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On Idempotency of Linear Combinations of a Quadratic or a Cubic
Matrix and an Arbitrary Matrix
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Abstract. Let A be a quadratic or a cubic n× n nonzero matrix and B be an arbitrary n× n nonzero matrix.
In this study, we have established necessary and sufficient conditions for the idempotency of the linear
combinations of the form aA + bB, under the some certain conditions imposed on A and B, where a, b are
nonzero complex numbers.

1. Introduction and Preliminary Results

Let C, C∗, Cm×n, and Cn denote the sets of complex numbers, nonzero complex numbers, all m × n
complex matrices, and all n × n complex matrices, respectively. 0, 0n, and In stand for a zero matrix of
appropriate size, a zero matrix of order n, and an identity matrix of order n, respectively. The symbol ⊕
will denote the direct sum of matrices. Moreover, a matrix A ∈ Cn is called an idempotent, an involutive,
and an

{
α, β

}
− quadratic matrix if A2 = A, A2 = In, and (A − αIn)

(
A − βIn

)
= 0 with α, β ∈ C, respectively

[1]. It is noteworthy that an idempotent and an involutive matrix are a {1, 0} − quadratic matrix and a
{1,−1} − quadratic matrix, respectively. As in above, we will call a matrix A ∈ Cn as an

{
α, β, γ

}
− cubic

matrix if (A − αIn)
(
A − βIn

) (
A − γIn

)
= 0 with α, β, γ ∈ C. Involutive, idempotent, tripotent, and quadratic

matrices (that is, some special cases of cubic matrices) have been comprehensively studied in the literature
(for example [1–6, 8–11]). Moreover, they have applications to digital image encryption [12].

Consider a linear combination of the form

K = aA + bB, A,B ∈ Cn, a, b ∈ C∗. (1)

Recently, under some conditions, it has been studied some problems of characterizing all situations where a
linear combination of the form (1) is a special type of matrix when A and B are special types of matrices (see,
for example, [2–4, 9–11]). Liu et al. characterize the involutiveness of the form (1) when A is a quadratic or
a tripotent matrix and B is an arbitrary matrix [8].

The aim of this paper is to obtain the necessary and sufficient conditions for K = aA + bB to be an
idempotent matrix, where A is a quadratic or a cubic matrix and B is an arbitrary matrix with some certain
conditions. Moreover, some examples are given related to the obtained results.

It was established a useful expression for quadratic matrices in [9]. Now the following lemma, inspired
by it, can be given for cubic matrices.
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Lemma 1.1. Let A ∈ Cn. The following statements are equivalent.

(a) There exist α, β, γ ∈ C such that α , β, α , γ, β , γ and

(A − αIn)
(
A − βIn

) (
A − γIn

)
= 0. (2)

(b) A is diagonalizable and its spectrum σ(A) is a subset of
{
α, β, γ

}
.

(c) There exist α, β, γ ∈ C such that α , β, α , γ, β , γ and three idempotent matrices X,Y,Z ∈ Cn such that
A = αX + βY + γZ, X + Y + Z = In, and XY = YX = XZ = ZX = YZ = ZY = 0.

(d) There exist a, b, c ∈ C and two commuting idempotent matrices X,Y such that a , 0, b , 0 and A = aX+bY+ cIn.

Proof.

(a)⇒ (b): It is clear from the fact that a matrix is diagonalizable if and only if every eigenvalue of it has
multiplicity 1 as a zero of its minimal polynomial [7, Corollary 3.3.10].

(b)⇒ (c): Let A be a diagonalizable matrix and σ(A) ⊂
{
α, β, γ

}
, then there exists a nonsingular matrix S ∈ Cn

such that
A = S

(
αIp ⊕ βIq ⊕ γIr

)
S−1

with p, q, r ∈ {0, . . . ,n} and p + q + r = n. Let X = S
(
Ip ⊕ 0 ⊕ 0

)
S−1, Y = S

(
0 ⊕ Iq ⊕ 0

)
S−1, and Z =

S (0 ⊕ 0 ⊕ Ir) S−1. Observe that A = αX + βY + γZ, X + Y + Z = In, and XY = YX = XZ = ZX = YZ = ZY = 0
as desired.

(c)⇒ (d): Since A = αX + βY + γZ and Z = In − X − Y, we can write

A =
(
α − γ

)
X +

(
β − γ

)
Y + γIn,

and the desired result is obtained by taking a = α − γ, b = β − γ, and c = γ.

(d)⇒ (a): Since X commutes with Y and they are idempotent, there exists a nonsingular matrix S ∈ Cn such
that X = S

(
Ip ⊕ 0 ⊕ 0

)
S−1 and Y = S

(
0 ⊕ Iq ⊕ 0

)
S−1 with rank (X) = p and rank (Y) = q [7, Theorem 1.3.12].

So, it can be written

A = aS
(
Ip ⊕ 0 ⊕ 0

)
S−1 + bS

(
0 ⊕ Iq ⊕ 0

)
S−1 + cS

(
Ip ⊕ Iq ⊕ In−p−q

)
S−1

= S
(
(a + c) Ip ⊕ (b + c) Iq ⊕ cIn−p−q

)
S−1

by the hypothesis. Let α = a + c, β = b + c, and γ = c. Hence, we have

A − αIn = S
(
0 ⊕

(
β − α

)
Iq ⊕

(
γ − α

)
In−p−q

)
S−1,

A − βIn = S
((
α − β

)
Ip ⊕ 0 ⊕

(
γ − β

)
In−p−q

)
S−1,

and
A − γIn = S

((
α − γ

)
Ip ⊕

(
β − γ

)
Iq ⊕ 0

)
S−1.

So, the proof is completed.

Therefore some properties have been given for
{
α, β, γ

}
− cubic matrices. In view of the fact that a

cubic matrix can be written as in (2), some results previously worked about special type of matrices can be
generalized. Now we can give the main results.
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2. Main Results

In this section, we will investigate the idempotency of the linear combination of the form (1), under
some certain conditions. The following result, concerning with a cubic and an arbitrary matrix, is striking.

Theorem 2.1. Let α, β, γ ∈ C with α , 0, α , β, α , γ, β , γ. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β, γ

}
−

cubic matrix and an arbitrary matrix, respectively. Furthermore, let A2BA = A2B and K = aA + bB with a, b ∈ C∗.
Then K is an idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V

 αIp 0 0
0 βIq 0
0 0 γIn−p−q

 V−1

and B satisfies one of the following cases.

(a) α = 1, β = 0, and aγ = 1.

B = V



γ−1
γb Ir 0 0 0 0
0 −1

γb Ip−r 0 0 0
0 B42

1
b Is 0 0

B43 bB62 B72 0 0q−s B62

0 B72 0 0 0n−p−q


V−1,

being B42 ∈ C
s×(p−r), B43 ∈ C

(q−s)×r, B62 ∈ C
(q−s)×(n−p−q), and B72 ∈ C

(n−p−q)×(p−r) arbitrary.

(b) α = 1, γ = 0, and aβ = 1.

B = V



β−1
βb Ir 0 0 0 0
0 −1

βb Ip−r 0 0 0
0 B42 0q 0 0
0 B72 0 1

b It 0
B73 bB82 B42 B82 0 0n−p−q−t


V−1,

being B42 ∈ C
q×(p−r), B72 ∈ C

t×(p−r), B73 ∈ C
(n−p−q−t)×r, and B82 ∈ C

(n−p−q−t)×q arbitrary.

(c) β = 1, γ = 0, and aα = 1.

B = V


0p 0 B22 0 0
0 α−1

αb Is 0 0 0
0 0 −1

αb Iq−s 0 0
0 0 B82

1
b It 0

B72 B83 bB72 B22 0 0n−p−q−t

 V−1,

being B22 ∈ C
p×(q−s), B72 ∈ C

(n−p−q−t)×p, B82 ∈ C
t×(q−s), and B83 ∈ C

(n−p−q−t)×s arbitrary.

