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Abstract. In the present paper, we introduce and investigate the big (p, 9)-Appell polynomials. We prove
an equivalance theorem satisfied by the big (p, 7)-Appell polynomials. As a special case of the big (p, 9)-
Appell polynomials, we present the corresponding equivalence theorem, recurrence relation and difference
equation for the big g-Appell polynomials. We also present the equivalence theorem, recurrence relation and
differential equation for the usual Appell polynomials. Moreover, for the big (p, )-Bernoulli polynomials
and the big (p, q)-Euler polynomials, we obtain recurrence relations and difference equations. In the special
case when p = 1, we obtain recurrence relations and difference equations which are satisfied by the big
g-Bernoulli polynomials and the big g-Euler polynomials. In the case when p = 1 and g — 1-, the big
(p, 9)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the recurrence relation and
the difference equation obtained for the big (p, )-Appell polynomials coincide with the recurrence relation
and differential equation satisfied by the usual Appell polynomials. In the last section, we have chosen
to also point out some obvious connections between the (p, g)-analysis and the classical g-analysis, which
would show rather clearly that, in most cases, the transition from a known g-result to the corresponding
(p, g)-result is fairly straightforward.

1. Introduction, Definitions and Preliminaries

The well-known Appell polynomials P,(x) are given by

oo t"
A(t)e™t = Z P@)
n=0 '
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where A(t) is the determining function of the Appell polynomials satisfying the following condition:

e

A tk

For the Appell polynomials P;(x), we have

%(Pn(x)) =nPy-1(x) (% = Dx)’

which shows that the lowering operator L, for the Appell polynomials P,(x) is, in fact, the derivative
operator:

~._1d
T ndx

Some recurrence relation and differential equation satisfied by the Appell polynomials were obtained
by He and Ricci [6]. By means of the lowering and raising operators, they used the factorization method
(see, for details, [8])

Ly Li(Pa(x)) = Pu(x)

and obtained the differential equation. In the classical factorization method, in order to obtain the differential
equation, one needs to find the lowering and raising operators. This method is applicable for some such
Appell polynomials as the Bernoulli polynomials, the Euler polynomials, the 2D-Bernoulli polynomials, the
2D-Euler, and the Hermite-based Appell polynomials. Also, for some extensions of the Appell polynomials
the recurrence relations and differential equations were obtained (see, for example, [3], [23] and [24]). A
generalization of this method was given in [17] and a set of finite-order differential equations was obtained
for the Appell polynomials with the kth iteration of the lowering and the kth iteration of the raising operators
by

(6,9 0;©) (Pu(x)) = Pu().

In some different calculus, the raising operator cannot be defined for the Appell polynomials. For
instance, in the basic (or ¢-) calculus, some difference equations satisfied by the Appell polynomials were
obtained without using the raising operator [13]. Moreover, in the (p,q)-calculus, the raising operator
cannot be defined for the Appell polynomials. Therefore, some different techniques should be applied in
order to obtain the difference equations satisfied by the (p, g)-Appell polynomials.

We now introduce some basic definitions, notations and conventions about the (p,q)-calculus. By
assuming (for simplicity) that 0 < g < p £ 1, we first recall the (p, g)-derivative of a function f defined by
(see [9] and [19])

fpx) = f(gx)
(DW f) (x) = (p—q)x
17(0) (x=0,0<g<p=sl,

(x#0,0<g<psl)

so that, for the familiar g-derivative operator D;, we have

f0) — flg0)
(D )@ = (D Al =] A-9%
£0) (x=0,0<g<1).

(x#0,0<g<1)
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Clearly, we have the following relationship between the (p, g)-derivative operator D, ; and the g-derivative
operator Dy:

(Dpy £) ) = (D% f) (x)  and  (Dy £)®) = (Dpp f) (g) (x#0; 0<g<p=1)
Moreover, it is easily seen that
lim {( pa f)@) = F(px)  and lim {(Dy )@} = £ ()

for a function f which is differentiable in a given subset of R.
The (p, g)-analog [n],; of a number n is defined by

pn_qn

melN; 0<g<p=sl
p—q q<p

[n]p,q =
0 (n=0),

The (p, q)-factorial [n],,! is defined by

[n]p,q! =

[y 24 [81pg -+ [nlyg (n € N)
(n = O)/

so that, for the g-factorial [n],!, we have

[nl! = [l = [, 20 8Ly -~ [nly  and [n]t = p® [n], 5.

Finally, the (p, q)-binomial coefficient [}] is defined by

n [”]p,q!
=7 n,kelN; 0=k <n),
[k]p,q [Klpq! [ = Klp,q! ( :

so that, for the g-binomial coefficient [Z]q, we have

= = e
k|, Tk ’ T Kl [n =KL

For any constants A and B, we have the following linearity property of the (p, q)-derivative operator
Dy

(Dpa(ASf + B9))(x) = A(Dyq f) @) + B(Dyq 9) ().
The product and quotient rules in the (p, g)-calculus are given by (see [19])

(Dpa(f9))@) = fpx) (Dpg 9) ) + 9@x) (Dpg f) )
= 9(px) (Dpy £) () + £(@2) (Dpg 9) () )
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and

A 9@ (D f) @) = f@2) Dy 7))
(D” ’q( ))(x) - 9(px)g(qx)
9 (Dyy f) )~ f(px) (Dyg 7))
- 9(px)g(4x)

, (2)
respectively. The special case of each of the above rules when p = 1 holds true for the g-derivative operator

D,.
In the present paper, we define the big (p, g)-Appell polynomials by

xt - #n
08 ()= TP iy
n=0 4

where E, ,;(x) is given by

R WO q
)= L0 fo<f

and A, 4(t) is the determining function of the big (p, 9)-Appell polynomials given by

<1 |x|<1)

b n

Apg() = Z Gy #M' (Aq0) % 0).
n=0 4

The big (p, 9)-Appell polynomials satisfy the following relation:

[n]p,
(Dp,q Pn,p,q) (x) = % Pn—l,p,q(qx)-

np,q 1S defined here

Hence the lowering operator L

_ 4
npq [n]p,q! DP/‘i'

In the special cases of A, ,(t), we introduce the big (p, q)-Bernoulli and the big (p, g)-Euler polynomials.
In the case when

ot
Epg(5)-1

we have the big (p, 4)-Bernoulli polynomials given by

t xt - g
————|Epq|= | =) Bupsx) ——,
[Ep,q(é)—l] pq(ﬁ) ,,Z::‘) PR [nlpg!

where the big (p, 9)-Bernoulli numbers are given by

Apq(t) =

t - tk
Enq(L)-1 kz_::Bk'p’q k!
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In the case when
21,4
EM( )+ 1

we have the big (p, g)-Euler polynomials given by

el )
[Ep,q(g)ﬂ]EM q nzg Enpa® G1 []

where the big (p, g)-Euler numbers are given by

2], ] (t) = tk
2L N L EIW - Ekriq
[Ep,,7 (B2e)+1 q kzo‘ [kl

Apq(t) =

3089

Also, upon replacing p by % and g by % in the generating functions of the big (p, g)-Bernoulli polynomials and
the big (p, 9)-Euler polynomials, we get the corresponding definitions of the (p, 4)-Bernoulli polynomials

and the (p, 9)-Euler polynomials, respectively:

n

t (o]
- =Y 40p6) 11
(erw(‘? H-1 ) “al#<) ;6 PP Bt [1],9"

and
21, 2
(—ep,q(qt)+1)epq(qxt quq() )E 1 1(x) [n]pq
where
2]y [12],4!
Ei1(qt) = epq(qt), 2111 = ——, [n]11! = ——=
pa A pra pPq pa p(z)q(z)
and
£pg(X) = (0 < g <1 < 1).

