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Abstract. Analytic summability of functions was introduced by the second author in 2016. He utilized
Bernoulli numbers and polynomials for a holomorphic function to construct analytic summability. The
analytic summand function fσ (if exists) satisfies the difference functional equation fσ(z) = f (z) + fσ(z − 1).
Moreover, some upper bounds for fσ and several inequalities between f and fσ were presented by him. In
this paper, by using Alzer’s improved upper bound for Bernoulli numbers, we improve those upper bounds
and obtain some inequalities and new upper bounds. As some applications of the topic, we obtain several
upper bounds for Bernoulli polynomials, sums of powers of natural numbers, (e.g., 1p + 2p + 3p + ... + rp

≤
2p!
πp+1 (eπr

− 1)) and several inequalities for exponential, hyperbolic and trigonometric functions.

1. Introduction and Preliminaries

The Bohr-Mollerup theorem states that the only logarithmic convex solution of the functional equation

f (x + 1) = x f (x), x > 0 (1)

is of the form

f (x) = lim
n→∞

n!nx

(x + n)(x + n − 1) · · · (x + 1)x
(for x > 0) (2)

(see [3]). Taking logarithm of this formula (2) leads us to

log f (x) + log x = lim
n→∞

x log(n) +

n∑
k=1

log k − log(k + x)

 . (3)

This is of course in a close relation with the difference functional equation

F(x + 1) − F(x) = G(x), (4)

for the special case G(x) = x.
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Inspired by this, Hooshmand introduced the concept of limit summability in [4]. A real or complex
function f is called limit summable provided that the functional sequence

fσn (x) := x f (n) +

n∑
k=1

( f (k) − f (k + x)). (5)

is convergent. Later in [5], he noticed that some important elementary functions, such as polynomials
of degree> 1 and trigonometric functions, are not limit summable. To deal with this inadequacy he
introduced the concept of analytic summability in the preceding mentioned paper. In this regard the
Bernoulli polynomials and numbers play a crucial role.

Given a complex number z the Bernoulli polynomials B0(z),B1(z), · · · are generated by the equation

tezt

et − 1
=

∞∑
n=0

Bn(z)
n!

tn, |t| < 2π.

The sequences Bn := Bn(0), bn := Bn(1) are called first and second Bernoulli numbers respectively (see [2],
Chapter 12). The following notation of [5] are used for the definition of the analytic summability

σ(zn) =
Bn+1(z + 1) − bn+1

n + 1
, z ∈ C,n ≥ 0 (6)

Notice that if r ∈N then we have

σ(rn) = 1n + 2n + 3n + · · · + rn.

Also, putting

βnk = βn,k :=
(
n + 1

k

)
bn+1−k

n + 1
=

n!
k!(n + 1 − k)!

bn+1−k (7)

we have

σ(zn) =

n+1∑
k=1

βnkzk, z ∈ C,n ≥ 0, (8)

for all n ≥ 0, 1 ≤ k ≤ n + 1 (see [5]). Recall from [5] the concepts of analytic summability and related
definitions as follows.

Definition 1.1. A complex or real analytic function defined on an open domain D of the form f (z) =
∑
∞

n=0 cnzn is
called analytic summable (resp. absolutely analytic summable) at z0 if the functional series

fσA (z0) = fσ(z0) =

∞∑
n=0

cnσ(zn
0)

is convergent (resp. absolutely convergent). We call f analytic summable on E ⊆ D if it is analytic summable at
every point of E. The function fσA = fσ (with the largest possible domain) is called analytic summand function of f .
If f is analytic summable on the whole C, then we call f entire analytic summable.