(d) γ = 1, β = 0, and aα = 1.

B = V


0p 0 0 0 B32

0 1
b Is 0 0 B62

B42 0 0q−s B63 bB42 B32

0 0 0 α−1
αb It 0

0 0 0 0 −1
αb In−p−q−t

 V−1,

being B32 ∈ C
p×(n−p−q−t), B42 ∈ C

(q−s)×p, B62 ∈ C
s×(n−p−q−t), and B63 ∈ C

(q−s)×t arbitrary.
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Proof. From Lemma 1.1, we can write a cubic matrix A as

A = U
(
αIp ⊕ βIq ⊕ γIn−p−q

)
U−1,

where p, q ∈ {0, . . . ,n}, p+q ≤ n and U ∈ Cn is a nonsingular matrix. Let us write B = U

 B1 B2 B3
B4 B5 B6
B7 B8 B9

 U−1,

where B1 ∈ Cp, B5 ∈ Cq. Observe that under the hypotheses A2BA = A2B and α , 0, one has

B1 = αB1, B2 = βB2, B3 = γB3,
β2B4 = αβ2B4, β2B5 = β3B5, β2B6 = β2γB6,
γ2B7 = αγ2B7, γ2B8 = βγ2B8, γ3B9 = γ2B9.

(3)

Let us assume that K is an idempotent matrix. Hence,

b2 (B2B4 + B3B7) +
(
aαIp + bB1

)2
= aαIp + bB1, ab

(
α + β

)
B2 + b2 (B2B5 + B3B8 + B1B2) = bB2,

ab
(
α + γ

)
B3 + b2 (B2B6 + B3B9 + B1B3) = bB3, ab

(
α + β

)
B4 + b2 (B4B1 + B6B7 + B5B4) = bB4,

b2 (B4B2 + B6B8) +
(
aβIq + bB5

)2
= aβIq + bB5, ab

(
β + γ

)
B6 + b2 (B4B3 + B6B9 + B5B6) = bB6,

ab
(
α + γ

)
B7 + b2 (B7B1 + B8B4 + B9B7) = bB7, ab

(
β + γ

)
B8 + b2 (B7B2 + B8B5 + B9B8) = bB8,

b2 (B7B3 + B8B6) +
(
aγIn−p−q + bB9

)2
= γaIn−p−q + bB9.

(4)

The proof can be divided into following cases depending on the scalars α, β, γ.

(i) Let α = 1.
From (3), it is seen that B2 and B3 are zero matrices. Depending on the β, let us split this case into two

cases.

(i-1) Let β = 0.
From (3), it is seen that B8 and B9 are zero matrices. Reorganizing the equations of (4) it follows that(

aIp + bB1

)2
= aIp + bB1, (bB5)2 = bB5,

(
aγIn−p−q

)2
= aγIn−p−q,

abγB6 + b2B5B6 = bB6, ab
(
1 + γ

)
B7 + b2B7B1 = bB7,

abB4 + b2 (B4B1 + B6B7 + B5B4) = bB4.

(5)

From the first and second equations in (5), it is clear that aIp + bB1 and bB5 are idempotent. Since an
idempotent matrix is a {1, 0} − quadratic matrix, there exist r ∈

{
0, . . . , p

}
, s ∈

{
0, . . . , q

}
and nonsingular

matrices V1 ∈ Cp, V2 ∈ Cq such that

aIp + bB1 = V1

(
Ir 0
0 0p−r

)
V1
−1, bB5 = V2

(
Is 0
0 0q−s

)
V2
−1,

respectively. So, we obtain that

B1 = V1

(
1−a

b Ir 0
0 −a

b Ip−r

)
V1
−1, B5 = V2

(
1
b Is 0
0 0q−s

)
V2
−1. (6)

Let B6 and B7 be written as

B6 = V2

(
B61

B62

)
and B7 =

(
B71 B72

)
V1
−1, (7)

where B61 ∈ C
s×(n−p−q) and B71 ∈ C

(n−p−q)×r. Substituting (6), (7) into the forth and fifth equations in (5) yield

(
abγ − b

)
V2

(
B61

B62

)
+ b2V2

(
1
b Is 0
0 0q−s

) (
B61

B62

)
=

(
0
0

)
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and [
ab

(
1 + γ

)
− b

] (
B71 B72

)
V1
−1 + b2

(
B71 B72

) ( 1−a
b Ir 0
0 −a

b Ip−r

)
V1
−1 =

(
0 0

)
.

Therefore, it can be written
(

aγB61(
aγ − 1

)
B62

)
=

(
0
0

)
and

(
aγB71

(
aγ − 1

)
B72

)
=

(
0 0

)
. Moreover, from

the third equation in (5), it is clear that aγ = 1. Hence, B6 and B7 reduce to

B6 = V2

(
0

B62

)
and B7 =

(
0 B72

)
V1
−1, (8)

where B62 ∈ C
(q−s)×(n−p−q) and B72 ∈ C

(n−p−q)×(p−r) are arbitrary matrices.
Lastly, let

B4 = V2

(
B41 B42

B43 B44

)
V1
−1, (9)

where B41 ∈ C
s×r. Substituting (6), (8), and (9) into the sixth equation in (5) yields(

B41 0
0 bB62 B72 − B44

)
=

(
0 0
0 0

)
.

Therefore, B4 turns into

B4 = V2

(
0 B42

B43 bB62 B72

)
V1
−1, (10)

where B42 ∈ C
s×(p−r) and B43 ∈ C

(q−s)×r are arbitrary matrices.
Let us define V := U

(
V1 ⊕V2 ⊕ In−p−q

)
. In view of (6), (8), and (10) we obtain that

A = U

 Ip 0 0
0 0q 0
0 0 γIn−p−q

 U−1

= V

 V1
−1 0 0

0 V2
−1 0

0 0 In−p−q


 Ip 0 0

0 0q 0
0 0 γIn−p−q


 V1 0 0

0 V2 0
0 0 In−p−q

 V−1

= V

 Ip 0 0
0 0q 0
0 0 γIn−p−q

 V−1

and

B = U


V1

(
1−a

b Ir 0
0 −a

b Ip−r

)
V1
−1 0 0

V2

(
0 B42

B43 bB62 B72

)
V1
−1 V2

(
1
b Is 0
0 0q−s

)
V2
−1 V2

(
0

B62

)
(

0 B72

)
V1
−1 0 0n−p−q


U−1

= V



γ−1
γb Ir 0 0 0 0
0 −1

γb Ip−r 0 0 0
0 B42

1
b Is 0 0

B43 bB62 B72 0 0q−s B62

0 B72 0 0 0n−p−q


V−1
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which establishes part (a).

(i-2) Let β , 0.
From (3), it is seen that B5 and B6 are zero matrices. Reorganizing the equations of (4) it follows that(

aIp + bB1

)2
= aIp + bB1,

(
aβIq

)2
= aβIq,

(
aγIn−p−q + bB9

)2
= aγIn−p−q + bB9,

ab
(
1 + β

)
B4 + b2B4B1 = bB4, ab

(
β + γ

)
B8 + b2B9B8 = bB8,

ab
(
1 + γ

)
B7 + b2 (B7B1 + B8B4 + B9B7) = bB7.

