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Abstract. Existence and global attractivity of periodic solutions to some subclasses of the following class
of difference equations

xn+1 = qnxn + f (n, xn, xn−1, . . . , xn−k), n ∈N0,

where k ∈ N0, (qn)n∈N0 is a T-periodic sequence (T ∈ N), and f : N0 ×Rk+1
→ R is a T-periodic function in

the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is continuous in other variables, are studied.

1. Introduction

Throughout the paper, by Z is denoted the set of all integers, while byNl, where l ∈ Z, is denoted the
set of all n ∈ Z such that n ≥ l. If k, l ∈ Z, then the notation n = k, l stands for the set of all n ∈ Z such that
k ≤ n ≤ l.

Throughout the paper we use the conventions

t∑
i=s

ci = 0 and
t∏

i=s

ci = 1,

when t < s, t, s ∈N0.
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The work of Bratislav Iričanin was supported by the Serbian Ministry of Education and Science projects III 41025 and OI 171007,
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The linear first-order difference equation

xn+1 = qnxn + fn, n ∈N0, (1)

where (qn)n∈N0 and ( fn)n∈N0 are sequences of numbers is a very important and useful solvable difference
equation (many classical solvable difference equations and systems, or their invariants, can be found, for
example, in [1, 2, 7, 8, 11, 12, 14–16, 18, 19, 22–29, 34, 36, 61]). For some methods for solving equation (1), see,
for example, [8, 12, 14, 25] (book [25] contains a nice presentation of three methods for solving it, essentially
corresponding to the three methods for solving the linear differential equation of first order).

The general solution to equation (1) is

xn = x0

n−1∏
j=0

q j +

n−1∑
i=0

fi
n−1∏

j=i+1

q j, n ∈N0. (2)

To describe the usefulness of equation (1), we mention that many nonlinear difference equations and
systems of difference equations are solved by transforming them into some of special cases of the equation,
by using one or several changes of variables along with some algebra (see, for example, the difference
equations in [30, 38, 41, 47, 55, 56], systems in [5, 42–45, 51, 52, 54, 55, 57–59], as well as the equations and
systems in references therein).

An interesting case is when the sequences qn and fn are periodic. Recall that a sequence (an)n∈N0 is
eventually periodic if there are T ∈N and n0 ∈N0, such that

an+T = an, for n ≥ n0.

When T = 1 for the sequence is said that is eventually constant (see, for example, [13]). If n0 = 0 then it is
said that the sequence is T-periodic, although many authors understand that every eventually T-periodic
sequence is T-periodic. Some basic facts on periodic solutions to equation (1), can be found in [12], while
some more complex ones can be found in [3]. For some other results on periodicity and related topics, e.g.,
[6, 37, 39, 40, 53] and the references therein.

We may assume that sequences qn and fn are periodic with the same period, since if qn is periodic with
period T1 and fn is periodic with period T2, then both sequences are periodic with period T = lcm(T1,T2)
(the least common multiplier of natural numbers T1 and T2).

Since in this paper qn will always denote a T-periodic sequence, from now on we will use the following
notation

λ :=
T−1∏
j=0

q j.

Note that the T-periodicity of qn, implies

n+T−1∏
j=n

q j = λ, (3)

for every n ∈N0.

In [3] is quoted the following result which essentially appears in [12].

Theorem 1. Assume that (qn)n∈N0 and ( fn)n∈N0 are two T-periodic sequences. Then the following statements are
true.

(a) If

0 , λ , 1, (4)

then (1) has a unique T-periodic solution given by the initial condition

x0 =

∑T−1
i=0 fi

∏T−1
j=i+1 q j

1 − λ
.
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(b) If

λ = 1 and
T−1∑
i=0

fi
T−1∏
j=i+1

q j = 0, (5)

then all solutions to equation (1) are T-periodic.
(c) If

λ = 1 and
T−1∑
i=0

fi
T−1∏
j=i+1

q j , 0,

then equation (1) has no T-periodic solutions.

