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Abstract. In the present paper, we introduce and investigate the big (p, q)-Appell polynomials. We prove
an equivalance theorem satisfied by the big (p, q)-Appell polynomials. As a special case of the big (p, q)-
Appell polynomials, we present the corresponding equivalence theorem, recurrence relation and difference
equation for the big q-Appell polynomials. We also present the equivalence theorem, recurrence relation and
differential equation for the usual Appell polynomials. Moreover, for the big (p, q)-Bernoulli polynomials
and the big (p, q)-Euler polynomials, we obtain recurrence relations and difference equations. In the special
case when p = 1, we obtain recurrence relations and difference equations which are satisfied by the big
q-Bernoulli polynomials and the big q-Euler polynomials. In the case when p = 1 and q→ 1−, the big
(p, q)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the recurrence relation and
the difference equation obtained for the big (p, q)-Appell polynomials coincide with the recurrence relation
and differential equation satisfied by the usual Appell polynomials. In the last section, we have chosen
to also point out some obvious connections between the (p, q)-analysis and the classical q-analysis, which
would show rather clearly that, in most cases, the transition from a known q-result to the corresponding
(p, q)-result is fairly straightforward.

1. Introduction, Definitions and Preliminaries

The well-known Appell polynomials Pn(x) are given by

A(t)ext =

∞∑
n=0

Pn(x)
tn

n!
,
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where A(t) is the determining function of the Appell polynomials satisfying the following condition:

A′

(t)
A(t)

=

∞∑
k=0

αk
tk

k!

(
A(0) , 0

)
.

For the Appell polynomials Pn(x), we have

d
dx

(
Pn(x)

)
= nPn−1(x)

(
d
dx

=: Dx

)
,

which shows that the lowering operator L−n for the Appell polynomials Pn(x) is, in fact, the derivative
operator:

L−n :=
1
n

d
dx
.

Some recurrence relation and differential equation satisfied by the Appell polynomials were obtained
by He and Ricci [6]. By means of the lowering and raising operators, they used the factorization method
(see, for details, [8])

L−n+1 L+
n

(
Pn(x)

)
= Pn(x)

and obtained the differential equation. In the classical factorization method, in order to obtain the differential
equation, one needs to find the lowering and raising operators. This method is applicable for some such
Appell polynomials as the Bernoulli polynomials, the Euler polynomials, the 2D-Bernoulli polynomials, the
2D-Euler, and the Hermite-based Appell polynomials. Also, for some extensions of the Appell polynomials
the recurrence relations and differential equations were obtained (see, for example, [3], [23] and [24]). A
generalization of this method was given in [17] and a set of finite-order differential equations was obtained
for the Appell polynomials with the kth iteration of the lowering and the kth iteration of the raising operators
by (

θ−(k)
n+k θ

+(k)
n

) (
Pn(x)

)
= Pn(x).

In some different calculus, the raising operator cannot be defined for the Appell polynomials. For
instance, in the basic (or q-) calculus, some difference equations satisfied by the Appell polynomials were
obtained without using the raising operator [13]. Moreover, in the (p, q)-calculus, the raising operator
cannot be defined for the Appell polynomials. Therefore, some different techniques should be applied in
order to obtain the difference equations satisfied by the (p, q)-Appell polynomials.

We now introduce some basic definitions, notations and conventions about the (p, q)-calculus. By
assuming (for simplicity) that 0 < q < p 5 1, we first recall the (p, q)-derivative of a function f defined by
(see [9] and [19])

(
Dp,q f

)
(x) :=


f (px) − f (qx)

(p − q)x
(x , 0; 0 < q < p 5 1)

f ′(0) (x = 0; 0 < q < p 5 1),

so that, for the familiar q-derivative operator Dq, we have

(
D1,q f

)
(x) =

(
Dq f

)
(x) :=


f (x) − f (qx)

(1 − q)x
(x , 0; 0 < q < 1)

f ′(0) (x = 0; 0 < q < 1).
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Clearly, we have the following relationship between the (p, q)-derivative operator Dp,q and the q-derivative
operator Dq:

(
Dp,q f

)
(x) =

(
D q

p
f
)

(px) and
(
Dq f

)
(x) =

(
Dp,pq f

) (x
p

)
(x , 0; 0 < q < p 5 1).

Moreover, it is easily seen that

lim
q→p

{(
Dp,q f

)
(x)

}
= f ′(px) and lim

q→1−

{(
Dq f

)
(x)

}
= f ′(x)

for a function f which is differentiable in a given subset of R.
The (p, q)-analog [n]p,q of a number n is defined by

[n]p,q =


pn
− qn

p − q
(n ∈N; 0 < q < p 5 1)

0 (n = 0),

so that, for the familiar q-number [n]q, we have

[n]q = [n]1,q and [n]p,q = pn−1 [n] q
p
.

The (p, q)-factorial [n]p,q! is defined by

[n]p,q! =


[1]p,q [2]p,q [3]p,q · · · [n]p,q (n ∈N)

1 (n = 0),

so that, for the q-factorial [n]q!, we have

[n]q! = [n]1,q! := [1]q [2]q [3]q · · · [n]q and [n]p,q! = p(n
2) [n]p, q

p
!.

Finally, the (p, q)-binomial coefficient
[n

k
]

p,q is defined by[
n
k

]
p,q

=
[n]p,q!

[k]p,q! [n − k]p,q!
(n, k ∈N; 0 5 k 5 n),

so that, for the q-binomial coefficient
[n

k
]

q, we have[
n
k

]
q

=

[
n
k

]
1,q

:=
[n]q!

[k]q! [n − k]q!
.

For any constants A and B, we have the following linearity property of the (p, q)-derivative operator
Dp,q: (

Dp,q(A f +B1)
)
(x) = A

(
Dp,q f

)
(x) +B

(
Dp,q 1

)
(x).

The product and quotient rules in the (p, q)-calculus are given by (see [19])(
Dp,q( f1)

)
(x) = f (px)

(
Dp,q 1

)
(x) + 1(qx)

(
Dp,q f

)
(x)

= 1(px)
(
Dp,q f

)
(x) + f (qx)

(
Dp,q 1

)
(x) (1)
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and (
Dp,q

( f
1

))
(x) =

1(qx)
(
Dp,q f

)
(x) − f (qx)

(
Dp,q 1

)
(x)

1(px)1(qx)

=
1(px)

(
Dp,q f

)
(x) − f (px)

(
Dp,q 1

)
(x)

1(px)1(qx)
, (2)

respectively. The special case of each of the above rules when p = 1 holds true for the q-derivative operator
Dq.

In the present paper, we define the big (p, q)-Appell polynomials by

Ap,q(t)Ep,q

(
xt
q

)
=

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
,

where Ep,q(x) is given by

Ep,q(x) :=
∞∑

n=0

q(n
2) xn

[n]p,q!

(
0 <

∣∣∣∣∣qp
∣∣∣∣∣ < 1; |x| < 1

)
and Ap,q(t) is the determining function of the big (p, q)-Appell polynomials given by

Ap,q(t) =

∞∑
n=0

an,p,q
tn

[n]p,q!

(
Ap,q(0) , 0

)
.

The big (p, q)-Appell polynomials satisfy the following relation:

(
Dp,q Pn,p,q

)
(x) =

[n]p,q

q
Pn−1,p,q(qx).

Hence the lowering operator L−n,p,q is defined here

L−n,p,q :=
q

[n]p,q!
Dp,q.

In the special cases of Ap,q(t), we introduce the big (p, q)-Bernoulli and the big (p, q)-Euler polynomials.
In the case when

Ap,q(t) =
t

Ep,q

(
t
q

)
− 1

,

we have the big (p, q)-Bernoulli polynomials given by t

Ep,q

(
t
q

)
− 1

 Ep,q

(
xt
q

)
=

∞∑
n=0

Bn,p,q(x)
tn

[n]p,q!
,

where the big (p, q)-Bernoulli numbers are given by

t

Ep,q

(
t
q

)
− 1

=

∞∑
k=0

Bk,p,q
tk

[k]p,q!
.
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In the case when

Ap,q(t) =
[2]p,q

Ep,q

(
t
q

)
+ 1

,

we have the big (p, q)-Euler polynomials given by [2]p,q

Ep,q

(
t
q

)
+ 1

 Ep,q

(
xt
q

)
=

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
,

where the big (p, q)-Euler numbers are given by [2]p,q

Ep,q

( [2]p,q

q t
)

+ 1

 Ep,q

(
t
q

)
=

∞∑
k=0

Ek,p,q
tk

[k]p,q!
.

Also, upon replacing p by 1
p and q by 1

q in the generating functions of the big (p, q)-Bernoulli polynomials and
the big (p, q)-Euler polynomials, we get the corresponding definitions of the (p, q)-Bernoulli polynomials
and the (p, q)-Euler polynomials, respectively:(

t
ep,q(qt) − 1

)
ep,q(qxt) =

∞∑
n=0

q(n
2)p(n

2)Bn, 1
p ,

1
q
(x)

tn

[n]p,q!

and (
[2]p,q

ep,q(qt) + 1

)
ep,q(qxt) = pq

∞∑
n=0

q(n
2) p(n

2) En, 1
p ,

1
q
(x)

tn

[n]p,q!
,

where

E 1
p ,

1
q
(qt) = ep,q(qt), [2] 1

p ,
1
q

=
[2]p,q

pq
, [n] 1

p ,
1
q
! =

[n]p,q!

p(n
2)q(n

2)

and

ep,q(x) =

∞∑
n=0

p(n
2) xn

[n]p,q!

(
0 <

∣∣∣∣∣qp
∣∣∣∣∣ < 1; |x| < 1

)
.