(11)

From the first equation in (11), it is obvious that aIp + bB1 is an idempotent matrix. Thus, there exist
r ∈

{
0, . . . , p

}
and a nonsingular matrix Y1 ∈ Cp such that

B1 = Y1

(
1−a

b Ir 0
0 −a

b Ip−r

)
Y1
−1. (12)

From the second and third equations in (11), it is clear that aβ = 1 and aγIn−p−q + bB9 is idempotent.
However, from the last equation in (3), γ = 0 or γ = 1 or B9 = 0. It is clear that γ , 1. Moreover, if B9 = 0
then aγ = 0 or aγ = 1. But this latter equality contradicts the hypothesis β , γ. Thus γ must be zero. So,
there exist t ∈

{
0, . . . ,n − p − q

}
and a nonsingular matrix Y2 ∈ C(n−p−q) such that

B9 = Y2

(
1
b It 0
0 0n−p−q−t

)
Y2
−1. (13)

Let B4 and B8 be written as

B4 =
(

B41 B42

)
Y1
−1 and B8 = Y2

(
B81

B82

)
, (14)

where B41 ∈ C
q×r, B81 ∈ C

t×q. Substituting (12), (14) and (13), (14) into the forth and fifth equations in (11)

yield
(

aβB41

(
aβ − 1

)
B42

)
=

(
0 0

)
and

(
aβB81(

aβ − 1
)

B82

)
=

(
0
0

)
, respectively. Moreover using aβ = 1,

B4 and B8 reduce to

B4 =
(

0 B42

)
Y1
−1 and B8 = Y2

(
0

B82

)
, (15)

where B42 ∈ C
q×(p−r) and B82 ∈ C

(n−p−q−t)×q are arbitrary matrices.
Lastly, let

B7 = Y2

(
B71 B72

B73 B74

)
Y1
−1, (16)

where B71 ∈ C
t×r. Substituting (12), (13), (15), and (16) into the sixth equation in (11) yields(

B71 0
0 bB82 B42 − B74

)
=

(
0 0
0 0

)
.

So, B7 reduces to

B7 = Y2

(
0 B72

B73 bB82 B42

)
Y1
−1, (17)

where B72 ∈ C
t×(p−r) and B73 ∈ C

(n−p−q−t)×r are arbitrary matrices.
Let us define V := U

(
Y1 ⊕ Iq ⊕ Y2

)
. In view of (12), (13), (15), and (17) we obtain that
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A = U

 Ip 0 0
0 βIq 0
0 0 0n−p−q

 U−1

= V

 Y1
−1 0 0

0 Iq 0
0 0 Y2

−1


 Ip 0 0

0 βIq 0
0 0 0n−p−q


 Y1 0 0

0 Iq 0
0 0 Y2

 V−1

= V

 Ip 0 0
0 βIq 0
0 0 0n−p−q

 V−1

and

B = U


Y1

(
1−a

b Ir 0
0 −a

b Ip−r

)
Y1
−1 0 0(

0 B42

)
Y1
−1 0q 0

Y2

(
0 B72

B73 bB82 B42

)
Y1
−1 Y2

(
0

B82

)
Y2

(
1
b It 0
0 0n−p−q−t

)
Y2
−1


U−1

= V



β−1
βb Ir 0 0 0 0
0 −1

βb Ip−r 0 0 0
0 B42 0q 0 0
0 B72 0 1

b It 0
B73 bB82 B42 B82 0 0n−p−q−t


V−1

which yields part (b).

(ii) Let β = 1.
From (3), it is seen that B1,B3,B4, and B6 are zero matrices. Reorganizing the equations of (4) it can be

written(
aαIp

)2
= aαIp,

(
aIq + bB5

)2
= aIq + bB5,

(
aγIn−p−q + bB9

)2
= aγIn−p−q + bB9

ab (α + 1) B2 + b2B2B5 = bB2, ab
(
α + γ

)
B7 + b2B9B7 = bB7,

ab
(
1 + γ

)
B8 + b2 (B7B2 + B8B5 + B9B8) = bB8.

(18)

It is clear that aα = 1 and aIq + bB5 is an idempotent matrix from the first and second equations in (18),
respectively. There exist s ∈

{
0, . . . , q

}
and a nonsingular matrix T1 ∈ Cq such that

B5 = T1

(
1−a

b Is 0
0 −a

b Iq−s

)
T1
−1. (19)

From the third equation in (18), it is clear that aγIn−p−q + bB9 is idempotent. However, from the last
equation in (3), γ = 0 or γ = 1 or B9 = 0. It is obvious that γ , 1. Moreover, if B9 = 0 then aγ = 0 or
aγ = 1. But this latter equality contradicts the hypothesis α , γ. Thus γ must be zero. So, there exist
t ∈

{
0, . . . ,n − p − q

}
and a nonsingular matrix T2 ∈ C(n−p−q) such that

B9 = T2

(
1
b It 0
0 0n−p−q−t

)
T2
−1. (20)

Let B2 and B7 be written as

B2 =
(

B21 B22

)
T1
−1 and B7 = T2

(
B71

B72

)
, (21)
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where B21 ∈ C
p×s and B71 ∈ C

t×p. Substituting (19), (21) and (20), (21) into the forth and fifth equations

in (18) yield
(

aαB21 (aα − 1) B22

)
=

(
0 0

)
and

(
aαB71

(aα − 1) B72

)
=

(
0
0

)
, respectively. Moreover, since

aα = 1, we obtain that

B2 =
(

0 B22

)
T1
−1 and B7 = T2

(
0

B72

)
, (22)

where B22 ∈ C
p×(q−s) and B72 ∈ C

(n−p−q−t)×p are arbitrary matrices.
Let

B8 = T2

(
B81

B83

B82

B84

)
T1
−1, (23)

where B81 ∈ C
t×s. Substituting (19), (20), (22), and (23) into the sixth equation in (18) yields(

B81 0
0 bB72 B22 − B84

)
=

(
0 0
0 0

)
.

So, B8 turns into

B8 = T2

(
0 B82

B83 bB72 B22

)
T1
−1, (24)

where B82 ∈ C
t×(q−s) and B83 ∈ C

(n−p−q−t)×s are arbitrary matrices. Let us define V := U
(
Ip ⊕ T1 ⊕ T2

)
. In

view of (19), (20), (22), and (24) we obtain that

A = U

 αIp 0 0
0 Iq 0
0 0 0n−p−q

 U−1

= V


Ip 0 0
0 T1

−1 0
0 0 T2

−1


 αIp 0 0

0 Iq 0
0 0 0n−p−q


 Ip 0 0

0 T1 0
0 0 T2

 V−1

= V

 αIp 0 0
0 Iq 0
0 0 0n−p−q

 V−1

and

B = U


0p

(
0 B22

)
T1
−1 0

0 T1

(
1−a

b Is 0
0 −a

b Iq−s

)
T1
−1 0

T2

(
0

B72

)
T2

(
0 B82

B83 bB72 B22

)
T1
−1 T2

(
1
b It 0
0 0n−p−q−t

)
T2
−1


U

= V


0p 0 B22 0 0
0 α−1

αb Is 0 0 0
0 0 −1

αb Iq−s 0 0
0 0 B82

1
b It 0

B72 B83 bB72 B22 0 0n−p−q−t

 V−1

which establishes part (c).
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(iii) Let γ = 1.
From (3), it is easily seen that B1,B2,B7, and B8 are zero matrices. Reorganizing the equations of (4) it

follows that(
aαIp

)2
= aαIp,

(
aβIq + bB5

)2
= aβIq + bB5,

(
aIn−p−q + bB9

)2
= aIn−p−q + bB9,

ab (α + 1) B3 + b2B3B9 = bB3, ab
(
α + β

)
B4 + b2B5B4 = bB4,

ab
(
β + 1

)
B6 + b2 (B4B3 + B6B9 + B5B6) = bB6.