We note that, in the special case p = 1 in the definition of the big (p, 4)-Appell polynomials, we are led

to the big g-Appell polynomials given by

ADE, (’g) - Y P [;—]q,
n=0

where

E4(x) : Zq(") X H1+1 qqx (O<|q)<1;x€C)
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The big g-Bernoulli polynomials are defined by

t ATR . ¢
—— [5(5) - L i
’ n],!
Eq (E) -1 d n=0 [ ]q
9
and the big g-Euler polynomials are defined by

(2], (xt) — "
— By ) = Y Eug0)
E, ( t) +1 7 = [yt

For a detailed analysis of the g-Appell polynomials and related g-polynomials, we refer the reader to [11],
[12] and [20].

In the case whenp = 1 and g — 1—, the big (p, q)-Appell polynomials reduce to the above-defined Appell
polynomials P,(x), the big (p, g)-Bernoulli polynomials reduce to the Bernoulli polynomials B, (x) given by

IAYER - £
(ef—l)eY —ZB,,(x) n!’

n=0

and the big (p, g)-Euler polynomials reduce to the Euler polynomials E,(x) given by

2 \y v #n
= et =Y E.(x) —.
(ef+1)e WZ:;‘ nx) n!

It is important to state that the following g-Appell polynomials were introduced by Al-Salam (see [1]
and [2]) and were subsequently investigated and characterized by Srivastava [20]:

[;—L! (0<g<1).

ag(B)eg(xt) = Y Ang()
n=0

In the case when

t
0= H-1
and
2
WO = o

we have the g-Bernoulli polynomials and the g-Euler polynomials given by (see [1])

t - o
(—eq(t) ~ 1)eq<xt) = 20 bua®) Gt

and

R n

2
(m)equw = Z;‘ i) f
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respectively. In the above generating functions, the g-exponential function e,(x) is given by

-5 gl

k=0 Q)Qkx)

1
(0<|q|<1; <=

For the big g-Appell polynomials and the g-Appell polynomials, we have

(o]

AOE, (%t) = Y Pu® iy
n=0

and

o0 tn
a,(Dey(xt) = ;An,q<x> AL

respectively. Thus, if we replace g by % in the generating function of the big g-Appell polynomials and
replace x by gx in the the generating function of the g-Appell polynomials, we find that

0o

ARyt = Y qOP, 1) oo
n=0 q°

and

ag(Heq(qxt) = ZAn 9(3%) T [ ] 5

Taking

(o8]

A =a,0= Y ang # 0,(0) 0,
n=0 q°

we have
1OP,,1 () = Aug (@)

For the big g-Bernoulli polynomials and the usual g-Bernoulli polynomials, respectively, we have

t = #n
(—eq(qt) — 1)eq(qxi_‘) = ;5 q(z)Bn’%(x) [n_L,,'

and

‘rl

(e @) - )eq(‘”‘t) Zb’“’(") !

For the big g-Euler polynomials and the usual g-Euler polynomials, respectively, we have

2)
[ oo = qz"@’s ) i
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and
2 _y g
(eq(qt) i 1)eq(‘7xt) = HZ:O en,q(x) [l

Comparing both sides of the generating function of the big g-Bernoulli polynomials with that of the
g-Bernoulli polynomials, and the generating function of the big g-Euler polynomials with that of the g-Euler
polynomials, we have the following relations:

g(D)+1-n B,,1(x) = bug()
and

2 (0)+1n _
2]q q 2 En,%(x) - en,q(x)/

respectively.

The difference equations satisfied by the g-Appell polynomials were obtained in [13]. Some relations
satisfied by the generalized g-Bernoulli polynomials and the generalized g-Euler polynomials were obtained
in [15]. Some relations satisfied by the g-extensions of the Apostol type polynomials were given in [14].

In an earlier work [10], the Apostol type (p, 9)-Bernoulli polynomials of order a and the Apostol type
(p, 9)-Euler polynomials of order & were defined by

(o) t N
B(a) X, ;U A ( ) e () E "
;0 &y d) [n ]pq Aeyq(t) =1 p.a(xt) Epq(yt)
and
3 . 2, \°
851&) X, ;1 A =( P4 ) e () E ),
; Gyt ) [1]p,q! Aepq(t) +1 pa(xt) Epg(yt)

respectively. Moreover, the Apostol type (p, 4)-Frobenius-Euler polynomials were introduced in [10] and
some new identities satisfied by the Apostol type (p, 4)-Frobenius-Euler polynomials were obtained in [10]
(see also the recent works [7], [22] and [21]).

Our present investigation is motivated by the generating function, which was introduced in [18] and
used in [16] for solving some symmetry identities and multiplication formulas as follows:

(o]

21 ktk xt

fultik B = 2t = Y Papliika,b) o

n=0

[t <2t when S =a; |t| <

ﬁlog(g)’ when f #a;

a,k € Np; a,be R\ {0 ,BGC)

In another work [4], the following unified (p, g)-analogs of the Apostol-Bernoulli polynomials, Apostol-
Euler polynomials and the Apostol-Genocchi polynomials of order a were defined:

(e8]

Ox vimk gy PO : Z
yﬂ,b (x/ ]// Z/ k/ ﬁ/ P/ Q) - Z Pn,ﬁ('x’ ]// k/ 11, b/ PI Q) [n]p/q|

n=0

21—k Sk @
(o ) 2B
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|z| <2 when B =a; |z| <

ﬁlog(g)‘ when B #4a; o,k € Ny; a,b € R\ {0}; g C|.

In this paper, by using the theory of the (p, g)-calculus, we obtain recurrence relations and difference
equations satisfied by the big (p, 9)-Appell polynomials. In the special cases, we obtain the corresponding
recurrence relations and difference equations satisfied by the big (p, g)-Bernoulli polynomials and the big
(p, 9)-Euler polynomials. Since the big (p,q)-Appell polynomials reduce to the Appell polynomials in
the case when p = 1 and g — 1—, the recurrence relations and difference equations satisfied by the big
(p, 9)-Appell polynomials coincide with the corresponding recurrence relations and differential equations
satisfied by the Appell polynomials.

The organization of this paper is as follows. In Section 2, we introduce the big (p, 7)-Appell polynomials.
We prove an equivalence theorem satisfied by the big (p, g)-Appell polynomials and obtain recurrence
relations and difference equations satisfied by the big (p, 9)-Appell polynomials. Upon specializing the
parameters p and g, the equivalence theorem, recurrence relations and difference equations satisfied by the
big (p, 9)-Appell polynomials are shown to reduce to the corresponding equivalence theorem, recurrence
relations and differential equations satisfied by the Appell polynomials. In Section 3, we introduce the
big (p, g)-Bernoulli polynomials and obtain some recurrence relations and difference equations satisfied
by the big (p, g)-Bernoulli polynomials and specialize our results to deduce the corresponding recurrence
relations and difference (or differential) equations for the big g-Bernoulli polynomials as well as the Bernoulli
polynomials. In Section 4, we obtain some properties of the big (p, 4)-exponential functions. In Section 5, we
introduce the big (p, g)-Euler polynomials and obtain some properties of the big (p, g)-Euler polynomials.
In particular, we obtain some recurrence relations and difference equations satisfied by the big (p, 4)-Euler
polynomials and consider their special cases as in Section 2. Finally, in Section 6, we present some concluding
remarks and observations and we also point out some obvious connections between the (p, g)-analysis and
the classical g-analysis, exhibiting the fact that the additional parameter p is redundant.

2. The Big (p, 9)-Appell Polynomials

In this Section, we introduce the big (p,q)-Appell polynomials and prove an equivalence theorem
satisfied by the big (p, 7)-Appell polynomials. We also obtain recurrence relations and difference equations
satisfied by the big (p, g)-Appell polynomials and consider their special cases.