We note that, in the special case p = 1 in the definition of the big (p, q)-Appell polynomials, we are led
to the big q-Appell polynomials given by

Aq(t)Eq

(
xt
q

)
=

∞∑
n=0

Pn,q(x)
tn

[n]q!
,

where

Eq(x) :=
∞∑

n=0

q(n
2) xn

[n]q!
=

∞∏
k=0

(
1 + (1 − q)qkx

) (
0 <

∣∣∣q∣∣∣ < 1; x ∈ C
)

and

Aq(t) =

∞∑
n=0

an,q
tn

[n]q!

(
a0,q , 0

)
.
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The big q-Bernoulli polynomials are defined by
t

Eq

(
t
q

)
− 1

 Eq

(
xt
q

)
=

∞∑
n=0

Bn,q(x)
tn

[n]q!

and the big q-Euler polynomials are defined by
[2]q

Eq

(
t
q

)
+ 1

 Eq

(
xt
q

)
=

∞∑
n=0

En,q(x)
tn

[n]q!
.

For a detailed analysis of the q-Appell polynomials and related q-polynomials, we refer the reader to [11],
[12] and [20].

In the case when p = 1 and q→ 1−, the big (p, q)-Appell polynomials reduce to the above-defined Appell
polynomials Pn(x), the big (p, q)-Bernoulli polynomials reduce to the Bernoulli polynomials Bn(x) given by( t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
,

and the big (p, q)-Euler polynomials reduce to the Euler polynomials En(x) given by( 2
et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
.

It is important to state that the following q-Appell polynomials were introduced by Al-Salam (see [1]
and [2]) and were subsequently investigated and characterized by Srivastava [20]:

aq(t)eq(xt) =

∞∑
n=0

An,q(x)
tn

[n]q!
(0 < q < 1).

In the case when

aq(t) =
t

eq(t) − 1

and

aq(t) =
2

eq(t) + 1
,

we have the q-Bernoulli polynomials and the q-Euler polynomials given by (see [1])(
t

eq(t) − 1

)
eq(xt) =

∞∑
n=0

bn,q(x)
tn

[n]q!

and (
2

eq(t) + 1

)
eq(xt) =

∞∑
n=0

en,q(x)
tn

[n]q!
,
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respectively. In the above generating functions, the q-exponential function eq(x) is given by

eq(x) :=
∞∑

n=0

xn

[n]q!
=

∞∏
k=0

1(
1 − (1 − q)qkx

) (
0 <

∣∣∣q∣∣∣ < 1; |x| <
1

1 − q

)
.

For the big q-Appell polynomials and the q-Appell polynomials, we have

Aq(t)Eq

(
xt
q

)
=

∞∑
n=0

Pn,q(x)
tn

[n]q!

and

aq(t)eq(xt) =

∞∑
n=0

An,q(x)
tn

[n]q!
,

respectively. Thus, if we replace q by 1
q in the generating function of the big q-Appell polynomials and

replace x by qx in the the generating function of the q-Appell polynomials, we find that

A 1
q
(t)eq(qxt) =

∞∑
n=0

q(n
2)Pn, 1

q
(x)

tn

[n]q!

and

aq(t)eq(qxt) =

∞∑
n=0

An,q(qx)
tn

[n]q!
.

Taking

A 1
q
(t) = aq(t) =

∞∑
n=0

an,q
tn

[n]q!
, aq(0) , 0,

we have

q(n
2)Pn, 1

q
(x) = An,q(qx).

For the big q-Bernoulli polynomials and the usual q-Bernoulli polynomials, respectively, we have(
t

eq(qt) − 1

)
eq(qxt) =

∞∑
n=0

q(n
2)Bn, 1

q
(x)

tn

[n]q!

and (
qt

eq(qt) − 1

)
eq(qxt) =

∞∑
n=0

bn,q(x)
qntn

[n]q!
.

For the big q-Euler polynomials and the usual q-Euler polynomials, respectively, we have(
[2]q

eq(qt) + 1

)
eq(qxt) = q

∞∑
n=0

q(n
2)En, 1

q
(x)

tn

[n]q!
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and (
2

eq(qt) + 1

)
eq(qxt) =

∞∑
n=0

en,q(x)
qntn

[n]q!
.

Comparing both sides of the generating function of the big q-Bernoulli polynomials with that of the
q-Bernoulli polynomials, and the generating function of the big q-Euler polynomials with that of the q-Euler
polynomials, we have the following relations:

q(n
2)+1−n Bn, 1

q
(x) = bn,q(x)

and

2
[2]q

q(n
2)+1−nEn, 1

q
(x) = en,q(x),

respectively.
The difference equations satisfied by the q-Appell polynomials were obtained in [13]. Some relations

satisfied by the generalized q-Bernoulli polynomials and the generalized q-Euler polynomials were obtained
in [15]. Some relations satisfied by the q-extensions of the Apostol type polynomials were given in [14].

In an earlier work [10], the Apostol type (p, q)-Bernoulli polynomials of order α and the Apostol type
(p, q)-Euler polynomials of order α were defined by

∞∑
n=0

B
(α)
n (x, y; u;λ)

tn

[n]p,q!
=

(
t

λep,q(t) − 1

)α
ep,q(xt) Ep,q(yt)

and
∞∑

n=0

E
(α)
n (x, y; u;λ)

tn

[n]p,q!
=

(
[2]p,q

λep,q(t) + 1

)α
ep,q(xt) Ep,q(yt),

respectively. Moreover, the Apostol type (p, q)-Frobenius-Euler polynomials were introduced in [10] and
some new identities satisfied by the Apostol type (p, q)-Frobenius-Euler polynomials were obtained in [10]
(see also the recent works [7], [22] and [21]).

Our present investigation is motivated by the generating function, which was introduced in [18] and
used in [16] for solving some symmetry identities and multiplication formulas as follows:

fa,b(x; t; k, β) :=
21−ktkext

βbet − ab
=

∞∑
n=0

Pn,β(x; k, a, b)
tn

n!(
|t| < 2π when β = a; |t| <

∣∣∣∣∣∣β log
(

b
a

)∣∣∣∣∣∣ when β , a;

α, k ∈N0; a, b ∈ R \ {0}; β ∈ C
)
.

In another work [4], the following unified (p, q)-analogs of the Apostol-Bernoulli polynomials, Apostol-
Euler polynomials and the Apostol-Genocchi polynomials of order α were defined:

Y
(α)
a,b (x, y; z; k, β; p, q) =

∞∑
n=0

P
(α)
n,β(x, y, k, a, b; p, q)

zn

[n]p,q!

=

(
21−k zk

βbep,q(z) − ab

)α
ep,q(xz) Ep,q(yz)
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|z| < 2π when β = a; |z| <

∣∣∣∣∣∣β log
(

b
a

)∣∣∣∣∣∣ when β , a; α, k ∈N0; a, b ∈ R \ {0}; β ∈ C
)
.

In this paper, by using the theory of the (p, q)-calculus, we obtain recurrence relations and difference
equations satisfied by the big (p, q)-Appell polynomials. In the special cases, we obtain the corresponding
recurrence relations and difference equations satisfied by the big (p, q)-Bernoulli polynomials and the big
(p, q)-Euler polynomials. Since the big (p, q)-Appell polynomials reduce to the Appell polynomials in
the case when p = 1 and q→ 1−, the recurrence relations and difference equations satisfied by the big
(p, q)-Appell polynomials coincide with the corresponding recurrence relations and differential equations
satisfied by the Appell polynomials.

The organization of this paper is as follows. In Section 2, we introduce the big (p, q)-Appell polynomials.
We prove an equivalence theorem satisfied by the big (p, q)-Appell polynomials and obtain recurrence
relations and difference equations satisfied by the big (p, q)-Appell polynomials. Upon specializing the
parameters p and q, the equivalence theorem, recurrence relations and difference equations satisfied by the
big (p, q)-Appell polynomials are shown to reduce to the corresponding equivalence theorem, recurrence
relations and differential equations satisfied by the Appell polynomials. In Section 3, we introduce the
big (p, q)-Bernoulli polynomials and obtain some recurrence relations and difference equations satisfied
by the big (p, q)-Bernoulli polynomials and specialize our results to deduce the corresponding recurrence
relations and difference (or differential) equations for the big q-Bernoulli polynomials as well as the Bernoulli
polynomials. In Section 4, we obtain some properties of the big (p, q)-exponential functions. In Section 5, we
introduce the big (p, q)-Euler polynomials and obtain some properties of the big (p, q)-Euler polynomials.
In particular, we obtain some recurrence relations and difference equations satisfied by the big (p, q)-Euler
polynomials and consider their special cases as in Section 2. Finally, in Section 6, we present some concluding
remarks and observations and we also point out some obvious connections between the (p, q)-analysis and
the classical q-analysis, exhibiting the fact that the additional parameter p is redundant.

2. The Big (p, q)-Appell Polynomials

In this Section, we introduce the big (p, q)-Appell polynomials and prove an equivalence theorem
satisfied by the big (p, q)-Appell polynomials. We also obtain recurrence relations and difference equations
satisfied by the big (p, q)-Appell polynomials and consider their special cases.