(25)

It is clear that aα = 1 and aβIq + bB5 is an idempotent matrix from the first and second equations in (25),
respectively. However from the fifth equation in (3), β = 0 or β = 1 or B5 = 0. It is obvious that β , 1.
Moreover, if B5 = 0 then aβ = 0 or aβ = 1. But this latter equality contradicts the hypothesis α , β. Thus β
must be zero. So, there exist s ∈

{
0, . . . , q

}
and a nonsingular matrix Z1 ∈ Cq such that

B5 = Z1

(
1
b Is 0
0 0q−s

)
Z1
−1. (26)

Moreover, from the third equation in (25), it is clear that aIn−p−q + bB9 is idempotent. Then there exist
t ∈

{
0, . . . ,n − p − q

}
and a nonsingular matrix Z2 ∈ C(n−p−q) such that

B9 = Z2

(
1−a

b It 0
0 −a

b In−p−q−t

)
Z2
−1. (27)

Let B3 and B4 be written as

B3 =
(

B31 B32

)
Z2
−1 and B4 = Z1

(
B41

B42

)
, (28)

where B31 ∈ C
p×t and B41 ∈ C

s×p. Substituting (27), (28) and (26), (28) into the forth and fifth equations in (25)

it is obtained that
(

aαB31 (aα − 1) B32

)
=

(
0 0

)
and

(
aαB41

(aα − 1) B42

)
=

(
0
0

)
, respectively. Moreover

using aα = 1, B3 and B4 turn to

B3 =
(

0 B32

)
Z2
−1 and B4 = Z1

(
0

B42

)
, (29)

where B32 ∈ C
p×(n−p−q−t) and B42 ∈ C

(q−s)×p are arbitrary matrices.
Lastly, let

B6 = Z1

(
B61 B62

B63 B64

)
Z2
−1, (30)

where B61 ∈ C
s×t. Substituting (26), (27), (29), and (30) into the sixth equation in (25) it is obtained that(

B61 0
0 bB42 B32 − B64

)
=

(
0 0
0 0

)
.

So, B6 reduces to

B6 = Z1

(
0 B62

B63 bB42 B32

)
Z2
−1, (31)

where B62 ∈ C
s×(n−p−q−t) and B63 ∈ C

(q−s)×t are arbitrary matrices.
Let us define V := U

(
Ip ⊕ Z1 ⊕ Z2

)
. In view of (26), (27), (29), and (31) we obtain that
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A = U
(
αIp ⊕ 0q ⊕ In−p−q

)
U−1

= V


Ip 0 0
0 Z1

−1 0
0 0 Z2

−1


 αIp 0 0

0 0q 0
0 0 In−p−q


 Ip 0 0

0 Z1 0
0 0 Z2

 V−1

and

B = U


0p 0

(
0 B32

)
Z2
−1

Z1

(
0

B42

)
Z1

(
1
b Is 0
0 0q−s

)
Z1
−1 Z1

(
0 B62

B63 bB42 B32

)
Z2
−1

0 0 Z2

(
1−a

b It 0
0 −a

b In−p−q−t

)
Z2
−1


U−1

= V


0p 0 0 0 B32

0 1
b Is 0 0 B62

B42 0 0q−s B63 bB42 B32

0 0 0 α−1
αb It 0

0 0 0 0 −1
αb In−p−q−t

 V−1

which establishes part (d).

(iv) Let β , 1, α , 1, and γ , 1.
From (3), it is easily seen that B1,B2, and B3 are zero matrices. Depending on the β, let us split this case

into two cases.

(iv-1) Let β = 0.
From (3), it is seen that B7,B8, and B9 are zero matrices. Reorganizing the equations of (4) it can be

written(
aαIp

)2
= aαIp, (bB5)2 = bB5,

(
aγIn−p−q

)2
= aγIn−p−q,

abαB4 + b2B5B4 = bB4, abγB6 + b2B5B6 = bB6.
(32)

It is clear that aα = 1 and aγ = 1 from the first and third equations in (32), respectively. However these
equalities contradict the hypothesis of α , γ. So, in this case, there is no matrix form of B such that the
linear combination matrix K is idempotent.

(iv-2) Let β , 0.
From (3), it is seen that B4,B5, and B6 are zero matrices. Reorganizing the equations of (4) it follows that(

aαIp

)2
= aαIp,

(
aβIq

)2
= aβIq,

(
aγIn−p−q + bB9

)2
= aγIn−p−q + bB9,

ab
(
α + γ

)
B7 + b2B9B7 = bB7, ab

(
β + γ

)
B8 + b2B9B8 = bB8.

(33)

It is obvious that aα = 1 and aβ = 1 from the first and second equations in (33), respectively. However
these equalities contradict the hypothesis of α , β. So, in this case, there is no matrix form of B such that
the linear combination matrix K is idempotent.

Thus, the necessity has been proved. The sufficiency is obvious.

In the following example it is sought scalars such that the linear combination of a cubic matrix and an
arbitrary matrix is an idempotent matrix.

Example 2.2. Let

A =


−1 0 −1 0
−2 1 −1 0
2 0 2 0
4 −2 3 −1


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and

B1 =


−1 0 5 1
0 0 −1 0
1 0 1 −1
2 0 0 −2

 , B2 =


−1 0 −1 0
−4 2 −2 0
2 0 2 0
5 −2 3 0

 .
Let us find all ordered pair (a, b) such that Ki is idempotent, i = 1, 2, where a, b ∈ C∗ and Ki = aiA + biBi. It is clear
that A is a {−1, 1, 0} − cubic matrix (note that it is not tripotent) and A2BiA = A2Bi, i = 1, 2. Moreover,

K1 =


−a − b 0 5b − a b
−2a a −a − b 0

2a + b 0 2a + b −b
4a + 2b −2a 3a −a − 2b

 , K2 =


−a − b 0 −a − b 0
−2a − 4b a + 2b −a − 2b 0
2a + 2b 0 2a + 2b 0
4a + 5b −2a − 2b 3a + 3b −a

 ,

K1
2 =


−a2 + 15ab + 8b2

−2ab −a2+8ab −ab − 8b2

−2a2
− ab − b2 a2

−a2
−14ab−b2 b2

−ab
2a2
− 3ab − 2b2 2ab (2a + b)(a + 6b) − 3ab ab + 2b2

2a2
− 13ab − 6b2 4ab a2+17ab + 10b2 a2 + 5ab + 6b2

 ,

K2
2 =


−(a + b)2 0 −a2

− 2ab − b2 0
−2a2

− 8ab − 8b2 (a + 2b)2
−(a + 2b)2 0

2a2 + 4ab + 2b2 0 2(a + b)2 0
2a2 + 10ab + 9b2

−4ab − 4b2 a2 + 6ab + 5b2 a2

 .
The solution sets of nonlinear equations K1

2 = K1 and K2
2 = K2 are {(0, 0)} and {(0, 0) , (−1, 1)}, respectively,

i = 1, 2. While the pair (−1, 1) implies the idempotency of K2, there is no appropriate pair (a1, b1) to imply that K1 is
idempotent. Because the matrix B1 should have been in the form of the matrix B, in the part (c) of Theorem 2.1, but
B1 does not match the desired form. However, B2 satisfies aforementioned form of the matrix B.

Example 2.3. Let us define A as in the previous example and let us find a ∈ C∗ and all matrices B ∈ C4 such that
A2BA = A2B and aA + B is idempotent. A diagonalized form of A and the matrix V that diagonalize it are

A = V


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 V−1 and V =


0 1 1 1
0 0 2 1
0 −2 −2 −1
1 −1 −3 −1

 .
By using the notations of Theorem 2.1, let us assume α = −1, β = 1, and γ = 0. Then only part (c) of Theorem 2.1 can
be implied, so we get a = 1/α = −1, p = 1, q = 2, s ∈ {0, 1, 2}, and t ∈ {0, 1}. Therefore, depending on the appearing
and disappearing blocks of V−1BV, it can be written the following possible cases:

POSSIBILITIES FOR V−1BV
t/s s = 0 s = 1 s = 2

t = 0


0 c d 0
0 1 0 0
0 0 1 0
e e.c e.d 0




0 0 j 0
0 2 0 0
0 0 1 0
k l k. j 0




0 0 0 0
0 2 0 0
0 0 2 0
w x y 0



t = 1


0 f 1 0
0 1 0 0
0 0 1 0
0 h i 1




0 0 u 0
0 2 0 0
0 0 1 0
0 0 v 1




0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1





M. Sarduvan, N. Kalaycı / Filomat 33:10 (2019), 3161–3185 3172

where c, d, e, f , 1, h, i, j, k, l, u, v, w, x, and y are arbitrary complex numbers.