Notice that if f is analytic summable on D, then it satisfies the functional difference equation

fσ(z) = f (z) + fσ(z − 1), z ∈ D ∩ (D + 1). (9)

In [5] there are given several criteria for analytic summability of holomorphic functions, in particular the
upper bounds (10) for analytic summand functions are estimated.
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Theorem 1.2. Let f (z) =
∑
∞

n=0 cnzn be an analytic function defined on an open domain D. If
∑
∞

n=0
n!
πn cn is absolutely

convergent (e.g., lim supn→∞
n√n!|cn| < π ), then f is absolutely analytic summable on D. Moreover, by putting

Abs!/π( f ) :=
∑
∞

n=0
n!
πn |cn|, Abs( f (z)) :=

∑
∞

n=0 |cn||z|n, We have the following upper bounds for fσA

| fσ(z)| ≤
1
π

(
(
π
2
− 1) Abs( f (z)) + (eπ|z| − 1) Abs!/π( f )

)
(10)

≤
2
π

(eπ|z| − 1) Abs!/π( f )

for every z ∈ D.

Proof. The proof exists in [5] Theorem 4.1. Here we only prove the inequality. To achieve (10) we define the functional
sequence {1n} by

1n(t) :=
eπt
− 1
π

·
n!
πn + (

1
π
−

1
2

)tn, t ≥ 0.

Since 1n(0) = 0, for all n, and

1′n(t) =
n!
πn eπt + (

1
π
−

1
2

)n · tn−1
≥ 0, t ≥ 0, n ∈N

by putting t = |z| one can conclude that
∑
∞

n=0 |cn|.1n(|z|) ≥ 0 and consequently

2
π

(eπ|z| − 1)Abs!/π( f ) −
1
π

(
(
π
2
− 1)Abs( f (z)) + (eπ|z| − 1)Abs!/π( f )

)
=

∞∑
n=0

|cn| · 1n(|z|) ≥ 0.

Hooshmand used the following bound of the Bernoulli numbers from [6, p.575] in the proof of the preceding
theorem

|Bn| = |bn| <
2n!

(2π)n ·
1

1 − 21−n , n = 2, 3, 4, 5, · · · (11)

and by using (11) the following upper bound for βnk is obtained (see [5]):

|βnk| ≤
2n!

k!πn−k+1
; 1 ≤ k ≤ n + 1. (12)

In this paper, we use Alzer’s improvement (13) of (11) to improve the upper bounds of the analytic summand
functions (see [1])

|B2n| ≤
2(2n)!
(2π)2n ·

1
1 − 2β−2n , n ≥ 1, (13)

where

β = 2 +
log(1 − 6

π2 )

log 2
= 0.6491 · · · .

Also,we obtain some inequalities for many special functions by using the results.
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2. Derived inequalities from new upper bounds

The upper bounds (12) yields the following upper bounds for σ(zn) (for more details see [5]):

|σ(zn)| ≤
π − 2

2π
|z|n +

n!
πn+1

n+1∑
k=1

(π|z|)k

k!
≤

2n!
πn+1 (eπ|z| − 1). (14)

Now by using (13) and a proof similar to that of (14), we achieve the following improved upper bounds for
βnk and σ(zn):

|βnk| ≤
n!

k!(n − k + 1)!
·

2(n − k + 1)!
(2π)n−k+1

·
1

1 − 2β−(n−k+1)

=
n!

k!πn−k+1
·

1
1 − 2β−(n−k+1)

≤
n!

k!πn−k+1
·

1
2 − 2β−1 ; 1 ≤ k ≤ n − 1

this leads us to

|βnk| ≤


1
2 if k = n
0 if n + 1 − k is odd and k < n
µ n!

k!πn+1−k if n + 1 − k is even and k < n + 1
(15)

where

µ =
1

2 − 2β−1 =
1

2 − 21+log2(1− 6
π2 )

=
π2

12
= 0.822 · · · .