Definition 1. A polynomial sequence {Pn,p,q(x)}n∈N is said to be a big (p, q)-Appell sequence if it satisfies the
following property:(

Dp,q,x(Pn,p,q

)
(x) =

[n]p,q

q
Pn−1,p,q(qx). (3)

Theorem 1. The following statements are all equivalent to one another:
(i) Let {Pn,p,q(x)}n∈N be a big (p, q)-Appell sequence defined by (3).
(ii) The big (p, q)-Appell sequence {Pn,p,q(x)}n∈N possesses an explicit form given by

Pn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

an−k,p,q q(k
2)

(
x
q

)k

. (4)

(iii) The big (p, q)-Appell sequence {Pn,p,q(x)}n∈N has a generating function

Ap,q(t)Ep,q

(
xt
q

)
=

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
(5)

where

Ap,q(t) =

∞∑
k=0

ak,p,q
tk

[k]p,q!
. (6)
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Proof. In order to prove the assertion (i)⇒ (ii), we let {Pn,p,q(x)}n∈N be a big (p, q)-Appell sequence. Then we
can write

Pn,p,q(x) =

n∑
k=0

an,k,p,q [x]p,q
k , (7)

where

[x]p,q
k = x

(
q
p

x
) (

q2

p2 x
)
· · ·

(
qk−1

pk−1
x
)

=
q(k

2)

p(k
2)

xk. (8)

Applying the (p, q)-derivative operator Dp,q,x on both sides of (7) and using the fact that

Dp,q,x[x]p,q
k = [k]p,q

q(k
2)

p(k
2)

xk−1, (9)

we get

[n]p,q

q
Pn−1,p,q(qx) =

n∑
k=1

an,k,p,q
q(k

2)

p(k
2)

xk−1[k]p,q.

We also have

Pn−1,p,q(qx) =
q

[n]p,q

n∑
k=1

an,k,p,q
q(k

2)

p(k
2)

xk−1[k]p,q, (10)

which, upon replacing k by k + 1 in (10), yields

Pn−1,p,q(qx) =
q

[n]p,q

n−1∑
k=0

an,k+1,p,q
q(k+1

2 )

p(k+1
2 )

xk[k + 1]p,q. (11)

Replacing n by n + 1 and replacing qx by x in (11), we get

Pn,p,q(x) =
q

[n + 1]p,q

n∑
k=0

an+1,k+1,p,q
q(k+1

2 )

p(k+1
2 )

(
x
q

)k

[k + 1]p,q. (12)

Comparing (7) and (12), we find that

an,k,p,q =
pk−1

q
[n]p,q

[k]p,q
an−1,k−1,p,q. (13)

Iterating the equation (13) k times, we obtain

an,k,p,q =
p(k

2)

qk

[
n
k

]
p,q

an−k,0,p,q. (14)

Upon setting
an−k,0,p,q = an−k,p,q

and inserting an,k,p,q into the equation (7), we get

Pn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

an−k,p,q q(k
2)
(

x
q

)k

.
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For proving the assertion (ii)⇒ (iii), we let

Pn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

an−k,p,q q(k
2)
(

x
q

)k

.

Upon summing both sides from n = 0 to n = ∞ and taking tn

[n]p,q! , we have

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
=

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

an−k,p,q q(k
2)
(

x
q

)k tn

[n]p,q!
. (15)

Applying the Cauchy product in (15), we get

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
=

∞∑
n=0

∞∑
k=0

[
n + k

k

]
p,q

an,p,q q(k
2)
(

x
q

)k tn+k

[n + k]p,q!

=

∞∑
n=0

∞∑
k=0

an,p,q

[n]p,q!

q(k
2)
(

x
q

)k

[k]p,q!
tn+k

=

∞∑
n=0

an,p,q
tn

[n]p,q!

∞∑
k=0

q(k
2)

(
xt
q

)k

[k]p,q!

which, in view of the expansion in (6) and the series expression for the big (p, q)-exponential function, yields

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
= Ap,q(t)Ep,q

(
xt
q

)
.

Finally, in order to demonstrate the assertion (iii)⇒ (i), we let {Pn,p,q(x)}n∈N have the following generating
function:

Ap,q(t)Ep,q

(
xt
q

)
=

∞∑
n=0

Pn,p,q(x)
tn

[n]p,q!
.

Then, by applying (p, q)-derivative operator with respect to x on both sides of (5), we find that

Ap,q(t)Dp,q,x

(
Ep,q

(xt
q

))
=

∞∑
n=0

Dp,q,x

(
Pn,p,q(x)

) tn

[n]p,q!
. (16)

Using the fact that

Dp,q,x

(
Ep,q

(xt
q

))
=

t
q

Ep,q(xt), (17)

in (16), we get

t
q

Ap,q(t)Ep,q(xt) =

∞∑
n=0

Dp,q,x

(
Pn,p,q(x)

) tn

[n]p,q!
. (18)

Inserting the corresponding series in (18), we obtain

1
q

∞∑
n=0

Pn,p,q(qx)
tn+1

[n]p,q!
=

∞∑
n=0

Dp,q,x

(
Pn,p,q(x)

) tn

[n]p,q!
. (19)
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Shifting the series in (19), we get

1
q

∞∑
n=0

[n]p,q Pn−1,p,q(qx)
tn

[n]p,q!
=

∞∑
n=0

Dp,q,x

(
Pn,p,q(x)

) tn

[n]p,q!
. (20)

Upon equating the coefficients of tn

[n]p,q! in (20), we get

Dp,q,x

(
Pn,p,q(x)

)
=

[n]p,q

q
Pn−1,p,q(qx),

which shows that {Pn,p,q(x)}n∈N is a big (p, q)-Appell sequence.

Definition 2. A polynomial sequence {Pn,q(x)}n∈N is said to be a big q-Appell sequence if it satisfies the
following property:

Dq,x

(
Pn,q(x)

)
=

[n]q

q
Pn−1,q(qx). (21)

Taking p = 1 in Theorem 1, we get the following corollary.

Corollary 1. The following statements are all equivalent.

(i) Let {Pn,q(x)}n∈N be a big q-Appell sequence.

(ii) {Pn,q(x)}n∈N has an explicit form given by

Pn,q(x) =

n∑
k=0

[
n
k

]
q
an−k,q q(k

2)
(

x
q

)k

. (22)

(iii) {Pn,q(x)}n∈N has a generating function given by

Aq(t)Eq

(
xt
q

)
=

∞∑
n=0

Pn,q(x)
tn

[n]q!
, (23)

where

Aq(t) =

∞∑
k=0

ak,q
tk

[k]q!
. (24)

Definition 3. A polynomial sequence {Pn(x)}n∈N is said to be an Appell sequence if it satisfies the following
property:

d
dx

(
Pn(x)

)
= n Pn−1(x). (25)

Corollary 2. The following statements are all equivalent.

(i) Let {Pn(x)}n∈N be an Appell sequence.

(ii) The Appell sequence {Pn(x)}n∈N has an explicit form given by

Pn(x) =

n∑
k=0

(
n
k

)
an−k xk. (26)
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(iii) The Appell sequence {Pn(x)}n∈N has a generating function given by

A(t)ext =

∞∑
n=0

Pn(x)
tn

n!
, (27)

where

A(t) =

∞∑
k=0

ak
tk

k!
. (28)

Theorem 2. The recurrence relation satisfied by the big (p, q)-Appell polynomials is given by

xpn

q
Pn,p,q

(
q
p

x
)

+ Pn,p,q(qx)α0,p,q +

n−1∑
k=0

[
n
k

]
p,q
αn−k,p,qPk,p,q(qx) = Pn+1,p,q(x). (29)

Proof. Differentiating both sides of the generating function of the big (p, q)-Appell polynomials with respect
to t, we have

Ap,q(pt)Dp,q,t

(
Ep,q

(xt
q

))
+ Ap,q(t)Ep,q(xt)

Dp,q,t

(
Ap,q(t)

)
Ap,q(t)

=

∞∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
. (30)

In the equation (30), we need to compute the (p, q)-derivative

Dp,q,t

(
Ep,q

(xt
q

))
by first expanding the (p, q)-exponential function Ep,q

(
xt
q

)
and then evaluating the (p, q)-derivative with

respect to t. We thus obtain

Dp,q,t

(
Ep,q

(xt
q

))
= Dp,q,t

( ∞∑
n=0

q(n
2)

(
xt
q

)n

[n]p,q!

)
=

∞∑
n=0

q(n
2) q−n xn Dp,q,t(tn)

[n]p,q!
.

Upon inserting the following expression:

Dp,q,t(tn) = tn−1[n]p,q

and after some series manipulations, we find that

Dp,q,t

(
Ep,q

(xt
q

))
=

x
q

Ep,q(xt). (31)

Now, using (31) in (30), we have

x
q

Ap,q(pt)Ep,q(xt) + Ap,q(t)Ep,q(xt)
Dp,q,t

(
Ap,q(t)

)
Ap,q(t)

=

∞∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
. (32)
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Now, if we define

Dp,q,t

(
Ap,q(t)

)
Ap,q(t)

:=
∞∑

n=0

αn,p,q
tn

[n]p,q!
(33)

and consider the generating function of the big (p, q)-Appell polynomials in (32), we find that

x
q

∞∑
n=0

Pn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
+

∞∑
k=0

Pk,p,q(qx)
tk

[k]p,q!

∞∑
n=0

αn,p,q
tn

[n]p,q!

=

∞∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
.

Applying the Cauchy product, we get

x
q

∞∑
n=0

Pn,p,q

(
q
p

x
)

pntn

[n]p,q!
+

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

Pk,p,q(qx)αn−k,p,q
tn

[n]p,q!

=

∞∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
. (34)

Equating the coefficients of tn

[n]p,q! in (34), we have

xpn

q
Pn,p,q

(
q
p

x
)

+

n∑
k=0

[
n
k

]
p,q

Pk,p,q(qx)αn−k,p,q = Pn+1,p,q(x). (35)

Equation (35) can be written as follows:

xpn

q
Pn,p,q

(
q
p

x
)

+ Pn,p,q(qx)α0,p,q +

n−1∑
k=0

[
n
k

]
p,q
αn−k,p,qPk,p,q(qx)

= Pn+1,p,q(x).