Definition 1. A polynomial sequence {P,,4(x)}:en is said to be a big (p, q)-Appell sequence if it satisfies the
following property:

(Dp,q,x(Pn,p,q) (x) = % Pn—l,p,q(qx)- 3)

Theorem 1. The following statements are all equivalent to one another:
(i) Let {Pyp,q(x)}nen be a big (p, q)-Appell sequence defined by (3).
(ii) The big (p,q)-Appell sequence (P, 4(x)}nen possesses an explicit form given by

n k
n x
Pn,p,q(x) = Z [k] An—k,p,q q(lz() (a) . 4)
k=0 L™ dpq
(iii) The big (p,q)-Appell sequence {Py,pq(X)}nen has a generating function
xt\ v "
Apq(DE), (—) =) Pupg(®) —— (5)
pa )=\ g ; P Tl
where
o k
Apa(®) = ) pg ©)
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Proof. In order to prove the assertion (i) = (ii), we let {P,, , 4(x)},en be a big (p, )-Appell sequence. Then we
can write

n

Pn,p,q(x) = 2 A kp,q [x]i/q’ ()
k=0
where
2 k-1 ®
’ 1 9 9 77k
[x]pq:x(—x)(—x)---(—x): x. 8
k p I\ p2 i1 p(g) (8)
Applying the (p, g)-derivative operator D, 4. on both sides of (7) and using the fact that
qC) e
Dp,q,x[x]k [k]pq C ) ’ 9)
P 2
we get
[npq - 40 -
—— P, xX) = a 1[k]
q LP:‘I(q ) ; nkpq p(k)
We also have
7 @ e
P,_ X) = a klyq, 10
1p.4(q%) (1], - nkpdg "oy (k) [kl (10)

which, upon replacing k by k + 1 in (10), yields

n—1 k+1

1Y gy e G ik + 1], (11)

[]pq k=0

Pn—l,p,q(qx)

Replacing by n + 1 and replacing gx by x in (11), we get

n k+1
] 409
P =— " k+1],,. 12
”rl’:‘?(x) [n+ 1];7,’1 % An+1k+1,pq (k+1)( ) [k + ] pA (12)
Comparing (7) and (12), we find that
k-1 [7’1] y
Ankpqg = pT ﬁ An—1,k-1,p,q- (13)
Iterating the equation (13) k times, we obtain
k
p(z) n
an,k,p,q = _k[ ] a,,_k,ofp,q. (14)
7 1k,
Upon setting

An-k0,p.9 = An-kpq

and inserting a1 5, into the equation (7), we get

n k
Pypq(x) = Z [Z] fAn—kp,q ’7(5) (g) :
PA

k=0
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For proving the assertion (ii) = (iii), we let

n k
Py pq(x) = 2 [Z] An—kp,q q(ﬁ) (g) .
pA

k=0

Upon summing both sides from n = 0 to n = oo and taking qu!’ we have

(o] (o] n k
" n [ X "
Y Py —— = Y 0 (_) _
L p9(X) (], [qu An-kpq q 7) Tl (15)

n=0 k=0

Applying the Cauchy product in (15), we get

which, in view of the expansion in (6) and the series expression for the big (p, 7)-exponential function, yields

anpq(x) ] Pll(t)EPq(J;t)

Finally, in order to demonstrate the assertion (iii) = (i), we let {P;, , 4(x)},.en have the following generating
function:

M(t)Ew( ) Z Prp (%) [n]
n=0
Then, by applying (p, g)-derivative operator with respect to x on both sides of (5), we find that
[Se] tn
Aﬂrﬂ(t)DPrﬂrx( )) Z Dy npq(x) Tt (16)
n=0 pA*
Using the fact that
xt £
Dp,q,x(EM(—)) =L, (17)
q q
in (16), we get
La, (OE, . (xt) = Z D )= e (18)
q Apg(DEpq L Mx Pupq [,
Inserting the corresponding series in (18), we obtain
1 = i’"+1
- P, D x Py (x (19)
q HZ:(; ra(d Z pa\Enpg [n]p N
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Shifting the series in (19), we get

n °° n

1 w t t
. Y [l Puct paax) TS Y Dpg(Pupa®) T (20)

n=0 pA* n=0

Upon equating the coefficients of W’;q, in (20), we get

[n]p,
Dp,q,x(Pn,p,q(x)) = % Pn—l,p,q(qx)r

which shows that {P,, , ;(x)}.en is a big (p, q)-Appell sequence. [J

Definition 2. A polynomial sequence {P, 4(x)}scn is said to be a big g-Appell sequence if it satisfies the
following property:

Dy(Pug(x)) = % Py-1,4(q%)- (21)
Taking p = 1 in Theorem 1, we get the following corollary.
Corollary 1. The following statements are all equivalent.
(i) Let {Pyq(x)}uen be a big g-Appell sequence.

(i) {Pnq(x)}nen has an explicit form given by

Poq(x) = kZ; [ZLan_m 9 (g)k 22)
(iii) {Pyq(x)}nen has a generating function given by
A, (DE, (%t) = ;Pn,q(x) [;L T (23)
where
o p
AgD) = kZSak'q TR (24)

Definition 3. A polynomial sequence {P,(x)},cn is said to be an Appell sequence if it satisfies the following
property:

d

—(Pu(x) = 1 P (). (25)

Corollary 2. The following statements are all equivalent.
(i) Let {Py(x)}nen be an Appell sequence.

(ii) The Appell sequence {P,(x)}nen has an explicit form given by

Pu)= Y (Z)an_k . (26)

k=0
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(iii) The Appell sequence {Py,(x)},eN has a generating function given by

AWt =Y Py 1, )
n=0 '
where
o k
A(t) = Z a % (28)
k=0 ’

Theorem 2. The recurrence relation satisfied by the big (p, q)-Appell polynomials is given by

n n-1

X n

B (L) + Para @300+ X [1] i) = P 9)
p4q

Proof. Differentiating both sides of the generating function of the big (p, q)-Appell polynomials with respect
to t, we have

Dy o il Apg(t)
Ap,q(Pf)DW(E,,,,,(%t)) + Apg(DEp o(xct) %

0o

Z n+1,p, q(x) q! . (30)

n=0

In the equation (30), we need to compute the (p, g)-derivative

xt
DPfq/f(EP/fi(;))

by first expanding the (p, g)-exponential function E,, (%t) and then evaluating the (p,q)-derivative with
respect to f. We thus obtain

Dp'q't(qu( )) (Z‘ ”]pq )
( -n .n A (t”)
= Z q(z) g " x %’:q‘

Upon inserting the following expression:

Dp,q,t(tn) =" [n]p,q

and after some series manipulations, we find that
xt X
Dmt(EM(;)) = EEW(’“)- (31)

Now, using (31) in (30), we have

Dy, t( pA t)

ApaPEs(t) + Apg(DEg(st) —2 75— = Z Past ) == [n] (32)
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Now, if we define

Dl’ﬂrf(APrﬂ(t)) i "

Ap® L T 3

and consider the generating function of the big (p, q)-Appell polynomials in (32), we find that

) ( ) ) fn
1Ll +§Pkw<‘7’f i L T

X v q P v [n fn
- p, - X + P X)ty,— —_—
q Z . (P ) []p.q! Z [k]p,q roa(F0ina [1]9!

n=0 n=0 k=0
:imwmwﬁ7 (34)
r [1],s!
Equating the coefficients of o in (34), we have
xp" = 1
iPn,p,q (z x) + Z [k] Pk,p,q(qx)an—k,p,q = Pn+1,p,q(x)' (35)
q P k=0 L™ dpg

