for
each fuzzy singleton p and each closed fuzzy set F', such that p < F°, there
exist two fuzzy b-open sets U and V such that p < U, F <V and U < V°.

Remark 6.3. The fts in the Example 6.3 is FBT, but not FBR.
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Theorem 6.4. An fts X is FBR if and only if for each fuzzy singleton p
and each fuzzy open set U such that p < U, there ezists a fuzzy b-open set
W' such that p < W <bclW<U.

Proof. Obvious and omitted. ||

Definition 6.6. An fts X is called fuzzy b — T3(FBTs) if and only if it is
FBR as well as FBT,.

Theorem 6.5. For any closed fuzzy set £ in an FBR space X and each
fuzzy singleton p such that p < F'°, there exists a fuzzy b-open sets U and V
such that p < U, F <V and bclU< (belV')".

Proof. Since X is FBR, there exists a fuzzy b-open set U such that
p<U<bclU<Fe. Let V=(hclU)¢, then V is a fuzzy b-open set, F<V and
bl U< (belV)e. ||

Corollary 6.6. Each FBT3 space is FBTyy.

Next, we obtain the following interesting result.

Theocrem 6.7. Let X be a FBR space which is also F1Ty. Then X is
FBTs;.

Proof. Consider two fuzzy singletons p and ¢ with different supports in
X. Since the space is FTy, we have p < U < ¢°, where U is a fuzzy open set
of X. Let F' = U*® which implies p < F¢. Now by the Theorem 6.5 there exist
two fuzzy b-open sets G and H such that p < G, F < H and bclG<(belH)e.
Since q<F, it follows that g<F<H and belG<(bclH)¢. Hence X is FBTZ%. |

Definition 6.7. An fts X is called fuzzy b-normal (FBN) if and only if
Jor each pair of closed fuzzy sets F1 and Fy such that Fy < Fy there exist
two fuzzy b-open sets U and V such that Fy < U, Fo <V and U < V°©.

An FBN space which is also FBT,, is called FBTy.

Theorem 6.8. An fts X is F'BN if and only if for each closed fuzzy set
F and each fuzzy open set U with F < U, there exists a fuzzy b-open set W
such that ' < W <bclW<U.,

Proof. Straightforward. ||

Definition 6.7. An fts X is called fuzzy weakly b-normal (FWBN) if and
only if for each pair of closed fuzzy sets Fy and Fy such that 3 A Fy = ()
, there exist two fuzzy b-open sets U and V' such that F1 < U, Fy, <V and
U<Vve

Obviously, the notions of b-normality and weak b-normality coincide for
ordinary topological spaces. For fuzzy topological spaces, the following prop-
erty may be proved.

Theorem 6.9. Fach b-normal fis is weakly b-normal.

Proof. The property is an immediate consequence of the implicatin Fy A
F, = & Fy < F§, which holds for every fuzzy sets Fy,Fy of X. ||
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