Involutiveness of the linear combination of the form (1) of a quadratic matrix and an arbitrary matrix
under the condition ABA = BA was considered in [8]. It is noteworthy that the above theorem gives the
solution to the problem of the idempotency of linear combination of the form (1) of a cubic matrix and an
arbitrary matrix under the condition A2BA = A2B. Then it may be interesting to reconsider of the same
problem under the condition ABA = BA.

Theorem 2.4. Let α, β, γ ∈ C with α , 0, α , β, α , γ, β , γ. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β, γ

}
−

cubic matrix and an arbitrary matrix, respectively. Furthermore, let ABA = BA and K = aA + bB with a, b ∈ C∗.
Then K is an idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V

 αIp 0 0
0 βIq 0
0 0 γIn−p−q

 V−1

and B satisfies one of the following cases.
(a) α = 1, β = 0, and aγ = 1.

B = V



γ−1
γb Ir 0 0 B22 0
0 −1

γb Ip−r B23 bB32 B82 B32

0 0 1
b Is 0 0

0 0 0 0q−s 0
0 0 0 B82 0n−p−q


V−1,

being B22 ∈ C
r×(q−s), B23 ∈ C

(p−r)×s, B32 ∈ C
(p−r)×(n−p−q), and B82 ∈ C

(n−p−q)×(q−s) arbitrary.
(b) α = 1, γ = 0, and aβ = 1.

B = V



β−1
βb Ir 0 0 0 B32

0 −1
βb Ip−r B22 B33 bB22 B62

0 0 0q 0 B62

0 0 0 1
b It 0

0 0 0 0 0n−p−q−t


V−1,

being B22 ∈ C
(p−r)×q, B32 ∈ C

r×(n−p−q−t), B33 ∈ C
(p−r)×t, and B62 ∈ C

q×(n−p−q−t) arbitrary.
(c) β = 1, γ = 0, and aα = 1.

B = V


0p 0 0 0 B32

0 α−1
αb Is 0 0 B62

B42 0 −1
αb Iq−s B63 bB42 B32

0 0 0 1
b It 0

0 0 0 0 0n−p−q−t

 V−1,

being B32 ∈ C
p×(n−p−q−t), B42 ∈ C

(q−s)×p, B62 ∈ C
s×(n−p−q−t), and B63 ∈ C

(q−s)×t arbitrary.
(d) γ = 1, β = 0, and aα = 1.

B = V


0p 0 B22 0 0
0 1

b Is 0 0 0
0 0 0q−s 0 0
0 0 B82

α−1
αb It 0

B72 B83 bB72 B22 0 −1
αb In−p−q−t

 V−1,

being B22 ∈ C
p×(q−s), B72 ∈ C

(n−p−q−t)×p, B82 ∈ C
t×(q−s), and B83 ∈ C

(n−p−q−t)×s arbitrary.
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The proof of Theorem 2.4 is similar to the proof of Theorem 2.1, so it is omitted.

Remark 2.5. Note that a must be different from 1 in Theorems 2.1 and 2.4 since the hypotheses of α , β, α , γ,
β , γ. There is same situation in some parts of some results in the sequel.

A is considered as a cubic matrix in Theorem 2.1. It may be interesting to reconsider A as a quadratic
matrix under the same condition A2BA = A2B.

Theorem 2.6. Let α, β ∈ C, α , 0, α , β. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β

}
− quadratic matrix and

an arbitrary matrix, respectively. Furthermore, let A2BA = A2B and K = aA + bB with a, b ∈ C∗. Then K is an
idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(
αIp 0
0 βIn−p

)
V−1

and B satisfies one of the following cases.

(a) β , 1.

B = V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q 0 0
0 Z2

1−aβ
b Ir 0

Z3 0 0 −aβ
b In−p−r

 V−1,

being Z2 ∈ C
r×(p−q) and Z3 ∈ C(n−p−r)×q arbitrary.

(b) β = 1 and aα = 1.

B = V

 0p 0 Y2

0 α−1
αb Ir 0

0 0 −1
αb In−p−r

 V−1,

being Y2 ∈ C
p×(n−p−r) arbitrary.

Proof. From Theorem 2.1 in [9], we can write a quadratic matrix A as

A = U
(
αIp ⊕ βIn−p

)
U−1,

where p ∈ {0, . . . ,n} and U ∈ Cn is a nonsingular matrix. We can represent B as B = U
(

X Y
Z T

)
U−1, where

X ∈ Cp. In view of the hypotheses A2BA = A2B and α , 0 we can write

αX = X, βY = Y, αβ2Z = β2Z, β3T = β2T. (34)

Now let us assume that K is an idempotent matrix then we can write(
aαIp + bX

)2
+ b2YZ = aαIp + bX, ab

(
α + β

)
Y + b2 (XY + YT) = bY,

ab
(
α + β

)
Z + b2 (ZX + TZ) = bZ, b2ZY +

(
aβIn−p + bT

)2
= aβIn−p + bT.

(35)

Depending on the scalars α and β we have the following cases.

(i) Let β , 1.
From (34), it is seen that Y = 0. Reorganizing the equations of (35), it can be written(

aαIp + bX
)2

= aαIp + bX,
(
aβIn−p + bT

)2
= aβIn−p + bT,

ab
(
α + β

)
Z + b2 (ZX + TZ) = bZ.

(36)
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It is clear that aαIp + bX and aβIn−p + bT are idempotent matrices from the first and second equations in
(36), respectively. Since an idempotent matrix is an {1, 0} − quadratic matrix, there exist q ∈

{
0, . . . , p

}
,

r ∈
{
0, . . . ,n − p

}
and nonsingular matrices S1 ∈ Cp, S2 ∈ C(n−p) such that

X = S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 and T = S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1. (37)

Let us write Z as

Z = S2

(
Z1 Z2
Z3 Z4

)
S1
−1, (38)

where Z1 ∈ Cr×q. Substituting (37) and (38) into the third equation in (36) it is obtained that(
bZ1 0

0 −bZ4

)
=

(
0 0
0 0

)
.

Then Z reduces to

Z = S2

(
0 Z2

Z3 0

)
S1
−1, (39)

where Z2 ∈ Cr×(p−q) and Z3 ∈ C(n−p−r)×q are arbitrary matrices.
Let us define V := U (S1 ⊕ S2). In view of (37) and (39), we obtain that

A = U
(
αIp 0
0 βIn−p

)
U−1

= V
(

S1
−1 0

0 S2
−1

) (
αIp 0
0 βIn−p

) (
S1 0
0 S2

)
V−1

= V
(
αIp 0
0 βIn−p

)
V−1

and

B = U


S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 0

S2

(
0 Z2

Z3 0

)
S1
−1 S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1

 U−1

= V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q 0 0
0 Z2

1−aβ
b Ir 0

Z3 0 0 −aβ
b In−p−r

 V−1

which establishes part (a).

(ii) Let β = 1.
From the first and third equations in (34), we obtain X = 0 and Z = 0, respectively. Reorganizing the

equations of (35), it is obtained that

(aα)2Ip = aαIp,
(
aIn−p + bT

)2
= aIn−p + bT, ab (α + 1) Y + b2YT = bY. (40)
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It is obvious that aα = 1 and aIn−p + bT is an idempotent matrix from the first and second equations in
(40), respectively. Hence, there exist r ∈

{
0, . . . ,n − p

}
and a nonsingular matrix S ∈ C(n−p) such that

T = S
(

1−a
b Ir 0
0 −a

b In−p−r

)
S−1. (41)

Let us write Y as

Y =
(

Y1 Y2

)
S−1, (42)

where Y1 ∈ Cp×r. Substituting (41) and (42) into the third equation in (40) yields(
b (aα) Y1 b (aα − 1) Y2

)
S−1 =

(
0 0

)
.