Remark 1. Difference equation (1) is a special case of the general first-order difference equation

xn+1 = f (n, xn), n ∈N0, (6)

where f :N0 ×R→ R. Note simply that for the case of equation (1) we have

f (n, t) = qnt + fn,

for n ∈N0 and t ∈ R.
The following condition

f (n + T, x) = f (n, x), (7)

where n ∈N0 and x ∈ R, essentially corresponds to the T-periodicity of sequences qn and fn.
By a direct calculation from (6) we have

xn = f (n − 1, f (n − 2, . . . f (1, f (0, x0)) . . .)), n ∈N,

from which it follows that if (̂xn)n∈N0 is a T-periodic solution to equation (6), then the following condition
must hold

x̂T = f (T − 1, f (T − 2, . . . f (1, f (0, x̂0)) . . .)) = x̂0, (8)

that is, the following nonlinear algebraic equation

f (T − 1, f (T − 2, . . . f (1, f (0, x)) . . .)) = x, (9)

must have a solution.
On the other hand, if equation (9) has a solution, say x̂0, then (8) holds. From this, (6), (7) and (8), it

follows that
x̂T+1 = f (T, x̂T) = f (0, x̂0) = x̂1.

Similarly, by an inductive argument, it follows that

x̂n+T = x̂n,

for every n ∈N0.
Hence, the following proposition holds.

Proposition 1. Consider equation (6), where f : N0 × R → R, is a function satisfying condition (7). Then, the
equation has a T-periodic solution if and only if the nonlinear equation (9) has a solution.
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Since for the case of difference equation (1), by using formula (2) and (3) with n = 0, we have

f (T − 1, f (T − 2, . . . f (1, f (0, x0)) . . .)) = λx0 +

T−1∑
i=0

fi
T−1∏
j=i+1

q j, (10)

the first and third statements in Theorem 1 follow from Proposition 1, whereas if (5) holds, then from (10)
we easily see that for every x0 ∈ R we have

x0 = xT,

from which along with the periodicity of the sequences qn and fn the second statement in Theorem 1 follows.

By using (2) and (3), for every solution (xn)n∈N0 to difference equation (1), we have

xn+T = x0

n+T−1∏
j=0

q j +

n+T−1∑
i=0

fi
n+T−1∏
j=i+1

q j

= λ
(
x0

n−1∏
j=0

q j +

n−1∑
i=0

fi
n−1∏

j=i+1

q j

)
+

n+T−1∑
i=n

fi
n+T−1∏
j=i+1

q j

= λxn + cn,

for every n ∈N0, where

cn :=
n+T−1∑

i=n

fi
n+T−1∏
j=i+1

q j. (11)

Hence, if λ = 0, we have

xn+T = cn, (12)

for n ∈N0.
Now we quote an interesting lemma, whose special cases have been essentially used in the literature

(for example, in [33, 50]).

Lemma 1. Let (qn)n∈N0 , ( f ( j)
n )n∈N0 , j = 1, p, be T-periodic sequences, and a sequence (bn)n≥k is defined by

bn :=
n+l∑

j=n−k

p∑
t=1

f (t)
j

n+m∏
i= j+s

qi, n ≥ k, (13)

where k, l,m, p, s ∈N0.
Then, the sequence (bn)n≥k is also T-periodic.

Proof. We have

bn+T =

n+T+l∑
j=n+T−k

p∑
t=1

f (t)
j

n+T+m∏
i= j+s

qi =

n+l∑
j′=n−k

p∑
t=1

f (t)
j′+T

n+T+m∏
i= j′+T+s

qi

=

n+l∑
j′=n−k

p∑
t=1

f (t)
j′

n+m∏
i′= j′+s

qi′+T =

n+l∑
j′=n−k

p∑
t=1

f (t)
j′

n+m∏
i′= j′+s

qi′ = bn,

for all n ≥ k, from which the lemma follows. �
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If in (13) is chosen k = 0, l = T − 1, m = T − 1, p = 1, s = 1 and f (1)
n = fn, n ∈ N0, then from Lemma 1 we

obtain the following corollary.