Equation (35) can be written as follows:

n n-1
xp q n
— Pupyg (_ x) + Pypq(gx)aop,q + Z [k] Ak p,aPrp,a(q%)
q P k=0 L

= Pn+1,p,q (x).
O

Upon setting

in Theorem 2, we have the following corollary.
Corollary 3. A recurrence relation satisfied by the big g-Appell polynomials is given by

n-1
(;‘C + aO,q)Pn,q(qx) + Z [Z] Ut Prg(qx) = Pui1,q(x). (36)
k=0

q
By setting
n n
p= 1, q — 1—, Qo1 =: &o and [k]l 1 = (k)

in Theorem 2, we have the following corollary.
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Corollary 4. (see [6]) A recurrence relation satisfied by the Appell polynomials is given by

n—1
(x +a0)Pu(x) + ) | (’;)an_kpk(x) = Put (%), (37)
k=0

Theorem 3. The difference equation satisfied by the big (p, q)-Appell polynomials is given by

xp"t q p 7
—q DP:‘?,X (Pn,li:q(; x)) + ; Pn,p,q (? x|+ ao,p,qu’q,x(Pn,plq(qx))
Pn- kvq kD [n+1],,
+ Z [n k] kDP qk;l(Pn,p,q(x)> = —q Pn,p,q(qx)- (38)

Proof. To obtain the difference equation (38) satisfied by the big (p, )-Appell polynomials, we need to find
the derivative operator. Indeed, for the big (p, 9)-Appell property, we have

9
Pn—l,p,q(qx) = m Dp,q,x<Pn,p,q(x))-
Hence, clearly, the derivative operator is given by

Lopa = G (39)

Now, using the derivative operator (39) in the recurrence relation satisfied by the big (p, 4)-Appell polyno-
mials, Py, 4(qx) can be written as follows:

Pk/FW (qx) = [ k+1,p, qLI;+2 i q L;,P,Q]P”rprq(x)

- |1 q R
- [[k + 1], Dpa [k + 2], Dpas [l D M/X] Py pq(x)
nk Klpat
=g pa D (Pupa®)- (40)

[I’l] pAx

Substituting from (40) into the recurrence relation in (29), we have

n-1
xp" q ) Ankpq_ n-k ryn—k
— Pupq|= x|+ Pupq(gx)ao,,, + ———— 4" Dy " Prpq(x)
q Pq(p pAa P ; [1n—Kl,,! 4 ( pAa )

= Pn+1,p,q(x)' (41)

Applying the (p, q)-derivative operator D, ,; with respect to x on both sides of (41) and using the product
rule (1) and the fact that

[n]p,
Dp,q,x(Pn,p,q(x)) = % Pn—l,p,q(qx)r

we get

X n+1 2 n
pq DP,LM(P nm(g x)) + Pupg (% x) Dp,qx (% x) t &opyg Dp,q,X(P n,wi(‘ix))

T D ()

n+1
I ]pqp

n.pq(q%)- (42)
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Inserting the following expression:

r" P
Dp,q,x (; JC) = ; (43)
in (42), we get
xpn+1 2

Dpgx (P ww(g x)) + % Prpyg (% x) T Qopg DM,X(P n,plq(qx))

+ Z [:‘n gq g quk;l(Pn,p’q(x))

[n+1]”‘7p )
npqg\gx)-

0
Taking p = 1and
@01, =: Qog, [n =kl = [n—kl,! and [n+1],=[n+1]
in Theorem 3, we have the following corollary.

Corollary 5. The difference equation satisfied by the big g-Appell polynomials is given by

=Dy (Pugta) + % Poa(P) + 00 Dy (Pag(@))

-1
k, g DI [n+1]
;Z‘ nn_ kii " Dq,xk“(Pn,q(x)) = L Poy(g), (44)
where
d
i D,.

Taking p = 1 and g — 1- in Theorem 3 and inserting
ap,1,1 =: Ag, [n— k]l,1! = (1’1 - k)! and [n+ 1]1,1 = (n + 1),
we have the following corollary.

Corollary 6. (see [6]) The differential equation satisfied by the Appell polynomials is given by

n-1 n—k+1
(x+ ao)— 2(0)) + Z n"‘ il ( d ) (Pa@)) = nPy(x) = 0. (45)
k=0

3. The Big (p, 9)-Bernoulli Polynomials

In this Section, we introduce the big (p, g)-Bernoulli polynomials. We obtain the recurrence relation and
the difference equation satisfied by the big (p, 4)-Bernoulli polynomials. We also deduce the corresponding
results in the special cases whenp =1 as wellas whenp =1and g — 1-.
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Definition 4. The big (p, 4)-Bernoulli polynomials are defined by

t xt - g
———|E ==Y Bip,(x) —,
[E,,,q(g)—l] pq(q) Zg P Il

where the big (p, 9)-Bernoulli numbers By, := By, 4(0) are given by
t . tk
——— =) Bip, o7 —-
Enq(é) ~1 kz_; T
Some of the big (p, q)-Bernoulli numbers are given by

2
q 9 __1
B = B =-——, B I

ra =8 Bioa =0 BT G, T Bl
g* 2, [Bly

B3pg=— + - ,

1= L, T2, e,

B _ ‘17 ‘74 2[4]%4 (4], 3
4pq = -

" [Blg ’ (2] L (217, * [2]p,q[3]pqu '

Definition 5. The big g-Bernoulli polynomials are defined by

t LANER - t
[Eq (1) - 1] . (7) B Zg B fagy

where the big g-Bernoulli numbers By, := By 4(0) are given by

(o9

-
E, (é) -1 Z‘Bk'q (k]!

k=0

In the case when p = 1 in (48), we have some big g-Bernoulli numbers given by

9 g 1 _ 0
[21," 7 21, 8l
q* 2 , Bl

B3,q:—@+@q _QE/
g g LM [

B, e, Tre e

BO,q =4, Bl,q = -

By, =

In the case when p = 1 and 4 — 1—, we have the Bernoulli numbers given by

1 1 1
BO:1/ Blz_zl BZZE/ B3:0/ B4=_%/“'

Theorem 4. A recurrence relation satisfied by the big (p, q)-Bernoulli polynomials is given by

a1 [ PX q ) (q )
=1+ B, [T x
P (q p+q) " \p

1 e+l 9\ k-1 nk

= B"H‘l,p,q (.x).

3101

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)
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Proof. Taking the (p, q)-derivative with respect to t on both sides of the generating function of the big
(p, 9)-Bernoulli polynomials and using the rules in (1) and (2), we have

_r xt
[Erw (5)-1 ] Dp/q't(EP’q( q ))
(Epa(t) = 1)Dpqu(t) - qupﬂ/f(Ev,q(é) - 1)
(Ep,tl(%t) - 1)<Ep,q(t) - 1)

Z n+1pq(x) [ ] (54)

n=0

+ Ep 4(xt)

Using the fact that
xt X
Dyt EM(;) =7 Epq(xt),

" 1
D=1 and D,,,q,t(Ep,q(a) _ 1) = 2 Epal) (55)

in (54), we have

(Epq(t) = 1) = tEp (1)
(Ep,,,(%t) - 1)(E,,,q(t) 1)

= Y Buuip® ﬁ (56)

] Epq(xt) + Ep 4(xt)

1
- a(xt) + ————E, ;(xt)
q E (P_f) . p4a c (p_t)_l rAa
P4 q P4 q
1 1 1
—t o E,q(xt) + o pq(xt) 0
Ep,q(;) -1 Ep,q(;) - ’
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which, upon inserting the corresponding series, yields

(o]

'y I e, 1 3 (’7 ) " 1 (17 ) ("
q’;’Bnm( ) [l pt Z i [1]pq! PWZSB”M *) Tl
1 © q (pt)n 1 o (qt)k
_ I;HZ:;BMW (’_7 x) [n]p,q! aZBkPq [k]

i 5
= B pqg(x) =
=0 T Iny!