Upon setting

p = 1 and
[
n
k

]
1,q

=:
[
n
k

]
q

in Theorem 2, we have the following corollary.

Corollary 3. A recurrence relation satisfied by the big q-Appell polynomials is given by(
x
q

+ α0,q

)
Pn,q(qx) +

n−1∑
k=0

[
n
k

]
q
αn−k,q Pk,q(qx) = Pn+1,q(x). (36)

By setting

p = 1, q→ 1−, α0,1,1 =: α0 and
[
n
k

]
1,1

=

(
n
k

)
in Theorem 2, we have the following corollary.
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Corollary 4. (see [6]) A recurrence relation satisfied by the Appell polynomials is given by

(x + α0)Pn(x) +

n−1∑
k=0

(
n
k

)
αn−kPk(x) = Pn+1(x). (37)

Theorem 3. The difference equation satisfied by the big (p, q)-Appell polynomials is given by

xpn+1

q
Dp,q,x

(
Pn,p,q

(q
p

x
))

+
pn

q
Pn,p,q

(
q2

p
x
)

+ α0,p,qDp,q,x

(
Pn,p,q(qx)

)
+

n−1∑
k=0

αn−k,p,q

[n − k]p,q!
qn−kDn−k+1

p,q,x

(
Pn,p,q(x)

)
=

[n + 1]p,q

q
Pn,p,q(qx). (38)

Proof. To obtain the difference equation (38) satisfied by the big (p, q)-Appell polynomials, we need to find
the derivative operator. Indeed, for the big (p, q)-Appell property, we have

Pn−1,p,q(qx) =
q

[n]p,q
Dp,q,x

(
Pn,p,q(x)

)
.

Hence, clearly, the derivative operator is given by

L−n,p,q :=
q

[n]p,q
Dp,q,x. (39)

Now, using the derivative operator (39) in the recurrence relation satisfied by the big (p, q)-Appell polyno-
mials, Pk,p,q(qx) can be written as follows:

Pk,p,q(qx) = [L−k+1,p,qL−k+2,p,q · · · L
−

n,p,q]Pn,p,q(x)

=

[
q

[k + 1]p,q
Dp,q,x

q
[k + 2]p,q

Dp,q,x · · ·
q

[n]p,q
Dp,q,x

]
Pn,p,q(x)

= qn−k [k]p,q!
[n]p,q!

Dn−k
p,q,x

(
Pn,p,q(x)

)
. (40)

Substituting from (40) into the recurrence relation in (29), we have

xpn

q
Pn,p,q

(
q
p

x
)

+ Pn,p,q(qx)α0,p,q +

n−1∑
k=0

αn−k,p,q

[n − k]p,q!
qn−k Dn−k

p,q,x

(
Pn,p,q(x)

)
= Pn+1,p,q(x). (41)

Applying the (p, q)-derivative operator Dp,q with respect to x on both sides of (41) and using the product
rule (1) and the fact that

Dp,q,x

(
Pn,p,q(x)

)
=

[n]p,q

q
Pn−1,p,q(qx),

we get

xpn+1

q
Dp,q,x

(
Pn,p,q

(q
p

x
))

+ Pn,p,q

(
q2

p
x
)

Dp,q,x

(
pn

q
x
)

+ α0,p,q Dp,q,x

(
Pn,p,q(qx)

)
+

n−1∑
k=0

αn−k,p,q

[n − k]p,q!
qn−k Dn−k+1

p,q,x

(
Pn,p,q(x)

)
=

[n + 1]p,q

q
Pn,p,q(qx). (42)
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Inserting the following expression:

Dp,q,x

(
pn

q
x
)

=
pn

q
(43)

in (42), we get

xpn+1

q
Dp,q,x

(
Pn,p,q

(q
p

x
))

+
pn

q
Pn,p,q

(
q2

p
x
)

+ α0,p,q Dp,q,x

(
Pn,p,q(qx)

)
+

n−1∑
k=0

αn−k,p,q

[n − k]p,q!
qn−k Dn−k+1

p,q,x

(
Pn,p,q(x)

)
=

[n + 1]p,q

q
Pn,p,q(qx).

Taking p = 1 and

α0,1,q =: α0,q, [n − k]1,q! = [n − k]q! and [n + 1]1,q = [n + 1]q

in Theorem 3, we have the following corollary.

Corollary 5. The difference equation satisfied by the big q-Appell polynomials is given by

x
q

Dq,x

(
Pn,q(qx)

)
+

1
q

Pn,q(q2x) + α0,qDq,x

(
Pn,q(qx)

)
+

n−1∑
k=0

αn−k,q

[n − k]q!
qn−k Dn−k+1

q,x

(
Pn,q(x)

)
=

[n + 1]q

q
Pn,q(qx), (44)

where
d

dx
=: Dx.

Taking p = 1 and q→ 1− in Theorem 3 and inserting

α0,1,1 =: α0, [n − k]1,1! = (n − k)! and [n + 1]1,1 = (n + 1),

we have the following corollary.

Corollary 6. (see [6]) The differential equation satisfied by the Appell polynomials is given by

(x + α0)
d

dx

(
Pn(x)

)
+

n−1∑
k=0

αn−k

(n − k)!

(
d
dx

)n−k+1 (
Pn(x)

)
− nPn(x) = 0. (45)

3. The Big (p, q)-Bernoulli Polynomials

In this Section, we introduce the big (p, q)-Bernoulli polynomials. We obtain the recurrence relation and
the difference equation satisfied by the big (p, q)-Bernoulli polynomials. We also deduce the corresponding
results in the special cases when p = 1 as well as when p = 1 and q→ 1−.



H. M. Srivastava et al. / Filomat 33:10 (2019), 3085–3121 3101

Definition 4. The big (p, q)-Bernoulli polynomials are defined by t

Ep,q

(
t
q

)
− 1

 Ep,q

(
xt
q

)
=

∞∑
n=0

Bn,p,q(x)
tn

[n]p,q!
, (46)

where the big (p, q)-Bernoulli numbers Bk,p,q := Bk,p,q(0) are given by

t

Ep,q

(
t
q

)
− 1

=

∞∑
k=0

Bk,p,q
tk

[k]p,q!
. (47)

Some of the big (p, q)-Bernoulli numbers are given by

B0,p,q = q, B1,p,q = −
q

[2]p,q
, B2,p,q =

q
[2]p,q

−
q2

[3]p,q
,

B3,p,q = −
q4

[4]p,q
+

2
[2]p,q

q2
− q

[3]p,q

[2]2
p,q
,

B4,p,q = −
q7

[5]p,q
+

q4

[2]p,q
− q2 [4]p,q

[2]2
p,q

+
[4]p,q

[2]p,q[3]p,q
q3. (48)

Definition 5. The big q-Bernoulli polynomials are defined by t

Eq

(
t
q

)
− 1

 Eq

(
xt
q

)
=

∞∑
n=0

Bn,q(x)
tn

[n]q!
, (49)

where the big q-Bernoulli numbers Bk,q := Bk,q(0) are given by

t

Eq

(
t
q

)
− 1

=

∞∑
k=0

Bk,q
tk

[k]q!
. (50)

In the case when p = 1 in (48), we have some big q-Bernoulli numbers given by

B0,q = q, B1,q = −
q

[2]q
, B2,q =

q
[2]q
−

q2

[3]q
,

B3,q = −
q4

[4]q
+

2
[2]q

q2
− q

[3]q

[2]2
q
,

B4,q = −
q7

[5]q
+

q4

[2]q
− q2 [4]q

[2]2
q

+
[4]q

[2]q[3]q
q3. (51)

In the case when p = 1 and q→ 1−, we have the Bernoulli numbers given by

B0 = 1, B1 = −
1
2
, B2 =

1
6
, B3 = 0, B4 = −

1
30
, · · · . (52)

Theorem 4. A recurrence relation satisfied by the big (p, q)-Bernoulli polynomials is given by

pn−1

(
px
q
− 1 +

q
p + q

)
Bn,p,q

(
q
p

x
)

−
1

[n + 1]p,q

n−1∑
k=0

[
n + 1

k

]
p,q

Bk,p,q

(
q
p

x
)

pk−1 qn−k Bn+1−k,p,q

= Bn+1,p,q(x). (53)
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Proof. Taking the (p, q)-derivative with respect to t on both sides of the generating function of the big
(p, q)-Bernoulli polynomials and using the rules in (1) and (2), we have

 pt

Ep,q

( pt
q

)
− 1

 Dp,q,t

(
Ep,q

(xt
q

))

+ Ep,q(xt)


(
Ep,q(t) − 1

)
Dp,q,t(t) − qtDp,q,t

(
Ep,q

(
t
q

)
− 1

)
(
Ep,q

(
pt
q

)
− 1

)(
Ep,q(t) − 1

)


=

∞∑
n=0

Bn+1,p,q(x)
tn

[n]p,q!
. (54)

Using the fact that

Dp,q,t

(
Ep,q

(xt
q

))
=

x
q

Ep,q(xt),

Dp,q,t(t) = 1 and Dp,q,t

(
Ep,q

( t
q

)
− 1

)
=

1
q

Ep,q(t) (55)

in (54), we have

x
q

 pt

Ep,q

( pt
q

)
− 1

 Ep,q(xt) + Ep,q(xt)


(
Ep,q(t) − 1

)
− tEp,q(t)(

Ep,q

(pt
q

)
− 1

)(
Ep,q(t) − 1

)


=

∞∑
n=0

Bn+1,p,q(x)
tn

[n]p,q!
. (56)

Equation (56) can be written as follows:

x
q


pt

Ep,q

(
pt
q

)
− 1

 Ep,q(xt) +
1

Ep,q

(
pt
q

)
− 1

Ep,q(xt)

− t

 1

Ep,q(
pt
q

) − 1
Ep,q(xt) +

1

Ep,q(
pt
q

) − 1
Ep,q(xt)

1
Ep,q(t) − 1


=

∞∑
n=0

Bn+1,p,q(x)
tn

[n]p,q!
,
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which, upon inserting the corresponding series, yields

x
q

∞∑
n=0

Bn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
+

1
pt

∞∑
n=0

Bn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
−

1
p

∞∑
n=0

Bn,p,q

(
q
p

x
)

(pt)n

[n]p,q!