Corollary 1. Let (qn)n∈N0 and ( fn)n∈N0 be two T-periodic sequences, and a sequence (cn)n∈N0 is defined by (11). Then,
the sequence (cn)n∈N0 is also T-periodic.

From Corollary 1 and (12) the following result follows.

Corollary 2. Let (qn)n∈N0 and ( fn)n∈N0 be two T-periodic sequences, and λ = 0. Then, every solution (xn)n∈N0 to
equation (1) is eventually T-periodic.

The relationship between the periodic and other solutions to equation (1) was not considered in [3]. The
problem, among other ones, has been recently tackled in our paper [50], where we considered the equation
not only on the domainN0, but on the set of all integers Z, which is possible if qn , 0, n ≤ −1 (for the case
of equation (6) such a condition is in general case impossible to find). For a class of linear second-order
difference equations some results of this type, among other ones, have been recently proved in [49].

Definition. For a sequence (an)n≥l, l ∈ Z, is said that it converges geometrically to a sequence (ãn)n≥l if there
are L ≥ 0 and q ∈ (0, 1), such that

|an − ãn| ≤ Lqn,

for n ≥ l.

The following result, among other ones, was proved in [48].

Theorem 2. Assume (qn)n∈Z and ( fn)n∈Z are two T-periodic sequences, and that (4) holds. Then equation (1) has a
unique T-periodic solution, and the following statements are true.

(a) If 0 < |λ| < 1, then all the solutions to equation (1) converge geometrically to the periodic one as n→ +∞, while
they are getting away geometrically from the periodic one as n→ −∞.

(b) If |λ| > 1, then all the solutions to equation (1) converge geometrically to the periodic one as n→ −∞, while they
are getting away geometrically from the periodic one as n→ +∞.

Remark 2. Note that the condition λ , 0 in Theorem 2 implies

qn , 0, for n ∈ Z,

from which it follows that every solution to equation (1) is defined on the whole Z, in this case.

On the other hand, in [31] were studied positive solutions to the following difference equation

xn+1 = qnxn + f (n, xn−k), n ∈N0, (14)

where k ∈N0, (qn)n∈N0 is a positive T-periodic sequence, and f :N0×[0,∞)→ (0,∞) is a T-periodic function
in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is continuous in the second variable.

The main reason for studying only positive solutions to equation (14) in [31], is the fact that some special
cases of the equation are discrete analogues of some models in biology. For example, the equation

xn+1 = axn +
b

1 + xγn−k

, n ∈N0,

where
min{a, b, γ} > 0
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and k ∈ N0, is a discrete analogue of a model that has been used in studying of the blood cell production
([17]).

The following result was proved in [31].

Theorem 3. Assume that k ∈ N0, (qn)n∈N0 is a positive T-periodic sequence such that qn ∈ (0, 1], n ∈ N0, and
f : N0 × [0,∞) → (0,∞) is a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is
nonincreasing and continuous in the second variable and for each n ∈ {0, 1, . . . ,T−1} there are nonnegative constants
Ln such that

| f (n, x) − f (n, y)| ≤ Ln|x − y|, (15)

for every x, y ∈ [0,∞), and

n+k∑
j=n

L j

n+k∏
i= j+1

qi < 1, (16)

for each n ∈ {0, 1, . . . ,T − 1}.
Then equation (14) has a unique positive T-periodic solution (x̃n)n≥−k, and every positive solution (xn)n≥−k to the

equation satisfies

lim
n→∞

(x̃n − xn) = 0.

Note that the main difference between Theorems 2 and 3, is that the later one considers only positive
solutions to equation (14), unlike the former one which considers arbitrary solutions to equation (1). For
some related results see [32]. It is a natural problem to get some related results to Theorem 3 for some more
general equations. In the recent paper [33] a generalization of Theorem 3 has been given.