Applying some series manipulations and the Cauchy product, we get

s 11 s B Ty n
X q _\ Pt mLpg (p ) t
- E Bupg|l—x + E i
q i (F’ ) [1p,q! P (41l [nlyg!

n=0

[oe] tn
= Y Bustpg®) - &7
nZ:o n+ipq [”]p,q!
Equating the coefficients of ﬁ:q, in (57), we get

B Iy
X q ”+1M(p ) ) (q )
-B —x|pt+p ————= — " Bupa|—x
q np,.q (p )p p [n+1]p,q P
1 "“[n+1] (q ) L
- Buitos |~ x|p"* a1 B
CEET ] I ] V7 L
= Bn+1,p,q(x)'

Rearranging the summation and separating some terms in the summation, we get

Byiip,g (;ﬂ: x) g (z x)
npAg

X q
=By, = x|p"+p"
g " (P )p P [n+1lp,

1 q no— q n—

1y fn+1 9\ k1 nk
ik, Bl B
T k=0 pAa

= Bn+1,p,q(x)' (58)
Upon collecting the like terms, if we rearrange some terms in the summation and set

9

_— and [1],, =1
p+q "

Bopq =4, Bipg=-
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in (58), we get
-1 (p—x 1+ L)BW (@ x)
q ptq p
-1
1 HZ‘ [n + 1] B, (ﬂ x) Pl g B
n+1lg =] k|, P\ p P
= Bn+1,p,q(x).
|

Setting p = 1 in Theorem 4, we have the following corollary.

Corollary 7. The recurrence relation satisfied by the big q-Bernoulli polynomials is given by

n—1
x q 1 n+1 e
(q My q)B””’(qx) [n+1], kz_:;[ k L Bog(9%) 4" Buksrg

= Bn+1,q(x)'

Taking p = 1 and g — 1- in Theorem 4, we have the following corollary.

Corollary 8. (see [6]) The recurrence relation satisfied by the Bernoulli polynomials is given by

1 1 ©(n+1
(x= 3Bt - — ). ( . )Bn_mBkm = Bt (4,

Theorem 5. The difference equation satisfied by the big (p, q)-Bernoulli polynomials is given by

n 2
X a1 on1 q n—l) ( (‘7 )) p (‘7 x)
Syt oty A D (B L )|+ 5 By [
(qP p p+qP P, P\ g "\

n—1
Bn—k+1pq 2 X
» (k) -1 pr-k+i( g (_)
k1], l TP T Py

[n 1]MB ).
npg\q

3104

(59)

(60)

(61)

Proof. In the recurrence relation satisfied by the big (p,q)-Bernoulli polynomials, we make use of the

derivative operator:
Ln P/ q [n] p q,Xs

so that the term By, (gx) can be written as follows:

q x
Bk,p,q(;;x) [Liarpglisapg npq]B”Pq(p)

q q q x
= D D ..—D Bn e
[[k+11w PPk + 2L, 77 [l ’”"7"‘] '”'q(p)

_ n- k[ ]P‘i' X
sl )

(62)
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Inserting the term By, (g x) into the recurrence relation in (53), we get

el
B 1+ |B,,|~x
P (q p+q M\p

n—k+1,p,q 20 k1 pr k(B (f))
;[n kedl,t TP PranPrealy
= Bn+1,p,q(x)- (63)
Taking the (p, g)-derivatives of both sides of (63) with respect to x, we get

X ue1 01 q n—l) ( (6] ))
“p = g e = p" ) Dy o B~ x
(qp p P"'qp P, P P
2
q X X n n—l )
+Bppo| == | Dy [ =p" —
n,m( p ) p,q,x(qp p p+qp

n—1
Bn—k+1 P 2 ( X
P (n—-k) ,,k—1 yn—k+1
B e e rar I A A D Bn,p,q(-)
i [1n =k + 1], A p

0 g o), (64)

which, upon substituting for the following derivative:

X q P
Dy |2p" —p' "+ £, (65)
”’”(qp ST ) q

yields

X n41 o on1 q n—l) ( (’7 )) p" (qzx)
Lot -ty L\ Bl ® )|+ & By (1=
(qP p p+ql’ pax\ Prpal A

n—1
Bik+1 A 2 ( X
P (n-k) ,,k—=1 yn—k+1
- q p— D Bn,p,q(_)
e [ =k + 1], A p

[n+1],
= ——"1B,,4(g%).

O

By setting p = 1 in Theorem 5, we have the following corollary.

Corollary 9. The difference equation satisfied by the big g-Bernoulli polynomials is given by

x 1
(_ -1+ 7 5]) fi,X(Bn,q(qx)) + 5 B”fq(q2x)

q 1+
-1
By ki14 Z(n—k) n—k+1
kZ‘ "kt 1, D (Bua()
[n+1]
= L Byg(gw). (66)

By letting p = 1 and ¢ — 1— in Theorem 5, we have the following corollary.
Corollary 10. (see [6]) The di]j‘erential equation satisfied by the Bernoulli polynomials is given by

-1 n—k+1
e3) ) B2 (5] (ool ”
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4. Properties of the Big (p, q)-Exponential Functions

In this Section, we obtain several potentially useful properties of the big (p, g)-exponential function
and the (p, q)-exponential function. For the convenience in respect of their expansions, we first recall the
(p, 9)-Gauss binomial expansion. We present the corresponding properties for the big g-exponential and the
g-exponential functions in the case when p = 1.

The (p, )-Gauss binomial expansion is given by (see [10])

x + y]pq H(q x+p'y) = Z [Z] p) (=) gk o 69)

PA

In the case when p = 1 in the (p, g)-binomial expansion (68), we get the following consequence of the
(p, 9)-Gauss binomial expansion (68).

Corollary 11. The g-binomial expansion is given by

(b -+ y1,)’ H(q x+y) = Z [ ] () k. (69)

Theorem 6. The product of the (p, q)-exponential functions E, ;(x) and E1 1(y) is given by

11
p’q

oo [ ] , n
Epg@E11 ()= ) M.

= [ 7o

Proof. Upon replacing p by ;—] and q by % in E, 4(x), if we take into consideration of the fact that

Also, multiplying E, ;(x) by E:1 1(y), we have
p’q

Epy(¥Ey 1 (1) = Z Z [klpq

which, in light of the Cauchy product, yields

nkk

EL (O, 1 (1) = z;["] 9,0 15

n=0

Now, by using the (p, g)-binomial expansion, we can write

< ([x+ y] y "
Epg@E3 ()= ) %

n=0
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Next, by using the fact that

, () = ep,q(y)/

El 1
rra
we can write the following result from Theorem 6.
Corollary 12. The product of the (p, q)-exponential functions E, 4(x) and e, 4(y) is given by

Epq(®) i (- o). (71)

x)e =
pa(X)epq(y n]p !
If we set y = —x in Corollary 12 and use the fact that [0],, := 1, we arrive at the following corollary.

Corollary 13. The (p, q)-exponential functions Ep;(x) and ey 4(y) satisfy the following relation:

Ep (x)epq (—x) = 1. (72)

For p = 1 in Theorem 6, we have the following result.
Corollary 14. The q-exponential functions E,(x) and E1(y) satisfy the following relation:
q
0 [x + y]q
E (x)E. . 73
JDEL () = Z T (73)
Theorem 7. The product of the (p, q)-exponential functions ey ,(y) and E, 4(x) is given by
W=, L) 2
e
9. (Y)Ep,q(x L n]p !