−
1
p

∞∑
n=0

Bn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
1
qt

∞∑
k=0

Bk,p,q
(qt)k

[k]p,q!

=

∞∑
n=0

Bn+1,p,q(x)
tn

[n]p,q!
.

Applying some series manipulations and the Cauchy product, we get

x
q

∞∑
n=0

Bn,p,q

(
q
p

x
)

pntn

[n]p,q!
+

∞∑
n=0

pn
Bn+1,p,q

( q
p x

)
[n + 1]p,q

tn

[n]p,q!

−
1
p

∞∑
n=0

pn Bn,p,q

(
q
p

x
)

tn

[n]p,q!

−

∞∑
n=0

n+1∑
k=0

[
n + 1

k

]
p,q

Bn+1−k,p,q

(
q
p

x
)

pn−k qk−1 Bk,p,q
tn

[n + 1]p,q!

=

∞∑
n=0

Bn+1,p,q(x)
tn

[n]p,q!
. (57)

Equating the coefficients of tn

[n]p,q! in (57), we get

x
q

Bn,p,q

(
q
p

x
)

pn + pn
Bn+1,p,q

( q
p x

)
[n + 1]p,q

− pn−1 Bn,p,q

(
q
p

x
)

−
1

[n + 1]p,q

n+1∑
k=0

[
n + 1

k

]
p,q

Bn+1−k,p,q

(
q
p

x
)

pn−k qk−1 Bk,p,q

= Bn+1,p,q(x).

Rearranging the summation and separating some terms in the summation, we get

x
q

Bn,p,q

(
q
p

x
)

pn + pn
Bn+1,p,q

( q
p x

)
[n + 1]p,q

− pn−1 Bn,p,q

(
q
p

x
)

−
1

[n + 1]p,q
Bn+1,p,q

(
q
p

x
)

pn q−1 B0,p,q − Bn,p,q

(
q
p

x
)

pn−1 B1,p,q

−
1

[n + 1]p,q

n−1∑
k=0

[
n + 1

k

]
p,q

Bk,p,q

(
q
p

x
)

pk−1 qn−k Bn+1−k,p,q

= Bn+1,p,q(x). (58)

Upon collecting the like terms, if we rearrange some terms in the summation and set

B0,p,q = q, B1,p,q = −
q

p + q
and [1]p,q = 1
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in (58), we get

pn−1

(
px
q
− 1 +

q
p + q

)
Bn,p,q

(
q
p

x
)

−
1

[n + 1]p,q

n−1∑
k=0

[
n + 1

k

]
p,q

Bk,p,q

(
q
p

x
)

pk−1 qn−k Bn+1−k,p,q

= Bn+1,p,q(x).

Setting p = 1 in Theorem 4, we have the following corollary.

Corollary 7. The recurrence relation satisfied by the big q-Bernoulli polynomials is given by(
x
q
− 1 +

q
1 + q

)
Bn,q(qx) −

1
[n + 1]q

n−1∑
k=0

[
n + 1

k

]
q

Bk,q(qx) qn−k Bn−k+1,q

= Bn+1,q(x). (59)

Taking p = 1 and q→ 1− in Theorem 4, we have the following corollary.

Corollary 8. (see [6]) The recurrence relation satisfied by the Bernoulli polynomials is given by

(
x −

1
2

)
Bn(x) −

1
n + 1

n−1∑
k=0

(
n + 1

k

)
Bn−k+1Bk(x) = Bn+1(x). (60)

Theorem 5. The difference equation satisfied by the big (p, q)-Bernoulli polynomials is given by(
x
q

pn+1
− pn−1 +

q
p + q

pn−1

)
Dp,q,x

(
Bn,p,q

(q
p

x
))

+
pn

q
Bn,p,q

(
q2x
p

)

−

n−1∑
k=1

Bn−k+1,p,q

[n − k + 1]p,q!
q2(n−k) pk−1 Dn−k+1

p,q,x

(
Bn,p,q

(x
p

))
=

[n + 1]p,q

q
Bn,p,q(qx). (61)

Proof. In the recurrence relation satisfied by the big (p, q)-Bernoulli polynomials, we make use of the
derivative operator:

L−n,p,q :=
q

[n]p,q
Dp,q,x,

so that the term Bk,p,q

( q
p x

)
can be written as follows:

Bk,p,q(
q
p

x) = [L−k+1,p,qL−k+2,p,q · · · L
−

n,p,q]Bn,p,q

(
x
p

)
=

[
q

[k + 1]p,q
Dp,q,x

q
[k + 2]p,q

Dp,q,x · · ·
q

[n]p,q
Dp,q,x

]
Bn,p,q

(
x
p

)
= qn−k [k]p,q!

[n]p,q!
Dn−k

p,q,x

(
Bn,p,q

(x
p

))
. (62)
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Inserting the term Bk,p,q

( q
p x

)
into the recurrence relation in (53), we get

pn−1

(
px
q
− 1 +

q
p + q

)
Bn,p,q

(
q
p

x
)

−

n−1∑
k=0

Bn−k+1,p,q

[n − k + 1]p,q!
q2(n−k) pk−1 Dn−k

p,q,x

(
Bn,p,q

(x
p

))
= Bn+1,p,q(x). (63)

Taking the (p, q)-derivatives of both sides of (63) with respect to x, we get(
x
q

pn+1
− pn−1 +

q
p + q

pn−1

)
Dp,q,x

(
Bn,p,q

(q
p

x
))

+ Bn,p,q

(
q2x
p

)
Dp,q,x

(
x
q

pn
− pn−1 +

q
p + q

pn−1

)
−

n−1∑
k=1

Bn−k+1,p,q

[n − k + 1]p,q!
q2(n−k) pk−1 Dn−k+1

p,q,x

(
Bn,p,q

(x
p

))
=

[n + 1]p,q

q
Bn,p,q(qx), (64)

which, upon substituting for the following derivative:

Dp,q,x

(
x
q

pn
− pn−1 +

q
p + q

pn−1

)
=

pn

q
, (65)

yields(
x
q

pn+1
− pn−1 +

q
p + q

pn−1

)
Dp,q,x

(
Bn,p,q

(q
p

x
))

+
pn

q
Bn,p,q

(
q2x
p

)

−

n−1∑
k=1

Bn−k+1,p,q

[n − k + 1]p,q!
q2(n−k) pk−1 Dn−k+1

p,q,x

(
Bn,p,q

(x
p

))
=

[n + 1]p,q

q
Bn,p,q(qx).

By setting p = 1 in Theorem 5, we have the following corollary.

Corollary 9. The difference equation satisfied by the big q-Bernoulli polynomials is given by(
x
q
− 1 +

q
1 + q

)
Dq,x

(
Bn,q(qx)

)
+

1
q

Bn,q(q2x)

−

n−1∑
k=1

Bn−k+1,q

[n − k + 1]q!
q2(n−k) Dn−k+1

q,x

(
Bn,q(x)

)
=

[n + 1]q

q
Bn,q(qx). (66)

By letting p = 1 and q→ 1− in Theorem 5, we have the following corollary.

Corollary 10. (see [6]) The differential equation satisfied by the Bernoulli polynomials is given by(
x −

1
2

) d
dx

(
Bn(x)

)
−

n−1∑
k=1

Bn−k+1

(n − k + 1)!

(
d

dx

)n−k+1 (
Bn(x)

)
− nBn(x) = 0. (67)
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4. Properties of the Big (p, q)-Exponential Functions

In this Section, we obtain several potentially useful properties of the big (p, q)-exponential function
and the (p, q)-exponential function. For the convenience in respect of their expansions, we first recall the
(p, q)-Gauss binomial expansion. We present the corresponding properties for the big q-exponential and the
q-exponential functions in the case when p = 1.

The (p, q)-Gauss binomial expansion is given by (see [10])

(
[x + y]p,q

)n
=

n−1∏
r=0

(qrx + pry) =

n∑
k=0

[
n
k

]
p,q

p(k
2) q(n−k

2 ) xn−k yk. (68)

In the case when p = 1 in the (p, q)-binomial expansion (68), we get the following consequence of the
(p, q)-Gauss binomial expansion (68).

Corollary 11. The q-binomial expansion is given by

(
[x + y]q

)n
=

n−1∏
r=0

(qrx + y) =

n∑
k=0

[
n
k

]
q

q(n−k
2 ) xn−k yk. (69)

Theorem 6. The product of the (p, q)-exponential functions Ep,q(x) and E 1
p ,

1
q
(y) is given by

Ep,q(x)E 1
p ,

1
q
(y) =

∞∑
n=0

(
[x + y]p,q

)n

[n]p,q!
. (70)

Proof. Upon replacing p by 1
p and q by 1

q in Ep,q(x), if we take into consideration of the fact that

[n] 1
p ,

1
q
! =

[n]p,q!

p(n
2)q(n

2)

and replace x by y, we find that

E 1
p ,

1
q
(y) =

∞∑
k=0

p(k
2)

[k]p,q!
yk.

Also, multiplying Ep,q(x) by E 1
p ,

1
q
(y), we have

Ep,q(x)E 1
p ,

1
q
(y) =

∞∑
n=0

q(n
2) xn

[n]p,q!