Motivated by the problem, as well as some results in [31, 33, 46, 48–50], here we consider the existence
and global attractivity of periodic solutions to some subclasses of the following class of difference equations

xn+1 = qnxn + f (n, xn, xn−1, . . . , xn−k), n ∈N0, (17)

where k ∈ N0, f : N0 × Rk+1
→ R is a function such that for each n ∈ N0 it is continuous in other k + 1

variables and

f (n + T, t1, . . . , tk+1) = f (n, t1, . . . , tk+1),

for some T ∈N and every t j ∈ R, j = 1, k + 1.
Let l∞T (Nm), where m ∈ Z \N, be the space of all T-periodic sequences x = (xn)n≥m, with the following

norm

‖x‖ps = max
m≤n≤m+T−1

|xn|. (18)

It is known that l∞T (Nm) with norm (18) is a Banach space.
One of the standard methods for showing the existence of a specific type of solutions to difference

equations is application of fixed-point theorems. Beside the contraction mapping theorem, which was
formulated and proved in [4] (some interesting applications of the theorem have been recently presented in
[46], [50] and [60]), one of the fixed-point theorems which is frequently applied is the Schauder fixed point
theorem ([35]). For some applications of the theorem, see, for example [9, 10, 20, 21, 33] and the related
references therein.
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2. Main results

This section states and proves the main results in this paper. The first result is about the existence of
periodic solutions to equation (17) and is motivated by Theorem 1 in [33].

Theorem 4. Assume (qn)n∈N0 is a T-periodic sequence such that λ , 0, 1, function f :N0 × [a, b]k+1
→ R, a, b ∈ R,

is continuous on [a, b]k+1 for each n ∈N0, and is T-periodic in the first variable, and the following conditions

a ≤ min
n=0,T−1

min
a≤t j≤b, j=1,k+1

n+T−1∑
i=n

f (i, t1, . . . , tk+1)
1 − λ

n+T−1∏
j=i+1

q j

≤ max
n=0,T−1

max
a≤t j≤b, j=1,k+1

n+T−1∑
i=n

f (i, t1, . . . , tk+1)
1 − λ

n+T−1∏
j=i+1

q j ≤ b,

(19)

hold.
Then, equation (17) has a T-periodic solution.

Proof. Let
Aa,b := {(xn)n≥−k ∈ l∞T (N−k) : a ≤ xn ≤ b,n ≥ −k}.

It is easy to see that Aa,b is a convex and compact subset of the linear space l∞T (N−k).
Using (2) and (3), we have that for every solution (xn)n≥−k to equation (17) holds

xn+T =x0

n+T−1∏
j=0

q j +

n+T−1∑
i=0

f (i, xi, . . . , xi−k)
n+T−1∏
j=i+1

q j

=λ
(
x0

n−1∏
j=0

q j +

n−1∑
i=0

f (i, xi, . . . , xi−k)
n−1∏

j=i+1

q j

)
+

n+T−1∑
i=n

f (i, xi, . . . , xi−k)
n+T−1∏
j=i+1

q j

=λxn + dn, (20)

where

dn :=
n+T−1∑

i=n

f (i, xi, . . . , xi−k)
n+T−1∏
j=i+1

q j, (21)

for n ∈N0.
If (xn)n≥−k is a T-periodic sequence, then the following sequence

f̃n := f (n, xn, . . . , xn−k), n ∈N0,

is also T-periodic. Indeed, by using the T-periodicity of function f in the first variable and T-periodicity of
(xn)n≥−k, we have

f̃n+T = f (n + T, xn+T, . . . , xn+T−k) = f (n, xn, . . . , xn−k) = f̃n,

for every n ∈N0.

Since sequences qn and f̃n are T-periodic, by Lemma 1 it follows that for every T-periodic sequence
(xn)n≥−k the corresponding sequence dn defined in (21) is also T-periodic.