Proof. Upon inserting the series forms of the (p, g)-exponential functions, we get

(e8]

Z‘ [klp 7'

* k=0

€p, q(]/) Ep q(x) Z p(Z)

which, in view of the Cauchy product, yields

[Se] ”}\ 1
61 Epa(2) = ZZH 9400t L
pAq

=0 k=0 Mlpg:
-V () g03) gk b L
nZ:'a 0[ ] 7 y [”]M!

Finally, by using the (p, g)-binomial theorem (68), we get

- [x"'y]pq

ep,q(]/)Ep,q (x) = Z [n]p K

n=|

O

By setting ¥ = —x in Theorem 7 and using the fact that [0],; := 1, we get the following corollary.
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Corollary 15. The (p, q)-exponential functions ey 4(y) and E, 4(x) satisfy the following relation:
epq(—)Ep (x) = 1. (75)

Putting p = 1 in Theorem 7, we have the following corollary.
Corollary 16. The g-exponential functions E,(x) and E1(y) satisfy the following relation:
q

0 x+y]q

eg(y)Ey(x) = Z . (76)

[1lp,q!

By applying Corollary 13 and Corollary 15, the product of E, ;(x) and ¢, 4,(—x) is seen to be commutative.
We are thus led to the following corollary.

Corollary 17. For the (p, q)-exponential functions ey 4(y) and Ep 4(x), it is asserted that
Ep4(x)ep,q(—=x) = ep(=x)Ep 4(x) = 1. (77)

5. The Big (p, q)-Euler Polynomials

In this section, we introduce the big (p, 4)-Euler polynomials and derive the recurrence relation as well
as the difference equation satisfied by these big (p, q)-Euler polynomials. In the case whenp = 1, we give the
corresponding recurrence relation and difference equation satisfied by the big g-Euler polynomials. In the
case when p = 1 and g — 1-, the big (p, 9)-Euler polynomials reduce to the Euler polynomials. Therefore,
the recurrence relation and difference equation satisfied by the big (p, g)-Euler polynomials reduce to the
corresponding recurrence relation and differential equation satisfied by the Euler polynomials.

Definition 6. The big (p, 4)-Euler polynomials are defined by

n=0

[Z]p,q (xt) - t"
Eva|— ] = Z, Enpa(*) = (78)
qu(£)+1 1 [l

where the big (p, g)-Euler numbers are given by

t
[2]p,qu (') 0 k
q Z E,. — (79)
P
E, ([Z]W ) 1 [Klpq!

k=0
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Some of the big (p, q)-Euler numbers are given below:

2 2 [2]>
EOpq _ [ ]Prq, E2pq — [ ]p,q (1_ .4 )
i 2 " 2q 2
4 2
Ey, = 2 afy 21\ a2 (2
/P4 2 2 4q2 2 ’
2L, o, 25, o (51,4 1610 283,
Eepq = N 7 - > opga = T o5 9" Ezpg
[5]p4 [6)pq 215
N 5 q 1 E4,p,q/
(2], [2]2,»1 [71pq [8lpq [Z]S,q
Egpq = N 420 Ty %0 Eopq = - 5 49 Ezpq

3 [S]p,q [6]p,q [7]M [S]W [2]2#1 2
2[3]p,q [4]p,q
2

4,4

-1
q E6,p,q-

Definition 7. The big g-Euler polynomials are defined by

AR = t
[ ]Eq (?) = ;En,q(x) [n_]q!,

where the big g-Euler numbers are given by

[2],
E, (;) +1

2UE () & e
)

In the case when p = 1, we have the following big g-Euler numbers:

2] (. [P
Eoy= 3, 12y = S (151,
Rl (2 L, 12E o, D
Fag=—51 (1‘7‘ | fEe =iy
51, 161, 2],
5 1
R, ,, RE L LB, RE
Es,qu I I A A S 24
51, (61, 17, 181, 2,
BT 7Y P
71, 181, 21
5 1 Fe

Upon letting p = 1 and ¢ — 1—, we have the Euler numbers given by

Eo=1,Ey;=-1,E4=5, Eg=—-61, Eg=1385,---, Ez1 =0 (neN).

3109

(80)

(81)

(82)
(5], [6], [212

(83)

(84)
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Theorem 8. The big (p, q)-Euler polynomials E,, j,4(x) satisfy the following relation:

n

Z [Z] q(;)ik 3 Entpq(0) = Eppq(x)-
g

k=0

Proof. By using the generating function of the big (p, 7)-Euler polynomials, we have

2], .
B (4] Fe g
Falger

where

(2] -
_ LApg ZE”M(O [n

E,,q(q)+1 n=0

Thus, upon inserting the corresponding series, we get

k )

Z Ey '1(0) Z q 2 [k]p ZaEn,p,q(x) ﬁm'/

n=0

which, in light of the Cauchy product, yields

y ZH 4y 0) ZEW, !

n=0 k=0

Finally, by equating the coefficients of 77— Tl We get

Z [;j q(ﬁ)—k x* Enpq(0) = Enpg(2).
k=0

pA
|

Taking p = 1 in Theorem 8, we get the following corollary.

Corollary 18. For the big q-Euler polynomials E, 4(x), it is asserted that

n

Z [Z} q(g)_k xk En—k,q(o) = En,q(x)‘
q

k=0
If we set p = 1 and g — 1- in Theorem 8, we get the following corollary.

Corollary 19. For the Euler polynomials E,(x), it is asserted that

n

X (i) # B0 =B

k=0

Theorem 9. For the big (p,q)-Euler numbers E, , 4, it is asserted that

1 _
Enpg (m) = [21y5 Enpa-

3110

(85)

(86)

(87)

(88)



H. M. Srivastava et al. / Filomat 33:10 (2019), 3085-3121 3111

Proof. Our demonstration of Theorem 9 follows easily upon replacing ¢ by [2],,t and taking x = ﬁ in
generating function of the big (p, g)-Euler polynomials. The details involved are being omitted here. [

Taking p = 1 in Theorem 9, we have the following corollary.

Corollary 20. The big g-Euler polynomials satisfy the following relation:

1 —n
En,q (@) = [Z]q En,q' (89)

By letting p = 1 and g — 1— in Theorem 9, we have the following corollary.

Corollary 21. (see [5] and [6]) For Euler polynomials E,(x), it is asserted that

E, (%) =2"E,. (90)

By first setting x = 1 and replacing ¢ by —t in generating function of the big (p, )-Euler polynomials and
then using the fact that

t t
E,ol—les|-]=1,
m( q) p,q(q)

we are led to the following corollary.

Corollary 22. For the big (p, q)-Euler polynomials, it is asserted that

n=0

[Z]p,q ( t) Z]pq -
Epg|—=)= ZEnpq( ) = (91)
qu( t)+1 1) ey (1) +1 [”]

Theorem 10. The big (p, q)-Euler polynomials satisfy the following relation:

Enpa(D) = (=1)" g&*1-20 yO+ E 14 (0). 92)

n!

==
JENTN

Proof. By applying Corollary 22, we have
Z Eppg(l ! :
v (q) .

Replacing p by % and g by %, and taking into consideration of the fact that

_ (qt) = Ep(qh) and [n]: 1! = Ut gt

[2]1, 11l = — 0,
Pa p(z)q(z)

7

pg i

==
==

we get

1 [2l, v () "
b B 1 = D AP0 &)
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Taking x = 0 in the generating function of the big (p, 4)-Euler polynomials, we get

2
Ry ZEnpAO
n=0

Epaq (
which, when used in (93), yields
;OEW(O —wZ( " qOpE, 1 () ]/q'
Equating the coefficients of £r— m, We get
9" Enpg(0) = (1)" qu(z)p(z) E, (D).