∞∑
k=0

p(k
2)

[k]p,q!
yk,

which, in light of the Cauchy product, yields

Ep,q(x)E 1
p ,

1
q
(y) =

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

q(n−k
2 ) p(k

2) xn−kyk

[n]p,q!
.

Now, by using the (p, q)-binomial expansion, we can write

Ep,q(x)E 1
p ,

1
q
(y) =

∞∑
n=0

(
[x + y]p,q

)n

[n]p,q!
.
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Next, by using the fact that

E 1
p ,

1
q
(y) = ep,q(y),

we can write the following result from Theorem 6.

Corollary 12. The product of the (p, q)-exponential functions Ep,q(x) and ep,q(y) is given by

Ep,q(x)ep,q(y) =

∞∑
n=0

(
[x + y]p,q

)n

[n]p,q!
. (71)

If we set y = −x in Corollary 12 and use the fact that [0]p,q := 1, we arrive at the following corollary.

Corollary 13. The (p, q)-exponential functions Ep,q(x) and ep,q(y) satisfy the following relation:

Ep,q(x)ep,q(−x) = 1. (72)

For p = 1 in Theorem 6, we have the following result.

Corollary 14. The q-exponential functions Eq(x) and E 1
q
(y) satisfy the following relation:

Eq(x)E 1
q
(y) =

∞∑
n=0

(
[x + y]q

)n

[n]p,q!
. (73)

Theorem 7. The product of the (p, q)-exponential functions ep,q(y) and Ep,q(x) is given by

ep,q(y)Ep,q(x) =

∞∑
n=0

(
[x + y]p,q

)n

[n]p,q!
. (74)

Proof. Upon inserting the series forms of the (p, q)-exponential functions, we get

ep,q(y) Ep,q(x) =

∞∑
n=0

p(n
2) yn

[n]p,q!

∞∑
k=0

q(k
2) xk

[k]p,q!
,

which, in view of the Cauchy product, yields

ep,q(y)Ep,q(x) =

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

p(n−k
2 ) q(k

2) xk yn−k 1
[n]p,q!

=

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

p(k
2) q(n−k

2 ) xn−k yk 1
[n]p,q!

.

Finally, by using the (p, q)-binomial theorem (68), we get

ep,q(y)Ep,q(x) =

∞∑
n=0

(
[x + y]p,q

)n

[n]p,q!
.

By setting y = −x in Theorem 7 and using the fact that [0]p,q := 1, we get the following corollary.
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Corollary 15. The (p, q)-exponential functions ep,q(y) and Ep,q(x) satisfy the following relation:

ep,q(−x)Ep,q(x) = 1. (75)

Putting p = 1 in Theorem 7, we have the following corollary.

Corollary 16. The q-exponential functions Eq(x) and E 1
q
(y) satisfy the following relation:

eq(y)Eq(x) =

∞∑
n=0

(
[x + y]q

)n

[n]p,q!
. (76)

By applying Corollary 13 and Corollary 15, the product of Ep,q(x) and ep,q(−x) is seen to be commutative.
We are thus led to the following corollary.

Corollary 17. For the (p, q)-exponential functions ep,q(y) and Ep,q(x), it is asserted that

Ep,q(x)ep,q(−x) = ep,q(−x)Ep,q(x) = 1. (77)

5. The Big (p, q)-Euler Polynomials

In this section, we introduce the big (p, q)-Euler polynomials and derive the recurrence relation as well
as the difference equation satisfied by these big (p, q)-Euler polynomials. In the case when p = 1, we give the
corresponding recurrence relation and difference equation satisfied by the big q-Euler polynomials. In the
case when p = 1 and q→ 1−, the big (p, q)-Euler polynomials reduce to the Euler polynomials. Therefore,
the recurrence relation and difference equation satisfied by the big (p, q)-Euler polynomials reduce to the
corresponding recurrence relation and differential equation satisfied by the Euler polynomials.

Definition 6. The big (p, q)-Euler polynomials are defined by


[2]p,q

Ep,q

(
t
q

)
+ 1

 Ep,q

(
xt
q

)
=

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
, (78)

where the big (p, q)-Euler numbers are given by

[2]p,qEp,q

(
t
q

)
Ep,q

(
[2]p,q

q
t
)

+ 1
=

∞∑
k=0

Ek,p,q
tk

[k]p,q!
. (79)
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Some of the big (p, q)-Euler numbers are given below:

E0,p,q =
[2]p,q

2
, E2,p,q =

[2]p,q

2q

1 −
[2]2

p,q

2

 ,
E4,p,q =

[2]p,q

2
q2

1 −
[2]4

p,q

2

 − [4]p,q![2]p,q

4q2

1 −
[2]2

p,q

2

 ,
E6,p,q =

[2]p,q

2
q9
−

[2]6
p,q

2
q9 E0,p,q −

[5]p,q [6]p,q [2]3
p,q

2
q2 E2,p,q

−
[5]p,q [6]p,q [2]p,q

2
q−1 E4,p,q,

E8,p,q =
[2]p,q

2
q20
−

[2]8
p,q

2
q20 E0,p,q −

[7]p,q [8]p,q [2]5
p,q

2
q9 E2,p,q

−

[5]p,q [6]p,q [7]p,q [8]p,q [2]3
p,q

2[3]p,q [4]p,q
q2 E4,p,q

−
[7]p,q [8]p,q [2]p,q

2
q−1 E6,p,q. (80)

Definition 7. The big q-Euler polynomials are defined by [2]q

Eq

(
t
q

)
+ 1

 Eq

(
xt
q

)
=

∞∑
n=0

En,q(x)
tn

[n]q!
, (81)

where the big q-Euler numbers are given by

[2]qEq

(
t
q

)
Eq

( [2]q

q t
)

+ 1
=

∞∑
k=0

Ek,q
tk

[k]q!
. (82)

In the case when p = 1, we have the following big q-Euler numbers:

E0,q =
[2]q

2
, E2,q =

[2]q

2q

1 −
[2]2

q

2

 ,
E4,q =

[2]q

2
q2

1 −
[2]4

q

2

 − [4]q![2]q

4q2

1 −
[2]2

q

2

 ,E6,q =
[2]q

2
q9
−

[2]6
q

2
q9 E0,q −

[5]q [6]q [2]3
q

2
q2 E2,q

−
[5]q [6]q [2]q

2
q−1 E4,q,

E8,q =
[2]p

2
q20
−

[2]8
p

2
q20 E0,q −

[7]q [8]q [2]5
q

2
q9 E2,q

−

[5]q [6]q [7]q [8]q [2]3
q

2[3]q [4]q
q2 E4,q

−
[7]q [8]q [2]q

2
q−1 E6,q. (83)

Upon letting p = 1 and q→ 1−, we have the Euler numbers given by

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, · · · , E2n+1 = 0 (n ∈N). (84)
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Theorem 8. The big (p, q)-Euler polynomials En,p,q(x) satisfy the following relation:

n∑
k=0

[
n
k

]
p,q

q(k
2)−k xk En−k,p,q(0) = En,p,q(x). (85)

Proof. By using the generating function of the big (p, q)-Euler polynomials, we have

[2]p,q

Ep,q

(
t
q

)
+ 1

Ep,q

(
xt
q

)
=

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
,

where

[2]p,q

Ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
.

Thus, upon inserting the corresponding series, we get

∞∑
n=0

En,p,q(0)
tn

[n]p,q!

∞∑
k=0

q(k
2)

( xt
q )k

[k]p,q!
=

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
,

which, in light of the Cauchy product, yields

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

q(k
2)−k xk En−k,p,q(0)

tn

[n]p,q!
=

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
.

Finally, by equating the coefficients of tn

[n]p,q! , we get

n∑
k=0

[
n
k

]
p,q

q(k
2)−k xk En−k,p,q(0) = En,p,q(x).

Taking p = 1 in Theorem 8, we get the following corollary.

Corollary 18. For the big q-Euler polynomials En,q(x), it is asserted that

n∑
k=0

[
n
k

]
q

q(k
2)−k xk En−k,q(0) = En,q(x). (86)

If we set p = 1 and q→ 1− in Theorem 8, we get the following corollary.

Corollary 19. For the Euler polynomials En(x), it is asserted that

n∑
k=0

(
n
k

)
xk En−k(0) = En(x). (87)

Theorem 9. For the big (p, q)-Euler numbers En,p,q, it is asserted that

En,p,q

(
1

[2]p,q

)
= [2]−n

p,q En,p,q. (88)
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Proof. Our demonstration of Theorem 9 follows easily upon replacing t by [2]p,qt and taking x = 1
[2]p,q

in
generating function of the big (p, q)-Euler polynomials. The details involved are being omitted here.

Taking p = 1 in Theorem 9, we have the following corollary.

Corollary 20. The big q-Euler polynomials satisfy the following relation:

En,q

(
1

[2]q

)
= [2]−n

q En,q. (89)

By letting p = 1 and q→ 1− in Theorem 9, we have the following corollary.

Corollary 21. (see [5] and [6]) For Euler polynomials En(x), it is asserted that

En

(1
2

)
= 2−n En. (90)

By first setting x = 1 and replacing t by −t in generating function of the big (p, q)-Euler polynomials and
then using the fact that

Ep,q

(
−

t
q

)
ep,q

(
t
q

)
= 1,

we are led to the following corollary.

Corollary 22. For the big (p, q)-Euler polynomials, it is asserted that
[2]p,q

Ep,q

(
−

t
q

)
+ 1

 Ep,q

(
−

t
q

)
=

[2]p,q

ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(1)
(−t)n

[n]p,q!
. (91)

Theorem 10. The big (p, q)-Euler polynomials satisfy the following relation:

En,p,q(1) = (−1)n q(n
2)+1−2n p(n

2)+1 En, 1
p ,

1
q
(0). (92)

Proof. By applying Corollary 22, we have

[2]p,q

ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(1)
(−t)n

[n]p,q!
.