Since aα = 1, Y reduces to
Y =

(
0 Y2

)
S−1,

where Y2 ∈ Cp×(n−p−r) is an arbitrary matrix.
Hence, we can easily write

A = U
(
αIp ⊕ In−p

)
U−1 = U

(
Ip ⊕ S

) (
αIp ⊕ In−p

) (
Ip ⊕ S−1

)
U−1

and

B = U


0p

(
0 Y2

)
S−1

0 S
(

1−a
b Ir 0
0 −a

b In−p−r

)
S−1

 U−1

= U
(
Ip ⊕ S

)  0p 0 Y2

0 α−1
αb Ir 0

0 0 −1
αb In−p−r

 (Ip ⊕ S−1
)

U−1.

The necessity part of the proof is completed by defining V as V := U
(
Ip ⊕ S

)
. The sufficiency is

obvious.

Example 2.7. Let

A =


2 2 3 −1
0 3 2 −1
0 −2 −1 1
0 −2 −2 2

 , B =


0 −1 0 −1
0 1 2 −1
0 1 0 1
0 4 4 0

 .
Let us find all ordered pair (a, b) such that K is idempotent, where a, b ∈ C∗ and K = aA + bB. It is clear that A is a
{1, 2} − quadratic matrix and A2BA = A2B. Moreover,

K =


2a 2a − b 3a −a − b
0 3a + b 2a + 2b −a − b
0 b − 2a −a a + b
0 4b − 2a 4b − 2a 2a


and

K2 =


4a2 6a2

− 2ab − 5b2 9a2
− 6b2

−3a2
− 4ab − b2

0 7a2 + 2ab − b2 6a2
− 4ab − 2b2

−3a2
− 2ab + b2

0 −6a2 + 2ab + 5b2
−5a2 + 6b2 3a2 + 2ab − b2

0 −6a2 + 8ab + 8b2
−6a2 + 8ab + 8b2 4a2

 .
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From the idempotency of K, it is obtained that (a, b) ∈ {(0, 0)}. Therefore, it is seen that there is no appropriate

pair (a, b) to imply that K is idempotent. Note that, V =


−1 0 0 1
0 1 −1 0
1 0 1 0
2 2 1 0

 and it diagonalize A. Moreover, B is

not compatible with the part (a) of Theorem 2.6.

Example 2.8. Let A =

 5 −4 0
8 −7 0
−4 4 1

. Let us find a ∈ C∗ and all matrices B ∈ C3 such that A2BA = A2B and

aA + B is idempotent. A diagonalized form of A and the matrix V that diagonalize it are

A = V

 −3 0 0
0 1 0
0 0 1

 V−1 and V =

 −1 1 0
−2 1 0
1 1 1

 .
Using the notations of Theorem 2.6, let us assume α = −3 and β = 1. Then only part (b) of Theorem 2.6 can be
implied, so we get a = −1/3, p = 1, and r ∈ {0, 1, 2}. Therefore, depending on the appearing and disappearing blocks
of V−1BV, the following possible cases of V−1BV are obtained for the values of r = 0, 1, 2, respectively. 0 c d

0 1/3 0
0 0 1/3

 ,
 0 0 e

0 4/3 0
0 0 1/3

 ,
 0 0 0

0 4/3 0
0 0 4/3

 ,
where c, d, and e are arbitrary complex numbers.

It can be interesting to consider the above theorem under the condition in Theorem 2.4.

Theorem 2.9. Let α, β ∈ C with α , 0, α , β. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β

}
− quadratic matrix

and an arbitrary matrix, respectively. Furthermore, let ABA = BA and K = aA + bB with a, b ∈ C∗. Then K is an
idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(
αIp 0
0 βIn−p

)
V−1

and B satisfies one of the following cases.

(a) β , 1.

B = V


1−aα

b Iq 0 0 Y2
0 −aα

b Ip−q Y3 0
0 0 1−aβ

b Ir 0
0 0 0 −aβ

b In−p−r

 V−1,

being Y2 ∈ C
q×(n−p−r) and Y3 ∈ C(p−q)×r arbitrary.

(b) β = 1 and aα = 1.

B = V

 0p 0 0
0 α−1

αb Ir 0
Z2 0 −1

αb In−p−r

 V−1,

being Z2 ∈ C(n−p−r)×p arbitrary.

The proof of Theorem 2.9 is similar to the proof of Theorem 2.6, so it is omitted. Under the different
conditions from the previous results, the problem of idempotency of the linear combination of the form (1)
of a quadratic matrix and an arbitrary matrix is reconsidered in the following three results.
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Theorem 2.10. Let α, β ∈ C with α , 0, α , β. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β

}
− quadratic matrix

and an arbitrary matrix, respectively. Furthermore, let BAB = AB2 and K = aA + bB with a, b ∈ C∗. Then K is an
idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(
αIp 0
0 βIn−p

)
V−1 (43)

and B satisfies one of the following cases.

(a) β = 0 and aα = 1.

B = V


0q 0 0 Y2

0 −1
b Ip−q 0 0

0 0 1
b Ir 0

Z3 0 0 0n−p−r

 V−1, (44)

being Y2 ∈ C
q×(n−p−r), Z3 ∈ C(n−p−r)×q arbitrary and Y2Z3 = 0, Z3Y2 = 0.

(b) β = 0 and aα , 1.

B = V


1−aα

b Iq 0 0 Y2
0 −aα

b Ip−q 0 0
0 0 1

b Ir 0
0 0 0 0n−p−r

 V−1, (45)

being Y2 ∈ C
q×(n−p−r) arbitrary.

(c) β , 0 and aβ = 1.

B = V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −

1
b In−p−r

 V−1, (46)

being Y3 ∈ C(p−q)×r arbitrary.

(d) β , 0 and aα = 1.

B = V


0q 0 0 0
0 −

1
b Ip−q 0 0

0 0 1−aβ
b Ir 0

Z3 0 0 −aβ
b In−p−r

 V−1, (47)

being Z3 ∈ C(n−p−r)×q arbitrary.

(e) β , 0, aβ , 1, and aα , 1,

B = V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −aβ

b In−p−r

 V−1. (48)

Proof. We can write a quadratic matrix A as

A = U
(
αIp ⊕ βIn−p

)
U−1,
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where p ∈ {0, . . . ,n} and U ∈ Cn is a nonsingular matrix. We can represent B as B = U
(

X Y
Z T

)
U−1, where

X ∈ Cp. Observe that under the hypotheses BAB = AB2, α , 0, and α , β, one has

YZ = 0, YT = 0, ZX = 0, ZY = 0. (49)

Let us assume that K is an idempotent matrix then one can deduce that(
aαIp + bX

)2
+ b2YZ = aαIp + bX, ab

(
α + β

)
Y + b2 (XY + YT) = bY,

ab
(
α + β

)
Z + b2 (ZX + TZ) = bZ, b2ZY +

(
aβIn−p + bT

)2
= aβIn−p + bT.

(50)

Considering (49) and (50), we get the following equalities(
aαIp + bX

)2
= aαIp + bX,

(
aβIn−p + bT

)2
= aβIn−p + bT,

ab
(
α + β

)
Y + b2XY = bY, ab

(
α + β

)
Z + b2TZ = bZ.