We thus find that
Eupq(0) = (<1)" pq(3)+1—2n p(E) E, .. (1)
‘p’q

Replacing p by % and q by %, we get

" 1
E n, 17(0) = ( 1) q(;)+1_2”p(;)+1 En,p,q(l)/

==

so that
En,p,q(l) =(-1)" pq(2)+1_2” p(z)En’%,%(())'
0
Taking p = 1 in Theorem 10, we get the following corollary.

Corollary 23. For big g-Euler polynomials, it is asserted that
Eug() = (=1)" &2 E, (0.
Upon letting p = 1 and g — 1- in Theorem 10, we get the following corollary.
Corollary 24. (see [5]) The Euler polynomials E,(x) satisfies the following relation:
E.(1) = (=1)" Ex(0).

Theorem 11. The big (p, q)-Euler numbers satisfies the following relation:

U "y [ﬂ] O gUDHE, L1 (1) = By 0).
k PAq

(254 < |k

k11l
Ifl

Proof. Taking x = 0 in the generating function of the big (p, g)-Euler polynomials, we get

3112

(94)

(95)

(96)

97)
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Now, using the fact that

T
PINgL2Lq ) T\ al2lg)

in (97), we get

n

[Z]p,q ( t ) ( t ) b #n
— v |Eral = |eva |~ | = 2 Enpa©) 7
Epq ($)+1 "\ aq12p, e ey Z:‘o pa® [12]4!

Using the generating function of the big (p, 4)-Euler numbers, we can write

t n
[2]p,q S ( 2]77 LI)
( Z]P q ) Z B o

Eyq (2) +1 n=0 [n]pq

Upon inserting (99) and the series of e, ;(— ) in (98), we get

q[2
n
o (o) & (o) e
Enpg—r ) P Eupa©) 1oy
Z PAa [n]p,q! kZ:(; [k]pq é P
Applying the Cauchy product, we get
g n k =
(—1>k[ ] PO 2L By = = Y Enpg(0) ——

Equating the coefficients of 7r— Ty 0 (100), we get

1 ;
o, 2 [Z]pq PO 0™ Euvtng = Enpi(O).

Finally, by using the fact that

Enpg(1) :=Eppq = pq' " ( ) P( )( 1)"E, 1 1(0),

"!\'—‘
By

which was obtained in (92), we get

(O) = En,p,q(0)~

k11l
Ifl

(1" pg " H pO+(3) (5% |
;| q+?
[2]7”‘1 ;)‘ k pA

O
Taking p = 1 in Theorem 11, we have the following corollary.
Corollary 25. For the big q-Euler numbers, it is asserted that

—1)" 1-2n 1 i

k=0

3113

(98)

(99)

(100)

(101)

(102)
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Upon setting p = 1 and g — 1- in Theorem 11, we have the following corollary.
Corollary 26. The Euler numbers E,, satisfies the following relation:
1) &
X () e -E0 (103

2n e k

For x = 1 in Theorem 8, we get the following corollary.

Corollary 27. For the big (p, q)-Euler polynomials, it is asserted that

n

ZK]%WWHM@=QMH (104)
PA

k=0
Taking p = 1 in Corollary 27, we get the following consequence.

Corollary 28. The big g-Euler polynomials satisfy the following relation:

n

Y, [Z} 4O E,i4(0) = Eng(1). (105)
q

k=0
By letting p = 1 and g — 1- in Corollary 27, we get the following corollary.
Corollary 29. The Euler polynomials E, (x) satisfies the following relation:
= (n
Y (10 - (106)

k=0
Theorem 12. A recurrence relation satisfied by the big (p, q)-Euler polynomials is given by

n-1
pn( 1) (q ) 7 [n} (q )
—|x=z|Ewpq|= x|+ en—kpg Ekpqa|— X
q 2 P p ‘1[2]%!7 kZ:O k g kP “hpd p

= En+1,p,q(x)r (107)

where the coefficients ey p,q are given by

k
ek/p,q = (g) Ek/p,q(O)

_ 1k () 1k Kk
_ (=1)*(pg) Z [k] p(é)+(k£1) q(kgl)g Ek—l,%,%(o)‘ (108)
pAq

k
2, =l

Proof. Taking the (p,q) derivatives with respect to f on both sides of the generating function of the big
(p, 9)-Euler polynomials and using the rules in (1) and (2), and rearranging some terms, we have

2
1 Bha
q pt

Ep,q (;) +1
+ E, ,(xt) _pra L +p+q !
" [ LA PR pt
pa E,,,,,(;) +1)(Epa +1)
= i E;1+1,Pr‘1(JC) —tn T (109)
=y [12]p*
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Using the fact that
Epy(t) epq(—t) =1
in (109) and rearranging some terms again, we can write

2 2
x (2D Ep(xt) - P[ ;q [ ]Z,q
e

q pt
Epq (E) +1

p+q 1 [2]p4 ( 1 ) ( 1 )
E, ,(xt E ; 1,
+ q B (p_t) o pq(Xt) [Z]p,q<Ep,q 0+ 1) v\t~

Epq(xt)

ks n

t
= Z En+1,p,q(x) m/

n=0

which, upon inserting the corresponding series, yields

Xy g\ @) 1¢ (q ) (pt)"
=Y Eoa 2 --YE.. 2
q Z_" 7 (P x) [nlpq! 4 Z‘ P1\p * [1]p,q!

n=0 n=0
0 o0 0 __1 1
1 g\ @y 1 ( 1 ) @ > oy C?
+= Y Eupo|l—x —— Y} E — | == 2
q ,,Z:(} . (P ) [1]pq! [2]pq P2l T, IZO‘ $ [7p.q!
(o) t”
= En+1pq( )
nzz‘g [1]p,q!
Applying the Cauchy product, we get
X e " 1 v« q ) "
- "Enpal— x - = " E
q;p pq( ) [”]pq' q;p nM(P [n]pq'
o n k
1 [n] [k] G ot ke
+ pre
912l nZ—O; k pA ; ! 2 [2]?@
1 q t"
E_ —— |E,_ =X
klpq([zlp,q) kPq(p ) [n]pq’
(o) tn
=Y Eratpg(d) —. (110)
é +Lpg [n]p,q!
Now, using the fact that
1 -n
En,p,q(m) = [z]p,q En,p,q
in (110) with
Enpg(1) i= Eypy = (<1)" g&+1720 p(0)+1 E,1100),
we get
1 -n n _on n
Enpa (—) = (1" [21, @2 pO E, L 0 (111)
[2]p4 P
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[2],,

X, q " 1w, (q ) £
s z Eppol+ x| — - = z E, -
=4 ”’"’(P x) D=L VAT

Upon setting n = k — [ and substituting for Ex_, ( ) from (111), we get

n=0 n=0 ]pq
1 = O n k k (1)

+ (_1)k [ ] | ] 5) yht—k+1 —k+l+1 [2] -k
q12}y.q ; kZ:O‘ k pa IZO‘ ! pA Per ! "

&) (D E, A A

p q Ek—l,;,E(O)En—k,p,q p X [n]p,q!

(o] tn
:ZEn+1pq(x) (1],

In this last equation (112), by defining e, ; by

£ —1) 1k K k k-1, (1 k-l
Chpg = (;ﬂ?) Ercp,q(0) = % Z H p()@ () Er-1,1,1(0),
] 1=0 I

Equating the coefficients of £— Tl of both sides of (113), we get
P q Py [n q
— (x=1) E,p, (— x)+ [ ] €kp,aEn—kp, (— x)
q P\ p q[2]p,4 g k pa P P\ p

= En+1,p,q(x)'

Equation (114) can be written as follows:

n n n n
% (x — 1)En,p,q (g x) + —q[g]pq Z [k] en—k,p,q Ek,p,q (g x) = En+1,P/‘1(x).
pAa

T k=0

We can also write

P q P" q
X—=1E;pq|l = x|+ —=— €pg Enpa|— %
7“7V ”(P ) q12Lpq " ”(P )
n n-l1
p n q
+ €, E - X
12y, ;)‘ [qu b ke (P )
= En+1,p,q(x).