Also, we have

|σ(zn)| ≤
|z|n+1

n + 1
+
|z|n

2
+

n−1∑
k=1

n−k is odd

|βnk||z|k

=

 |z|n
2 + |z|n+1

n+1 +
∑ n

2
m=1 |βn,2m−1||z|2m−1 ; n is even

|z|n
2 + |z|n+1

n+1 +
∑ n−1

2
m=1 |βn,2m||z|2m ; n is odd

(16)

We now are in a position to the previous relations in order to improve the upper bounds of the analytic
summand functions. Moreover, several inequalities will be derived. Following Hooshmand’s notation in
[5], we use the next notation:

Abse
!/π( f ) =

∞∑
n=0

n is even

n!
πn |cn|, Abso

!/π( f ) =

∞∑
n=0

n is odd

n!
πn |cn|

F(z) =

∞∑
n=0

cn

n + 1
zn+1 (the primitive function of f ).

Theorem 2.1. Let f (z) =
∑
∞

n=0 cnzn be an analytic function defined on an open domain D. If
∑
∞

n=0
n!
πn cn is absolutely

convergent (e.g. lim supn→∞
n√n!|cn| < π), then f is analytic summable on D and

| fσ(z)| ≤
1
2

Abs( f (z)) + (1 − µ) Abs(F(z)) +
µ

π
sinh(π|z|) Abse

!/π( f ) (17)

+
µ

π
(cosh(π|z|) − 1) Abso

!/π( f ), z ∈ D.
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Proof. Putting fσN (z) = fσAN
:=

∑N
n=0 cnσ(zn), and using the inequalities (15), (16) and splitting the sigma into

two summations (for even and odd terms), we obtain

| fσN (z)| ≤
N∑

n=0

|cn||σ(zn)|

=

N∑
n=0

n is even

|cn|

 |z|n2
+
|z|n+1

n + 1
+

n
2∑

m=1

|βn,2m−1||z|2m−1

 +

N∑
n=0

n is odd

|cn|

 |z|n2
+
|z|n+1

n + 1
+

n−1
2∑

m=1

|βn,2m||z|2m


≤

N∑
n=0

n is even

|cn|

 |z|n2
+
|z|n+1

n + 1
+

n
2∑

m=1

µ
n!

(2m − 1)!πn−2m+2 |z|
2m−1


+

N∑
n=0

n is odd

|cn|

 |z|n2
+
|z|n+1

n + 1
+

n−1
2∑

m=1

µ
n!

(2m)!πn−2m+1 |z|
2m


=

1
2

N∑
n=0

|cn||z|n +

N∑
n=0

n is even

n
2 +1∑
m=1

µ|cn|
n!

(2m − 1)!πn−2m+2 |z|
2m−1 + (1 − µ)

N∑
n=0

n is even

|cn|

n + 1
|z|n+1

+

N∑
n=0

n is odd

n+1
2∑

m=1

µ|cn|
n!

(2m)!πn−2m+1 |z|
2m + (1 − µ)

N∑
n=0

n is odd

|cn|

n + 1
|z|n+1

≤
1
2

AbsN( f (z)) + (1 − µ) AbsN(F(z)) +
µ

π
sinh(π|z|) Abse

!/π( f ) +
µ

π
(cosh(π|z|) − 1) Abso

!/π( f )

Since fσN (z)→ fσ(z) (by Theorem 1.2), by letting N→∞we get (17).

Corollary 2.2. Under the conditions of the preceding theorem, we have

| fσ(z)| ≤
1
2

Abs( f (z)) + (1 − µ) Abs(F(z)) +
µ

π
sinh(π|z|) Abse

!/π( f ) +
µ

π
(cosh(π|z|) − 1) Abso

!/π( f ) (18)

≤
1
2

Abs( f (z)) + (1 − µ) Abs(F(z)) +
µ

π
sinh(π|z|) Abs!/π( f )

≤
1
π

(
(
π
2
− 1) Abs( f (z)) + (eπ|z| − 1) Abs!/π( f )

)
≤

2
π

(eπ|z| − 1) Abs!/π( f )