(51)

It is clear that aαIp + bX and aβIn−p + bT are idempotent matrices from the first and second equations in (51),
respectively. So, there exist q ∈

{
0, . . . , p

}
, r ∈

{
0, . . . ,n − p

}
and nonsingular matrices S1 ∈ Cp and S2 ∈ C(n−p)

such that

X = S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1, (52)

T = S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1. (53)

Let Y and Z be written as

Y = S1

(
Y1 Y2
Y3 Y4

)
S2
−1 and Z = S2

(
Z1 Z2
Z3 Z4

)
S1
−1, (54)

where Y1 ∈ Cq×r and Z1 ∈ Cr×q. Besides, defining V := U (S1 ⊕ S2), it follows that

A = U
(
αIp 0
0 βIn−p

)
U−1

= U (S1 ⊕ S2)
(

S1
−1 0

0 S2
−1

) (
αIp 0
0 βIn−p

) (
S1 0
0 S2

) (
S1
−1
⊕ S2

−1
)

U−1

= V
(
αIp 0
0 βIn−p

)
V−1.

Substituting (52), (54) and (53), (54) into the third and forth equations in (51) it is obtained that(
aβY1 aβY2(

aβ − 1
)

Y3
(
aβ − 1

)
Y4

)
=

(
0 0
0 0

)
,

(
aαZ1 aαZ2

(aα − 1) Z3 (aα − 1) Z4

)
=

(
0 0
0 0

)
. (55)

Depending on the aβ and aα, we have the following cases for Y and Z.

(i) Let aβ = 0 and aα = 1.
It is clear that Y3,Y4 and Z1,Z2 are zero matrices from the equations in (55). So, Y and Z reduce to

Y = S1

(
Y1 Y2
0 0

)
S2
−1 and Z = S2

(
0 0

Z3 Z4

)
S1
−1.
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Substituting X, Y, Z, and T into (49), Y and Z are obtained as

Y =

(
0 Y2
0 0

)
and Z = S2

(
0 0

Z3 0

)
S1
−1, (56)

where Y2 ∈ C
q×(n−p−r), Z3 ∈ C(n−p−r)×q are arbitrary matrices and Y2Z3 = 0, Z3Y2 = 0. Therefore, B we get as

B = U


S1

(
0q 0
0 −1

b Ip−q

)
S1
−1 S1

(
0 Y2
0 0

)
S2
−1

S2

(
0 0

Z3 0

)
S1
−1 S2

(
1
b Ir 0
0 0n−p−r

)
S2
−1

 U−1

= U (S1 ⊕ S2)


0q 0 0 Y2

0 −1
b Ip−q 0 0

0 0 1
b Ir 0

Z3 0 0 0n−p−r


(
S1
−1
⊕ S2

−1
)

U−1.

which establishes part (a).

(ii) Let aβ = 0 and aα , 1.
From the equations in (55), it is clear that Y3,Y4, and Z are zero matrices. Thus, Y is as in (56) and then

B = U


S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 S1

(
0 Y2
0 0

)
S2
−1

0 S2

(
1
b Ir 0
0 0n−p−r

)
S2
−1

 U−1

= U (S1 ⊕ S2)


1−aα

b Iq 0 0 Y2
0 −aα

b Ip−q 0 0
0 0 1

b Ir 0
0 0 0 0n−p−r


(
S1
−1
⊕ S2

−1
)

U−1,

where Y2 ∈ C
q×(n−p−r) is an arbitrary matrix. So, it is completed part (b).

(iii) Let aβ = 1 and aα , 1.
It is obvious that Y1,Y2, and Z are zero matrices from the equations in (55). So, Y reduces to

Y = S1

(
0 0

Y3 Y4

)
S2
−1. (57)

Using (53) and (57) in the second equation of (49), we get the equality
(

0 0
0 −1

b Y4

)
= 0p×(n−p). Therefore

Y = S1

(
0 0

Y3 0

)
S2
−1,

where Y3 ∈ C(p−q)×r is an arbitrary matrix and
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B = U


S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 S1

(
0 0

Y3 0

)
S2
−1

0 S2

(
0r 0
0 −

1
b In−p−r

)
S2
−1

 U−1

= U (S1 ⊕ S2)


1−aα

b Iq 0 0 0
0 −aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −

1
b In−p−r


(
S1
−1
⊕ S2

−1
)

U−1.

which completes part (c).

(iv) Let aβ , 0, aβ , 1, and aα = 1.
From the equations in (55), it is clear that Y = 0 and the form of Z is as in (56). Hence,

B = U


S1

(
0q 0
0 −

1
b Ip−q

)
S1
−1 0

S2

(
0 0

Z3 0

)
S1
−1 S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1

 U−1

= U (S1 ⊕ S2)


0q 0 0 0
0 −

1
b Ip−q 0 0

0 0 1−aβ
b Ir 0

Z3 0 0 −aβ
b In−p−r


(
S1
−1
⊕ S2

−1
)

U−1,

where Z3 ∈ C(n−p−r)×q is an arbitrary matrix. So, the part (d) of the proof is completed.

(v) Let aβ , 0, aβ , 1, and aα , 1.
From the equations in (55), it is easily seen that Y = 0 and Z = 0 thus,

B = U


S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 0

0 S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1

 U−1

= U (S1 ⊕ S2)


1−aα

b Iq 0 0 0
0 −aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −aβ

b In−p−r


(
S1
−1
⊕ S2

−1
)

U−1.

Therefore, the part of the necessity of the proof is completed.
Now it is evident that if A is represented as in (43) and B is represented as in (44), (45), (46), (47) or (48)

and the scalars aα, aβ satisfy corresponding conditions, then K2 = K.

Theorem 2.10 is given under the condition BAB = AB2. Premultiplying this condition by A leads to
A2B2 = (AB)2. A similar result can be given below under this new condition.

Theorem 2.11. Let α, β ∈ C∗ with α , β. Moreover, let A and B ∈ Cn
\ {0} be an

{
α, β

}
− quadratic matrix and

an arbitrary matrix, respectively. Furthermore, let A2B2 = (AB)2 and K = aA + bB with a, b ∈ C∗. Then K is an
idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(
αIp 0
0 βIn−p

)
V−1

and B satisfies one of the following cases.
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(a) aβ = 1.

B = V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q Y3 0
0 0 0r 0
0 0 0 −1

b In−p−r

 V−1,

being Y3 ∈ C(p−q)×r arbitrary.

(b) aα = 1.

B = V


0q 0 0 0
0 −1

b Ip−q 0 0
0 0 1−aβ

b Ir 0
Z3 0 0 −aβ

b In−p−r

 V−1,

being Z3 ∈ C(n−p−r)×q arbitrary.

(c) aα , 1 and aβ , 1,

B = V


1−aα

b Iq 0 0 0
0 −aα

b Ip−q 0 0
0 0 1−aβ

b Ir 0
0 0 0 −aβ

b In−p−r

 V−1.

The proof of this theorem is omitted since it is very similar to proof of Theorem 2.10.

Remark 2.12. Note that the matrices B given in the last parts of Theorem 2.10 and 2.11 commute with the corre-
sponding matrices A while there is no such necessity in other results.

Lastly, let us give the following theorem.

Theorem 2.13. Let α, β ∈ C, α , 0, α , β, and
(
α, β

)
< {(−1, 1) , (1,−1)}. Moreover, let A and B ∈ Cn

\ {0} be an{
α, β

}
− quadratic matrix and an arbitrary matrix, respectively. Furthermore, let A2BA = BA and K = aA + bB

with a, b ∈ C∗. Then K is an idempotent matrix if and only if there exists a nonsingular matrix V ∈ Cn such that

A = V
(
αIp 0
0 βIn−p

)
V−1 (58)

and B satisfies one of the following cases.

(a) β = 0.

B = V


1−aα

b Iq 0 0 Y2
0 −aα

b Ip−q Y3 0
0 0 1

b Ir 0
0 0 0 0n−p−r

 V−1, (59)

being Y2 ∈ C
q×(n−p−r) and Y3 ∈ C(p−q)×r arbitrary.