Now, by the definition of e, ,;, we have

€opq = pqEO,%,% (1)

3116

(112)

(113)

(114)

(115)

(116)
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Thus, by setting n = 0 in Corollary 27 and replacing p by %, and g by %, we get
Ey11(1) =Ey11(0). (117)
‘p’q ‘p’q
Therefore, we have
€0pq = pqEO,%,%(O). (118)

In order to compute E 1 1(0), by taking x = 0in the generating function of the big (p, q)-Euler polynomials,
‘P’
we get

2]
_ 2pg Z Enp, q(()) (119)
Epgq ( n=0
By replacing p by 2 s and g by 1 g in (119), we get
[Z]p q - "
pL E,11(0) . (120)
pq(ep q(qt) + 1 ; i !
Equation (120) can be written as follows:
Clo () 4 r
= (a0 +1) Zp 19 E, 0 (121)
Inserting the corresponding series in (121), we get
[2]]:1 q T t"
S R -+1 G g&E . , 122
" ;; Zzﬂ 19 E,10) ey (122)

which, by an appeal to the Cauchy product, yields

11
pq prl . i ]!
 pOg00E, , ,0)
+;P qE, 1 1(0) Ol (123)
Equating the coefficients of £— o and taking n = 0 in (123), we find that
29
Bz @ =5, (124)
which, when inserted into (118), yields
(2],
Copg = —5 (125)

Now, inserting e 4 into (115), we get

n-1
pn( 1) (q ) pn [n] (q )
—|x==|Ewpq|l= x|+ en—tpg Ekpqa|— X
q 2 P4 p q[z]MZ kp,q kpq Skpa %

k=0

= En+1,p,q(x)'
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Taking p = 1 in Theorem 12, we have the following corollary.

Corollary 30. The recurrence relation satisfied by the big q-Euler polynomials is given by

n—-1

1 1 1
7 (v 2)Buateo + o ) [”Lenk,,, Euq(@) = Enetg(x), (126)
where
_1)kal-k K .
Chq = quk,q(O) = % Z [k} ‘7( D) Ey_;,1(0). (127)
[2; =L, !

Taking p = 1 and g — 1- in Theorem 12, we deduce the following corollary.

Corollary 31. (see [6]) The recurrence relation satisfied by the Euler polynomials E,(x) is given by

n—-1
(x - %) En(x) + % é (Z)en—k Ex(x) = Ep+1(x), (128)
where
1Y &
Ck = Ek(O) = ( 2}() Z (I;)Ek](()). (129)

1=0

Theorem 13. The difference equation satisfied by the big (p, q)-Euler polynomials E,, , 4(x) is given by

p”( 1) ( (q )) " (ff )
—|px == |Dpyx| Enpgl = x|| + — Enpg| — x
q p 5 ) 2 Mp q pa p

o nek-1 Cn—kpg . k+1( (x ))
—D e En,, —
7 R s WA LV
n+1
_ I+l
q

Proof. The proof of Theorem 13 is similar to the proof which we have already presented for the big (p, 9)-
Bernoulli polynomials. Since the derivative operator is given by

n.pq(q%)- (130)

Lipq = [n] Dpgxs

we write the following expression:

q n—k [klpq! n—k ( (x ))
E -x|= —— D A\ Enpal =
kp.q (P ) q [1],,,! P, P4 p

which, when inserted into (107), yields
-1
p”( 1) ( ) 1 Cnkpg n_k( (x))
—|x—-=|E, Dy A\ Enpal =
q 2) [z]pq Z [” Klpq! P P p
= En+1,p,q(x)- (131)

Taking the (p, g)-derivatives of both sides of (131) with respect to x, we get the difference equation (130)
asserted by Theorem 13. [
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Taking p = 1 in Theorem 13, we have the following corollary.

Corollary 32. The difference equation satisfied by the big q-Euler polynomials E,, 4(x) is given by
1 1 1
- (x — E)Dq,X(Enlq(qx)) + 5 En,q(qzx)

q
1 v n—k—1 En—kyq n—k+1
ToTl ;q [k, Do (Ena@)

B [n+1],

Enq(gx). (132)

Letting p = 1 and g4 — 1- in Theorem 13, we have the following corollary.

Corollary 33. (see [6]) The differential equation satisfied by the Euler polynomials E,(x) is given by

1nl e n—k+1
Xx—= X))+ = — n(x)) — nE,(x) = 0.
(v~ 3) E(E) = ( ) (Eu)) — nEn() = 0 (133)

6. Concluding Remarks and Observations

In our present investigation, we have introduced and studied the various properties and characteristics
of the big (p, 7)-Appell polynomials. In particular, we have derived an equivalence theorem satisfied by big
(p, 9)-Appell polynomials. By appropriately specializing our main results involving the big (p, 7)-Appell
polynomials, we have deduced the corresponding equivalence theorem, recurrence relation and difference
equation for the big g-Appell polynomials. We have also presented the equivalence theorem, recurrence
relation and differential equation for the usual Appell polynomials. Moreover, for the big (p, )-Bernoulli
polynomials and the big (p, g)-Euler polynomials, we have derived the recurrence relations and the differ-
ence equations. When p = 1, we have given the recurrence relations and the difference equations which
are satisfied by the big g-Bernoulli polynomials and the big g-Euler polynomials. In the case when p = 1
and g — 1-, the big (p, 9)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the re-
currence relation and the difference equation which we have obtained for the big (p, g)-Appell polynomials
coincide with the recurrence relation and the differential equation which are satisfied by the usual Appell
polynomials.

We now choose to point out some obvious connections between the (p,g)-analysis and the classical
g-analysis. Here, in this last section on concluding remarks and observations, we reiterate the fact that the
results for the (p, g)-analogues, such as those which we have considered in this article for 0 < g <p £ 1,
can easily be deduced from the corresponding (possibly known) results for the familiar g-analogues (with
0 < g < 1) by applying some obvious parametric and argument variations, the additional parameter p being
redundant. Indeed, as observed earlier by Srivastava et al. [25], a considerably large number of authors
have used the so-called (p, g)-analysis by introducing a seemingly redundant parameter p in the classical
g-analysis. Also, as we have indicated already in Section 1, the so-called (p, g)-number [n],, is given (for
0<g<p=l)by

pn_qn

nef{1,2,3,---})

0 (n=0)
= p" 1 [l (134)



H. M. Srivastava et al. / Filomat 33:10 (2019), 3085-3121 3120

where, for the g-number [n];, we have

1—=g"
[n]q = 1 _qq
_ i (P“ - (Pq)”)
p—(pq)
= pl_” [n]pm. (135)

Furthermore, the so-called (p,q)-derivative or the so-called (p, g)-difference of a suitable function f(z) is
denoted by (DM f ) (z) and defined, in a given subset of C, by

—f (Fzz)__ j)fiqz) (z#0,0<g<p=s])
(Dpa £) @) = P (136)
f"(0) (z=0;0<g<p=]),

so that, clearly, we have the following connection with the familiar g-derivative or the g-difference (D, f)(z):

(Dp,q f) (z) = (D,% f) (pz) and (Dq f) (2) = (Dp,,,q f)(g) (zeC 0<g<psl. (137)

These last equations (134), (135), (136) and (137) exhibit the fact that, in most cases, the (p, 7)-analogues
which have been considered in this article as well as in other earlier investigations for 0 < g <p £ 1 can
easily be deduced from the corresponding (possibly known) g-analogues (with 0 < g < 1) by applying some
obvious parametric and argument variations of the kind which we have mentioned above and in Section 1,
the additional parameter p being redundant.
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