Let T̂ be an operator on the set Aa,b defined by

T̂xn =

∑n+T−1
i=n f (i, xi, . . . , xi−k)

∏n+T−1
j=i+1 q j

1 − λ
, (22)
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for n ∈N0.
Then, from (19) and (22), we have

a ≤ T̂xn ≤ b, (23)

for every n ∈N0 and (xn)n≥−k ∈ Aa,b. The periodicity of the sequence (T̂xn)n∈N0 follows from the T-periodicity
of the sequence defined in (21). Hence, T̂(Aa,b) ⊆ Aa,b.

Since for each n ∈ {0, 1, . . . ,T − 1}, f (n, t1, . . . , tk+1) is continuous on the set [a, b]k+1, it is not difficult to
see, by using the standard ε-δ technique, that the operator T̂ is continuous on the set Aa,b.

By using the Schauder fixed point theorem, operator T̂ has a fixed point in the set Aa,b, that is, there is a
sequence (̂xn)n≥−k ∈ Aa,b such that

T̂x̂n = x̂n, for n ∈N0,

which can be written as

x̂n =

∑n+T−1
i=n f (i, x̂i, . . . , x̂i−k)

∏n+T−1
j=i+1 q j

1 − λ
,

for n ∈N0.
Since sequences qn and x̂n are T-periodic, as well as the function f in the first variable, we have

x̂n+1 =

∑n+T
i=n+1 f (i, x̂i, . . . , x̂i−k)

∏n+T
j=i+1 q j

1 − λ

=
qn+T

∑n+T−1
i=n f (i, x̂i, . . . , x̂i−k)

∏n+T−1
j=i+1 q j

1 − λ

+
f (n + T, x̂n+T, . . . , x̂n+T−k) − f (n, x̂n, . . . , x̂n−k)

∏n+T
j=n+1 q j

1 − λ
= qnx̂n + f (n, x̂n, . . . , x̂n−k), (24)

which shows that the sequence (̂xn)n≥−k is a T-periodic solution to difference equation (17). �

Remark 3. The introduction of the operator defined in (22) is quite natural and is a folklore thing. Namely,
if a solution (xn)n≥−k to equation (17) is T-periodic, then from (20) it follows that, in the case λ , 1, it must be

xn =
dn

1 − λ
, n ∈N0,

which strikingly suggests the introduction of the operator.

Theorem 5. Consider the following difference equation

xn+1 = qnxn + f (n, xn), n ∈N0, (25)

where (qn)n∈N0 is a positive T-periodic sequence such that λ < 1, f :N0 ×R→ R is a T-periodic function in the first
variable, which for each n ∈ {0, 1, . . . ,T − 1} is nonincreasing in the second variable, and that the functions

1l(x) = qlx + f (l, x), (26)

are nondecreasing for each l ∈ {0, 1, . . . ,T − 1}.
If equation (25) has a T-periodic solution, then every solution to the equation converges to the periodic one

geometrically as n→ +∞.

Proof. First note that if x0 ≤ x̂0, then from (25) and the monotonicity of function 11(x), it follows that

x1 = q1x0 + f (1, x0) ≤ q1x̂0 + f (1, x̂0) = x̂1. (27)
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Assume that we have proved

xn ≤ x̂n, (28)

for some n ∈ N, and let n = mT + l, where m ∈ N0 and l ∈ {0, 1, . . . ,T − 1}. Then from the assumption and
the monotonicity of function 1l(x), T-periodicity of the sequence qn and function f in the first variable, it
follows that

xn+1 = qnxn + f (n, xn) = qlxn + f (l, xn)
≤ qlx̂n + f (l, x̂n) = qnx̂n + f (n, x̂n) = x̂n+1. (29)