Proof. The last inequality of (18) is proved in Theorem 1.2, and the first and second inequalities of (18) are
obtained from (17) together with the fact cosh(π|z|) − 1 ≤ sinh(π|z|). What remains is to prove the third
inequality. To do this, define the functional sequence {hn} by

hn(t) :=
eπt
− 1 + µ sinh(πt)

π
·

n!
πn −

tn

π
+
µ − 1
n + 1

tn+1, t ≥ 0

Since hn(0) = 0, for all n, and

h′n(t) = (eπt + µ cosh(πt)) ·
n!
πn −

n
π

tn−1 + (µ − 1)tn

=
n!
πn (eπt

−
πn

n!
tn
−

πn−1

(n − 1)!
tn−1) +

µn!
πn cosh(πt) + µtn

≥ 0,
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for all n and t ≥ 0, then we conclude that hn(t) ≥ 0 . By putting t = |z|we have
∑
∞

n=0 |cn|.hn(|z|) ≥ 0 and so

1
π

(
(
π
2
− 1) Abs( f (z)) + (eπ|z| − 1) Abs!/π( f )

)
−

1
2

Abs( f (z)) + (1 − µ) Abs(F(z)) +
µ

π
sinh(π|z|) Abs!/π( f )

=

∞∑
n=0

|cn|hn(|z|) ≥ 0,

this completes the proof.

The following corollary presents an interesting inequality for the summation f (1) + f (2) + · · ·+ f (r) when f
is an analytic function with conditions told before and r is a positive integer.

Corollary 2.3. Let the assumptions in Theorem 2.1 hold. If r is a positive integer in D, then we have the following
inequalities for the partial summation of the sequence { fk := f (k)}rk=1.∣∣∣∣∣∣∣

r∑
k=1

f (k)

∣∣∣∣∣∣∣ ≤ 1
2

Abs( f (r)) + (1 − µ) Abs(F(r)) +
µ

π
sinh(πr) Abse

!/π( f ) +
µ

π
(cosh(πr) − 1) Abso

!/π( f ) (19)

≤
1
2

Abs( f (r)) + (1 − µ) Abs(F(r)) +
µ

π
sinh(πr) Abs!/π( f )

≤
1
π
{(
π
2
− 1) Abs( f (r)) + (eπr

− 1) Abs!/π( f )}

≤
2
π

(eπr
− 1) Abs!/π( f ).

Proof. By using the difference functional equation (9) for z = r and the point that when r ∈ D so is r− 1, one
can conclude

fσ(r) = f (1) + f (2) + · · · + f (r).

Now Corollary 2.2 completes the proof.

Example 2.4. According to [5] the natural exponential function exp(z) = ez is entire analytic summable and

expσ(z) =
e

e − 1
(ez
− 1), z ∈ C.

By using (18) for the natural exponential function we have∣∣∣∣ e
e − 1

(ez
− 1)

∣∣∣∣ ≤ 1
2

e|z| + (1 − µ)(e|z| − 1) +
µπ

π2 − 1
sinh(π |z|) +

µ

π2 − 1
(cosh(π |z|) − 1)

≤
1
2

e|z| + (1 − µ)(e|z| − 1) +
µ

π − 1
sinh(π |z|)

≤
π − 2

2π
e|z| +

1
π − 1

(eπ|z| − 1)

≤
2

π − 1
(eπ|z| − 1)

which is stronger than the inequality obtained in Example 2.1 in [5].
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3. Applications

In this section, we present several applications of the results of the preceding section. The main results
are as follow: (1) finding upper bounds for Bernoulli polynomials, (2) obtaining upper bounds for sums of
powers of natural numbers , (3) offering some inequalities for hyperbolic, trigonometric and the exponential
functions.

Example 3.1. Considering (6) we have:

|Bn(z)| ≤ n|σ(z − 1)n−1
| + |bn|.