Replacing p by 1
p and q by 1

q , and taking into consideration of the fact that

[2] 1
p ,

1
q

=
[2]p,q

pq
, e 1

p ,
1
q
(qt) = Ep,q(qt) and [n] 1

p ,
1
q
! =

[n]p,q!

p(n
2)q(n

2)
,

we get

1
pq

[2]p,q

Ep,q(qt) + 1
=

∞∑
n=0

(−1)n q(n
2)p(n

2)En, 1
p ,

1
q
(1)

tn

[n]p,q!
. (93)
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Taking x = 0 in the generating function of the big (p, q)-Euler polynomials, we get

[2]p,q

Ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!

which, when used in (93), yields

∞∑
n=0

En,p,q(0)
q2n tn

[n]p,q!
= pq

∞∑
n=0

(−1)n q(n
2)p(n

2)En, 1
p ,

1
q
(1)

tn

[n]p,q!
.

Equating the coefficients of tn

[n]p,q! , we get

q2n En,p,q(0) = (−1)n pqq(n
2)p(n

2) En, 1
p ,

1
q
(1).

We thus find that

En,p,q(0) = (−1)n pq(n
2)+1−2n p(n

2)En, 1
p ,

1
q
(1).

Replacing p by 1
p and q by 1

q , we get

En, 1
p ,

1
q
(0) = (−1)n 1

q(n
2)+1−2np(n

2)+1
En,p,q(1),

so that

En,p,q(1) = (−1)n pq(n
2)+1−2n p(n

2)En, 1
p ,

1
q
(0).

Taking p = 1 in Theorem 10, we get the following corollary.

Corollary 23. For big q-Euler polynomials, it is asserted that

En,q(1) = (−1)n q(n
2)+1−2n En, 1

q
(0). (94)

Upon letting p = 1 and q→ 1− in Theorem 10, we get the following corollary.

Corollary 24. (see [5]) The Euler polynomials En(x) satisfies the following relation:

En(1) = (−1)n En(0). (95)

Theorem 11. The big (p, q)-Euler numbers satisfies the following relation:

(−1)n pq1−2n

[2]n
p,q

n∑
k=0

[
n
k

]
p,q

p(k
2)+(n−k

2 ) q(n−k
2 )+k En−k, 1

p ,
1
q
(1) = En,p,q(0). (96)

Proof. Taking x = 0 in the generating function of the big (p, q)-Euler polynomials, we get

[2]p,q

Ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
, (97)

where

Ep,q(0) := 1.
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Now, using the fact that

Ep,q

(
t

q[2]p,q

)
ep,q

(
−

t
q[2]p,q

)
= 1

in (97), we get
[2]p,q

Ep,q

(
t
q

)
+ 1

 Ep,q

(
t

q[2]p,q

)
ep,q

(
−

t
q[2]p,q

)
=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
. (98)

Using the generating function of the big (p, q)-Euler numbers, we can write
[2]p,q

Ep,q

(
t
q

)
+ 1

 Ep,q

(
t

q[2]p,q

)
=

∞∑
n=0

En,p,q

(
t

[2]p,q

)n

[n]p,q!
. (99)

Upon inserting (99) and the series of ep,q(− t
q[2]p,q

) in (98), we get

∞∑
n=0

En,p,q

(
t

[2]p,q

)n

[n]p,q!

∞∑
k=0

p(k
2)

(
−

t
q[2]p,q

)k

[k]p,q!
=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
.

Applying the Cauchy product, we get

∞∑
n=0

n∑
k=0

(−1)k
[
n
k

]
p,q

p(k
2) q−k[2]−n

p,q En−k,p,q
tn

[n]p,q!
=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
. (100)

Equating the coefficients of tn

[n]p,q! in (100), we get

1
[2]n

p,q

n∑
k=0

(−1)k
[
n
k

]
p,q

p(k
2) q−k En−k,p,q = En,p,q(0). (101)

Finally, by using the fact that

En,p,q(1) := En,p,q = pq1−2nq(n
2) p(n

2)(−1)nEn, 1
p ,

1
q
(0),

which was obtained in (92), we get

(−1)n pq1−2n

[2]n
p,q

n∑
k=0

[
n
k

]
p,q

p(k
2)+(n−k

2 ) q(n−k
2 )+k En−k, 1

p ,
1
q
(0) = En,p,q(0).

Taking p = 1 in Theorem 11, we have the following corollary.

Corollary 25. For the big q-Euler numbers, it is asserted that

(−1)nq1−2n

[2]n
q

n∑
k=0

[
n
k

]
q

q(n−k
2 )+k En−k, 1

q
(1) = En,q(0). (102)
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Upon setting p = 1 and q→ 1− in Theorem 11, we have the following corollary.

Corollary 26. The Euler numbers En satisfies the following relation:

(−1)n

2n

n∑
k=0

(
n
k

)
En−k(1) = En(0). (103)

For x = 1 in Theorem 8, we get the following corollary.

Corollary 27. For the big (p, q)-Euler polynomials, it is asserted that
n∑

k=0

[
n
k

]
p,q

q(k
2)−k En−k,p,q(0) = En,p,q(1). (104)

Taking p = 1 in Corollary 27, we get the following consequence.

Corollary 28. The big q-Euler polynomials satisfy the following relation:
n∑

k=0

[
n
k

]
q

q(k
2)−k En−k,q(0) = En,q(1). (105)

By letting p = 1 and q→ 1− in Corollary 27, we get the following corollary.

Corollary 29. The Euler polynomials En(x) satisfies the following relation:
n∑

k=0

(
n
k

)
En−k(0) = En(1). (106)

Theorem 12. A recurrence relation satisfied by the big (p, q)-Euler polynomials is given by

pn

q

(
x −

1
2

)
En,p,q

(
q
p

x
)

+
pn

q[2]p,q

n−1∑
k=0

[
n
k

]
p,q

en−k,p,q Ek,p,q

(
q
p

x
)

= En+1,p,q(x), (107)

where the coefficients ek,p,q are given by

ek,p,q :=
(

q
p

)k

Ek,p,q(0)

=
(−1)k(pq)1−k

[2]k
p,q

k∑
l=0

[
k
l

]
p,q

p( l
2)+(k−l

2 ) q(k−l
2 )+l Ek−l, 1

p ,
1
q
(0). (108)

Proof. Taking the (p, q) derivatives with respect to t on both sides of the generating function of the big
(p, q)-Euler polynomials and using the rules in (1) and (2), and rearranging some terms, we have

x
q


[2]p,q

Ep,q

(
pt
q

)
+ 1

 Ep,q(xt)

+ Ep,q(xt)

−
p + q

q
1

Ep,q

(
pt
q

)
+ 1

+
p + q

q
1(

Ep,q

(pt
q

)
+ 1

)(
Ep,q(t) + 1

)


=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
. (109)
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Using the fact that

Ep,q(t) ep,q(−t) = 1

in (109) and rearranging some terms again, we can write

x
q

[2]p,q

Ep,q

(
pt
q

)
+ 1

Ep,q(xt) −
p + q
q[2]p,q

[2]p,q

Ep,q

(
pt
q

)
+ 1

Ep,q(xt)

+
p + q

q
1

Ep,q

(
pt
q

)
+ 1

Ep,q(xt)
[2]p,q

[2]p,q

(
Ep,q(t) + 1

) Ep,q

(
1

[2]p,q
t
)

ep,q

(
−

1
[2]p,q

t
)

=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
,

which, upon inserting the corresponding series, yields

x
q

∞∑
n=0

En,p,q

(
q
p

x
)

(pt)n

[n]p,q!
−

1
q

∞∑
n=0

En,p,q

(
q
p

x
)

(pt)n

[n]p,q!

+
1
q

∞∑
n=0

En,p,q

(
q
p

x
)

(pt)n

[n]p,q!
1

[2]p,q

∞∑
k=0

Ek,p,q

(
1

[2]p,q

)
(qt)k

[k]p,q!

∞∑
l=0

p( l
2)

(− 1
[2]p,q

t)l

[l]p,q!

=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
.

Applying the Cauchy product, we get

x
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!
−

1
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!

+
1

q[2]p,q

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

k∑
l=0

[
k
l

]
p,q

(−1)l

[2]l
p,q

qk−l pn−k+( l
2)

· Ek−l,p,q

(
1

[2]p,q

)
En−k,p,q

(
q
p

x
)

tn

[n]p,q!

=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
. (110)

Now, using the fact that

En,p,q(
1

[2]p,q
) = [2]−n

p,q En,p,q

in (110) with

En,p,q(1) := En,p,q = (−1)n q(n
2)+1−2n p(n

2)+1 En, 1
p ,

1
q
(0),

we get

En,p,q

(
1

[2]p,q

)
= (−1)n [2]−n

p,q q(n
2)+1−2n p(n

2)+1 En, 1
p ,

1
q
(0). (111)
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Upon setting n = k − l and substituting for Ek−l,p,q

(
1

[2]p,q

)
from (111), we get

x
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!
−

1
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!

+
1

q[2]p,q

∞∑
n=0

n∑
k=0

(−1)k
[
n
k

]
p,q

k∑
l=0

[
k
l

]
p,q

p( l
2) pn−k+1 q−k+l+1 [2] −k

p,q

· p(k−l
2 ) q(k−l

2 ) Ek−l, 1
p ,

1
q
(0)En−k,p,q

(
q
p

x
)

tn

[n]p,q!