From (27), (29) and by the induction, it follows that (28) holds for every n ∈N0.
Now assume that (x̃n)n∈N0 is a T-periodic solution to equation (25), and that (xn)n∈N0 is another solution

to the equation.
First, assume that x0 ≤ x̃0. Then, by (28) we have

xn ≤ x̃n, (30)

for every n ∈N0.
If there is n0 ∈ N0 such that xn0 = x̃n0 , then from (25) is obtained that xn = x̃n for n ≥ n0, from which the

result follows in this case.
Otherwise, from (30), we have

yn := x̃n − xn > 0, (31)

for every n ∈N0.
Since x̃n is a solution to equation (25), we have

xn+1 + yn+1 = qn(xn + yn) + f (n, xn + yn), n ∈N0. (32)

Using (25) in (32), it follows that

yn+1 = qnyn + f (n, yn + xn) − f (n, xn), (33)

for n ∈N0.
From (33) along with the monotonicity of f (n, t) in the second variable and (31), it follows that

yn+1 ≤ qnyn, (34)

for every n ∈N0, from which it follows that

0 < yn ≤ y0

n−1∏
j=0

q j, n ∈N0. (35)

Hence, if n = mT + l for some m ∈N0 and l ∈ {0, 1, . . . ,T − 1}, form (35) and by using (3), we get

0 < x̃n − xn = yn = ymT+l ≤ y0

mT+l−1∏
j=0

q j

= y0

 l−1∏
j=0

q j

λm = y0

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n

≤ (x̃0 − x0) max
l=1,T

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n, (36)

for every n ∈N0.
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Since λ ∈ (0, 1), by letting n→ +∞ in (36) the result follows in this case.
Now assume that x̃0 < x0. Then, by (28) we have

x̃n ≤ xn, (37)

for every n ∈N0.
If there is n1 ∈ N, such that x̃n1 = xn1 , then as above we have xn = x̃n for n ≥ n1, from which the result

follows in this case.
Otherwise, from (37), we have

yn := x̃n − xn < 0, (38)

for every n ∈ N0, and that (33) holds, from which along with (38) and the monotonicity of f (n, t) in the
second variable, it follows that

qnyn ≤ yn+1, (39)

for every n ∈N0.
From (38) and (39), we have

0 < (−yn) ≤ (−y0)
n−1∏
j=0

q j, n ∈N0. (40)

Hence, if n = mT + l for some m ∈N0 and l ∈ {0, 1, . . . ,T − 1}, then form (40), as in (36), we get

0 < xn − x̃n = (−ymT+l) ≤ (−y0)
mT+l−1∏

j=0

q j

≤ (x0 − x̃0) max
l=1,T

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n, (41)

for every n ∈N0.
Since λ ∈ (0, 1), by letting n → +∞ in (41) the result follows in this case, finishing the proof of the

theorem. �

Remark 4. Since in Theorem 5 any solution to equation (25) converges to the chosen periodic one, it follows
that the periodic solution is unique.

From Theorems 4 and 5 the following corollary follows.

Corollary 3. Consider equation (25), where (qn)n∈N0 is a positive T-periodic sequence such that λ < 1, f : N0 ×

[a, b]→ R, a, b ∈ R, is a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is a continuous
and nonincreasing in the second variable, the functions in (26) are nondecreasing for each l ∈ {0, 1, . . . ,T − 1}, and
that the following conditions are satisfied

a ≤ min
n=0,T−1

min
a≤t≤b

n+T−1∑
i=n

f (i, t)
1 − λ

n+T−1∏
j=i+1

q j ≤ max
n=0,T−1

max
a≤t≤b

n+T−1∑
i=n

f (i, t)
1 − λ

n+T−1∏
j=i+1

q j ≤ b. (42)

Then, equation (25) has a unique T-periodic solution (x̃n)n∈N0 , such that

a ≤ x̃n ≤ b, n ∈N0, (43)

and every solution to the equation converges to the periodic one geometrically as n→ +∞.
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Proof. From Theorem 4 it follows that equation (25) has a T-periodic solution. By Theorem 5 it follows
that every solution to the equation converges to the periodic one geometrically as n → +∞, from which it
follows that it is unique (Remark 4). �

Example 1. Here we present an example of equation (25) which satisfies the conditions in Theorem 5. Let
(qn)n∈N0 be a positive T-periodic sequence such that λ < 1, and

f (n, x) = −
q̃lx

1 + |x|
, (44)

where n = Tm + l, for some m ∈ N0, l ∈ {0, . . . ,T − 1}, 0 < q̃l < ql, for every l ∈ {0, . . . ,T − 1}. It is clear from
(44) that f is decreasing for each l ∈ {0, . . . ,T − 1}, and consequently for each n ∈N0, and that by definition
it is T-periodic in the first variable. On the other hand, since

1(n, x) = qnx + f (n, x) =
qnx|x| + (qn − q̃n)x

1 + |x|
,

it is easy to see that 1 is increasing in the second variable for each n ∈N0.
Now note that the corresponding difference equation

xn+1 =
qnxn|xn| + (qn − q̃n)xn

1 + |xn|
, n ∈N0, (45)

has the trivial solution

xn = 0, n ∈N0, (46)

which is periodic of all periods, hence, it is also T-periodic. Since, all the conditions of Theorem 5 are
satisfied, it follows that all the solutions to equation (45) converge geometrically to solution (46) as n→ +∞.

Theorem 6. Consider equation (25), where (qn)n∈Z is a positive T-periodic sequence such that λ > 1, and f :
N0 ×R→ R is a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is nondecreasing in the
second variable.

If equation (25) has a T-periodic solution, then each other solution to the equation is getting away geometrically
from the periodic one as n→ +∞.

Proof. Since ql > 0 for every l ∈ {0, 1, . . . ,T − 1}, this fact along with the monotonicity of the function
f (l, x) in the second variable implies that the functions defined in (26) are strictly increasing on R. Hence,
by an argument as in the proof of Theorem 5 we see that if x0 ≤ x̂0, then

xn ≤ x̂n (47)

for every n ∈N0, and that in (47) strict inequality holds if and only if

x0 < x̂0.

Let (x̃n)n∈N0 be the T-periodic solution to (25) and (xn)n∈N0 be another solution to the equation.
First, assume that x0 < x̃0. Then, if yn := x̃n − xn, we have yn > 0, for every n ∈ N0. From (25) and (32),

we get (33), from which along with the monotonicity of f (n, x) in the second variable, it follows that

yn+1 ≥ qnyn, (48)

for every n ∈N0, and consequently

yn ≥ y0

n−1∏
j=0

q j, (49)
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for n ∈N0.
Hence, if n = mT + l for some m ∈N0 and l ∈ {0, 1, . . . ,T − 1}, form inequality (49) we obtain

x̃n − xn = yn ≥ y0

 l−1∏
j=0

q j

λm

= y0

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n

≥ (x̃0 − x0) min
l=1,T

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n, (50)

for every n ∈N0.
Since λ > 1, and

min
l=1,T

 l−1∏
j=0

q j
T√
λ

 > 0, (51)

by letting n→ +∞ in (50) the result follows in this case.
Now, assume that x̃0 < x0. Then, we have yn < 0, for every n ∈ N0. From this along with (33), and the

monotonicity of f (n, x) in the second variable, it follows that

yn+1 ≤ qnyn, (52)

for every n ∈N0, and consequently

(−yn) ≥ (−y0)
n−1∏
j=0

q j, (53)

for n ∈N0.
Hence, if n = mT + l for some m ∈N0 and l ∈ {0, 1, . . . ,T − 1}, form (53), as above, we have

xn − x̃n = (−yn) ≥ (−y0)

 l−1∏
j=0

q j

λm = (−y0)

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n

≥ (x0 − x̃0) min
l=1,T

 l−1∏
j=0

q j
T√
λ

 (
T√

λ)n, (54)

for every n ∈N0.
Since λ > 1 and (51) holds, by letting n→ +∞ in (54) the result follows in this case, completing the proof

of the theorem. �

Remark 5. Since in Theorem 6 any other solution to difference equation (25) is getting away geometrically
from the periodic one, it follows that the periodic solution is unique.