Now by using (16) we conclude that

|Bn(z)| ≤


n
(
|z−1|n−1

2 + |z−1|n

n +
∑ n−1

2
m=1 µ

(n−1)!
(2m−1)!πn−2m−2 ||z − 1|2m−1

)
+ |bn|,

n is odd
n
(
|z−1|n−1

2 + |z−1|n

n +
∑ n

2−1
m=1 µ

(n−1)!
(2m)!πn−2m ||z − 1|2m

)
+ |bn|,

n is even

where the constant µ is as in section 2.

Example 3.2. Suppose p is an arbitrary positive integer and put f (z) = zp. Since f is entire analytic summable, then
by using Corollary 18 and 2.3 one can obtain the following upper bounds for “r sums of powers of natural numbers”
as two cases:

p is even:

1p + 2p + 3p + ... + rp
≤

1
2

rp + (1 − µ)
rp+1

p + 1
+
µp!
πp+1 sinh(πr)

≤ (
1
2
−

1
π

)rp +
p!
πp+1 (eπr

− 1)

≤
2p!
πp+1 (eπr

− 1).

p is odd:

1p + 2p + 3p + ... + rp
≤

1
2

rp + (1 − µ)
rp+1

p + 1
+
µp!
πp+1 (cosh(πr) − 1)

≤ (
1
2
−

1
π

)rp +
p!
πp+1 (eπr

− 1)

≤
2p!
πp+1 (eπr

− 1).

Hence, for every positive integer r, we have

1p + 2p + 3p + ... + rp
≤

2p!
πp+1 (eπr

− 1).

Example 3.3. Since (sin)σ(z) =
sin(z)+sin(1)−sin(z+1)

2−2 cos(1) (see [5]), then∣∣∣∣∣sin(z) + sin(1) − sin(z + 1)
2 − 2 cos(1)

∣∣∣∣∣ ≤ 1
2

sinh(|z|) + (1 − µ)(cosh(|z|) − 1) +
µ

π2 − 1
(cosh(π |z|) − 1)

≤
1
2

sinh(|z|) + (1 − µ)(cosh(|z|) − 1) +
µ

π2 − 1
(sinh(π |z|)

≤
1
2
−

1
π

sinh(|z|) +
1

π2 − 1
(eπ|z| − 1)

≤
2

π2 − 1
(eπ|z| − 1).
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In particular, if z = r ∈N then

|sin(1) + sin(2) + · · · + sin(r)| ≤
1
2
−

1
π

sinh(r) +
eπr
− 1

π2 − 1

≤
2

π2 − 1
(eπr
− 1).

Remark 3.4. In [5] Hooshmand showed that the complex function az is analytic summable for | ln a| < π and then

σA(az) =
a

a − 1
(az
− 1), | ln a| < π, z ∈ C. (20)

Hence, for e−z = ( 1
e )z, we have

σA(e−z) =
1

1 − e
(e−z
− 1)

and so∣∣∣∣∣ e−z
− 1

1 − e

∣∣∣∣∣ ≤ 1
2

e|z| + (1 − µ)(e|z| − 1) +
µπ

π2 − 1
sinh(π |z|) +

µ

π2 − 1
(cosh(π |z|) − 1)

≤
2

π − 1
(eπ|z| − 1).

Also, we have

σA(cosh(z)) =
1
2
σA(ez) +

1
2
σA(e−z) =

ez+1 + 1 − (e−z + e)
2(1 − e)

=
ez+1
− e−z

2(1 − e)
+

1
2

and we arrive at the inequalities∣∣∣∣∣∣ ez+1
− e−z

2(1 − e)
+

1
2

∣∣∣∣∣∣ ≤ 1
2

cosh(|z|) + (1 − µ) sinh(|z|) +
µπ

π2 − 1
sinh(π|z|)

≤ (
1
2
−

1
π

) cosh(|z|) +
π

π2 − 1
(eπ|z| − 1)

≤
2π

π2 − 1
(eπ|z| − 1).
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