(b) β2 , 1, β , 0, and aβ = 1.

B = V


1−aα

b Iq 0 0
0 −aα

b Ip−q W
0 0 0n−p

 V−1, (60)

being W ∈ C(p−q)×(n−p) arbitrary.
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(c) β2 = 1 and aα = 1.

B = V


0p 0 0
0 1−aβ

b Ir 0
Z2 0 −aβ

b In−p−r

 V−1, (61)

being Z2 ∈ C(n−p−r)×p arbitrary.

Proof. Let us write a quadratic matrix A as

A = U
(
αIp ⊕ βIn−p

)
U−1,

where p ∈ {0, . . . ,n} and U ∈ Cn is a nonsingular matrix. We can represent B as B = U
(

X Y
Z T

)
U−1 where

X ∈ Cp. In view of the hypotheses A2BA = BA and α , 0 we can write

α2X = X, α2βY = βY, β2Z = Z, β3T = βT. (62)

Let us assume that K is an idempotent matrix then it follows that(
aαIp + bX

)2
+ b2YZ = aαIp + bX, ab

(
α + β

)
Y + b2 (XY + YT) = bY,

ab
(
α + β

)
Z + b2 (ZX + TZ) = bZ, b2ZY +

(
aβIn−p + bT

)2
= aβIn−p + bT.

(63)

The proof can be split into following cases, depending on the scalar β.

(i) Let β2 , 1.
From (62), it is seen that Z = 0. Reorganizing the equations of (63), it can be written(

aαIp + bX
)2

= aαIp + bX,
(
aβIn−p + bT

)2
= aβIn−p + bT,

ab
(
α + β

)
Y + b2 (XY + YT) = bY.

(64)

It is clear that aαIp + bX and aβIn−p + bT are idempotent matrices from the first and second equations in (64),
respectively. Then, there exist q ∈

{
0, . . . , p

}
, r ∈

{
0, . . . ,n − p

}
and nonsingular matrices S1 ∈ Cp, S2 ∈ C(n−p)

such that

X = S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 and T = S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1. (65)

Let us write Y as

Y = S1

(
Y1 Y2
Y3 Y4

)
S2
−1, (66)

where Y1 ∈ Cq×r. Substituting (65) and (66) into the third equation in (64) yields(
bY1 0

0 −bY4

)
=

(
0 0
0 0

)
.

Then Y reduces to

Y = S1

(
0 Y2

Y3 0

)
S2
−1, (67)

where Y2 ∈ Cq×(n−p−r) and Y3 ∈ C(p−q)×r are arbitrary matrices.
Let us define V := U (S1 ⊕ S2). In view of (65) and (67) we obtain that
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A = U
(
αIp 0
0 βIn−p

)
U−1

= V
(

S1
−1 0

0 S2
−1

) (
αIp 0
0 βIn−p

) (
S1 0
0 S2

)
V−1

= V
(
αIp 0
0 βIn−p

)
V−1

and

B = U


S1

(
1−aα

b Iq 0
0 −aα

b Ip−q

)
S1
−1 S1

(
0 Y2

Y3 0

)
S2
−1

0 S2

( 1−aβ
b Ir 0
0 −aβ

b In−p−r

)
S2
−1

 U−1

= V


1−aα

b Iq 0 0 Y2
0 −aα

b Ip−q Y3 0
0 0 1−aβ

b Ir 0
0 0 0 −aβ

b In−p−r

 V−1

which yields part (a) for β = 0 and yields part (b) for β , 0 (then from (62), T = 0).

(ii) Let β2 = 1.
From the first and second equations in (62) and considering hypotheses

(
α, β

)
< {(−1, 1) , (1,−1)} and

α , β, it is obvious that X = 0 and Y = 0. Reorganizing the equations of (63), it can be written

(aα)2Ip = aαIp,
(
aβIn−p + bT

)2
= aβIn−p + bT, ab

(
α + β

)
Z + b2TZ = bZ. (68)

It is explicit that aα = 1 and aβIn−p + bT is an idempotent matrix from the first and second equations in (68).
So, there exist r ∈

{
0, . . . ,n − p

}
and a nonsingular matrix S ∈ C(n−p) such that

T = S
( 1−aβ

b Ir 0
0 −aβ

b In−p−r

)
S−1. (69)

Let us write Z as

Z = S
(

Z1
Z2

)
, (70)

where Z1 ∈ Cr×p. Substituting (69) and (70) into the third equation in (68), it is obtained that(
(aα) Z1

(aα − 1) Z2

)
=

(
0
0

)
.

Since aα = 1, Z turns into Z = S
(

0
Z2

)
, where Z2 ∈ C(n−p−r)×p is an arbitrary matrix.

Hence, we can easily write

A = U
(
αIp ⊕ βIn−p

)
U−1 = U

(
Ip ⊕ S

) (
αIp ⊕ βIn−p

) (
Ip ⊕ S−1

)
U−1

and

B = U


0p 0

S
(

0
Z2

)
S
( 1−aβ

b Ir 0
0 −aβ

b In−p−r

)
S−1

 U−1
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= U
(
Ip ⊕ S

) 
0p 0 0
0 α−β

αb Ir 0
Z2 0 −β

αb In−p−r

 (Ip ⊕ S−1
)

U−1.

The necessity part of the proof is completed by defining V as V := U
(
Ip ⊕ S

)
.

Now, it is evident that if A is represented as in (58) and B is represented as in (59), (60) or (61) and the
scalars α, β satisfy corresponding conditions, then K2 = K.

Example 2.14. Let

A =


5 0 6 −3
0 2 −3 0
0 0 −1 0
6 0 6 −4

 , B =


2 0 2 −2
0 0 0 0
0 0 0 0
4 0 4 −4


and let us find all ordered pair (a, b) such that K = aA + bB is idempotent, where a, b ∈ C∗. It is clear that A is a
{−1, 2} − quadratic matrix and A2BA = BA. Moreover,

K =


5a + 2b 0 6a + 2b −3a − 2b

0 2a −3a 0
0 0 −a 0

6a + 4b 0 6a + 4b −4a − 4b


and

K2 =


7a2
− 4ab − 4b2 0 6a2

− 4ab − 4b2
−3a2 + 4ab + 4b2

0 4a2
−3a2 0

0 0 a2 0
6a2
− 8ab − 8b2 0 6a2

− 8ab − 8b2
−2a2 + 8ab + 8b2

 .
From the idempotency of K, it is obtained that (a, b) ∈ {(0, 0) , (0,−1/2)}. Although A is a {−1, 2} − quadratic

matrix, the form of the matrix B is not compatible with the part (a) of Theorem 2.13. Therefore, it is seen that there is
no appropriate pair (a, b) to imply that K is idempotent.

Example 2.15. Let A be as in the previous example and let us find a ∈ C∗ and all matrices B ∈ C4 such that
A2BA = BA and aA − B is idempotent. A diagonalized form of A and the matrix V that diagonalize it are

A = V


−1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 2

 V−1 and V =


−1 −1 0 −1
1 0 −1 −1
1 0 0 0
0 −2 0 −1

 ,
compatible with (58). Using the notations of Theorem 2.13, we can assume α = −1, β = 2. Then only part (b) of
Theorem 2.13 can be implied, so we get a = 1

/
β = 1/2, n = 4, p = 2, and q ∈ {0, 1, 2}. Therefore depending on the

appearing and disappearing blocks of V−1BV, it can be written the following possible cases:

POSSIBILITIES OF V−1BV
q = 0 q = 1 q = 2

−1/2 0 e f
0 −1/2 1 h
0 0 0 0
0 0 0 0



−3/2 0 0 0

0 −1/2 m s
0 0 0 0
0 0 0 0



−3/2 0 0 0

0 −3/2 0 0
0 0 0 0
0 0 0 0


where e, f , 1, h, m, and s are arbitrary complex numbers.
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