Combining Theorem 4 and Theorem 6 it is easy to see that the following corollary holds.

Corollary 4. Consider difference equation (25), where (qn)n∈N0 is a positive T-periodic sequence such that λ > 1,
f : N0 × [a, b] → R, a, b ∈ R, is a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is
continuous and nondecreasing in the second variable, and that the conditions in (42) are satisfied. Then, the equation
has a unique T-periodic solution (x̃n)n∈N0 satisfying (43), and each other solution to the equation is getting away
geometrically from the periodic one as n→ +∞.
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The following theorem is proved similarly to Theorem 6, thus the proof is omitted.

Theorem 7. Consider equation (17), where (qn)n∈N0 is a positive T-periodic sequence such thatλ > 1, f :N0×Rk+1
→

R is a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is nondecreasing in the other k + 1
variables.

If equation (17) has a T-periodic solution (x̃n)n∈N0 , then each other solution to the equation which does not oscillate
about (x̃n)n∈N0 is getting away geometrically from the periodic one as n→ +∞.

Remark 6. It is interesting to note that if we consider equation (17), where (qn)n∈N0 is a positive T-periodic
sequence such that λ < 1, f : N0 × Rk+1

→ R is a T-periodic function in the first variable, which for each
n ∈ {0, 1, . . . ,T − 1} is nonincreasing in the other k + 1 variables, and if we assume that the functions

1l(t1, . . . , tk+1) = qlt1 + f (l, t1, . . . , tk+1), (55)

are nondecreasing in variables t j, j = 1, k + 1, for each l ∈ {0, 1, . . . ,T − 1}, then if equation (17) has a T-
periodic solution (x̃n)n∈N0 , each other solution to the equation which does not oscillate about (x̃n)n∈N0 will
converge to the periodic one geometrically as n→ +∞. The result looks like a generalization of Theorem 5
for such solutions. However, the posed conditions on the monotonicity of functions f and 1l, l = 1, k + 1,
imply that the function f is constant in variables t2, . . . , tk+1, so that the result does not improve essentially
Theorem 5 for such solution.

From the same reason, it is not possible to extend Theorem 3 in [31], in this way. For example, the
following result, which is motivated also by Theorem 2 in [33] holds, but it is not an essential improvement
of the theorems.

Theorem 8. Assume k ∈ N0, (qn)n∈N0 is a positive T-periodic sequence such that λ < 1, f : N0 × Rk+1
→ R is

a T-periodic function in the first variable, which for each n ∈ {0, 1, . . . ,T − 1} is nonincreasing in the other k + 1
variables, the functions in (55) are nondecreasing in variables t j, j = 1, k + 1, for each l ∈ {0, 1, . . . ,T − 1}, there are
nonnegative T-periodic sequences (L(l)

n )n∈N0 , l = 1, k + 1, such that the following condition holds

| f (n, t1, . . . , tk+1) − f (n, t̃1, . . . , t̃k+1)| ≤
k+1∑
l=1

L(l)
n |tl − t̃l|, (56)

for every t j, t̃ j ∈ [0,∞), j = 1, k + 1, and

max
j=0,T−1

q j ≤ 1 and max
n=0,T−1

n+k∑
j=n

k+1∑
l=1

L(l)
j

n+k∏
i= j+1

qi < 1, (57)

or

max
n=0,T−1

n+k+T−1∑
j=n

k+1∑
l=1

L(l)
j

n+k+T−1∏
i= j+1

qi < 1. (58)

If equation (17) has a positive T-periodic solution (x̃n)n≥−k, then for every solution (xn)n≥−k to the equation the
following relation holds

lim
n→∞

(x̃n − xn) = 0. (59)
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[43] S. Stević, On the system xn+1 = ynxn−k/(yn−k+1(an + bn ynxn−k)), yn+1 = xn yn−k/(xn−k+1(cn + dnxn yn−k)), Appl. Math. Comput. 219

(2013), 4526-4534.
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