=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
. (112)

In this last equation (112), by defining ek,p,q by

ek,p,q :=
(

q
p

)k

Ek,p,q(0) =
(−1)k(pq)1−k

[2]k
p,q

k∑
l=0

[
k
l

]
p,q

p(k−l
2 )+( l

2) q(k−l
2 )+l Ek−l, 1

p ,
1
q
(0),

we get

x
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!
−

1
q

∞∑
n=0

pn En,p,q

(
q
p

x
)

tn

[n]p,q!

+
1

q[2]p,q

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

pn ek,p,q En−k,p,q

(
q
p

x
)

tn

[n]p,q!

=

∞∑
n=0

En+1,p,q(x)
tn

[n]p,q!
. (113)

Equating the coefficients of tn

[n]p,q! of both sides of (113), we get

pn

q
(x − 1) En,p,q

(
q
p

x
)

+
pn

q[2]p,q

n∑
k=0

[
n
k

]
p,q

ek,p,qEn−k,p,q

(
q
p

x
)

= En+1,p,q(x). (114)

Equation (114) can be written as follows:

pn

q
(x − 1)En,p,q

(
q
p

x
)

+
pn

q[2]p,q

n∑
k=0

[
n
k

]
p,q

en−k,p,q Ek,p,q

(
q
p

x
)

= En+1,p,q(x).

We can also write

pn

q
(x − 1)En,p,q

(
q
p

x
)

+
pn

q[2]p,q
e0,p,q En,p,q

(
q
p

x
)

+
pn

q[2]p,q

n−1∑
k=0

[
n
k

]
p,q

en−k,p,q Ek,p,q

(
q
p

x
)

= En+1,p,q(x). (115)

Now, by the definition of ek,p,q, we have

e0,p,q = pqE0, 1
p ,

1
q
(1). (116)
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Thus, by setting n = 0 in Corollary 27 and replacing p by 1
p , and q by 1

q , we get

E0, 1
p ,

1
q
(1) = E0, 1

p ,
1
q
(0). (117)

Therefore, we have

e0,p,q = pqE0, 1
p ,

1
q
(0). (118)

In order to compute E0, 1
p ,

1
q
(0),by taking x = 0 in the generating function of the big (p, q)-Euler polynomials,

we get

[2]p,q

Ep,q

(
t
q

)
+ 1

=

∞∑
n=0

En,p,q(0)
tn

[n]p,q!
, (119)

By replacing p by 1
p and q by 1

q in (119), we get

[2]p,q

pq
(
ep,q(qt) + 1

) =

∞∑
n=0

p(n
2)q(n

2) En, 1
p ,

1
q
(0)

tn

[n]p,q!
. (120)

Equation (120) can be written as follows:

[2]p,q

pq
=

(
ep,q(qt) + 1

) ∞∑
n=0

p(n
2) q(n

2) En, 1
p ,

1
q
(0)

tn

[n]p,q!
. (121)

Inserting the corresponding series in (121), we get

[2]p,q

pq
=

 ∞∑
k=0

p(k
2) qktk

[k]p,q!
+ 1

 ∞∑
n=0

p(n
2) q(n

2) En, 1
p ,

1
q
(0)

tn

[n]p,q!
, (122)

which, by an appeal to the Cauchy product, yields

[2]p,q

pq
=

∞∑
n=0

n∑
k=0

[
n
k

]
p,q

p(k
2)+(n−k

2 ) q(n−k
2 )+kEn−k, 1

p ,
1
q
(0)

tn

[n]p,q!

+

∞∑
n=0

p(n
2)q(n

2)En, 1
p ,

1
q
(0)

tn

[n]p,q!
. (123)

Equating the coefficients of tn

[n]p,q! and taking n = 0 in (123), we find that

E0, 1
p ,

1
q
(0) =

[2]p,q

2pq
, (124)

which, when inserted into (118), yields

e0,p,q =
[2]p,q

2
. (125)

Now, inserting e0,p,q into (115), we get

pn

q

(
x −

1
2

)
En,p,q

(
q
p

x
)

+
pn

q[2]p,q

n−1∑
k=0

[
n
k

]
p,q

en−k,p,q Ek,p,q

(
q
p

x
)

= En+1,p,q(x).
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Taking p = 1 in Theorem 12, we have the following corollary.

Corollary 30. The recurrence relation satisfied by the big q-Euler polynomials is given by

1
q

(
x −

1
2

)
En,q(qx) +

1
q[2]q

n−1∑
k=0

[
n
k

]
q
en−k,q Ek,q(qx) = En+1,q(x), (126)

where

ek,q := qkEk,q(0) =
(−1)kq1−k

[2]k
q

k∑
l=0

[
k
l

]
q

q(k−l
2 )+l Ek−l, 1

q
(0). (127)

Taking p = 1 and q→ 1− in Theorem 12, we deduce the following corollary.

Corollary 31. (see [6]) The recurrence relation satisfied by the Euler polynomials En(x) is given by(
x −

1
2

)
En(x) +

1
2

n−1∑
k=0

(
n
k

)
en−k Ek(x) = En+1(x), (128)

where

ek := Ek(0) =
(−1)k

2k

k∑
l=0

(
k
l

)
Ek−l(0). (129)

Theorem 13. The difference equation satisfied by the big (p, q)-Euler polynomials En,p,q(x) is given by

pn

q

(
px −

1
2

)
Dp,q,x

(
En,p,q

(q
p

x
))

+
pn

q
En,p,q

(
q2

p
x
)

+
pn

[2]p,q

n−1∑
k=1

qn−k−1 en−k,p,q

[n − k]p,q!
Dn−k+1

p,q,x

(
En,p,q

(x
p

))
=

[n + 1]p,q

q
En,p,q(qx). (130)

Proof. The proof of Theorem 13 is similar to the proof which we have already presented for the big (p, q)-
Bernoulli polynomials. Since the derivative operator is given by

L−n,p,q :=
q

[n]p,q
Dp,q,x,

we write the following expression:

Ek,p,q

(
q
p

x
)

= qn−k [k]p,q!
[n]p,q!

Dn−k
p,q,x

(
En,p,q

(x
p

))
,

which, when inserted into (107), yields

pn

q

(
x −

1
2

)
En,p,q

(
q
p

x
)

+
pn

[2]p,q

n−1∑
k=0

qn−k−1 en−k,p,q

[n − k]p,q!
Dn−k

p,q,x

(
En,p,q

(x
p

))
= En+1,p,q(x). (131)

Taking the (p, q)-derivatives of both sides of (131) with respect to x, we get the difference equation (130)
asserted by Theorem 13.
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Taking p = 1 in Theorem 13, we have the following corollary.

Corollary 32. The difference equation satisfied by the big q-Euler polynomials En,q(x) is given by

1
q

(
x −

1
2

)
Dq,x

(
En,q(qx)

)
+

1
q

En,q(q2x)

+
1

q + 1

n−1∑
k=1

qn−k−1 en−k,q

[n − k]q!
Dn−k+1

q,x

(
En,q(x)

)
=

[n + 1]q

q
En,q(qx). (132)

Letting p = 1 and q→ 1− in Theorem 13, we have the following corollary.

Corollary 33. (see [6]) The differential equation satisfied by the Euler polynomials En(x) is given by

(
x −

1
2

) d
dx

(
En(x)

)
+

1
2

n−1∑
k=1

en−k

(n − k)!

(
d

dx

)n−k+1 (
En(x)

)
− nEn(x) = 0. (133)

6. Concluding Remarks and Observations

In our present investigation, we have introduced and studied the various properties and characteristics
of the big (p, q)-Appell polynomials. In particular, we have derived an equivalence theorem satisfied by big
(p, q)-Appell polynomials. By appropriately specializing our main results involving the big (p, q)-Appell
polynomials, we have deduced the corresponding equivalence theorem, recurrence relation and difference
equation for the big q-Appell polynomials. We have also presented the equivalence theorem, recurrence
relation and differential equation for the usual Appell polynomials. Moreover, for the big (p, q)-Bernoulli
polynomials and the big (p, q)-Euler polynomials, we have derived the recurrence relations and the differ-
ence equations. When p = 1, we have given the recurrence relations and the difference equations which
are satisfied by the big q-Bernoulli polynomials and the big q-Euler polynomials. In the case when p = 1
and q→ 1−, the big (p, q)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the re-
currence relation and the difference equation which we have obtained for the big (p, q)-Appell polynomials
coincide with the recurrence relation and the differential equation which are satisfied by the usual Appell
polynomials.

We now choose to point out some obvious connections between the (p, q)-analysis and the classical
q-analysis. Here, in this last section on concluding remarks and observations, we reiterate the fact that the
results for the (p, q)-analogues, such as those which we have considered in this article for 0 < q < p 5 1,
can easily be deduced from the corresponding (possibly known) results for the familiar q-analogues (with
0 < q < 1) by applying some obvious parametric and argument variations, the additional parameter p being
redundant. Indeed, as observed earlier by Srivastava et al. [25], a considerably large number of authors
have used the so-called (p, q)-analysis by introducing a seemingly redundant parameter p in the classical
q-analysis. Also, as we have indicated already in Section 1, the so-called (p, q)-number [n]p,q is given (for
0 < q < p 5 1) by

[n]p,q :=


pn
− qn

p − q
(n ∈ {1, 2, 3, · · · })

0 (n = 0)

=: pn−1 [n] q
p
, (134)
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where, for the q-number [n]q, we have

[n]q :=
1 − qn

1 − q

= p1−n
(

pn
− (pq)n

p − (pq)

)
= p1−n [n]p,pq. (135)

Furthermore, the so-called (p, q)-derivative or the so-called (p, q)-difference of a suitable function f (z) is
denoted by

(
Dp,q f

)
(z) and defined, in a given subset of C, by

(
Dp,q f

)
(z) =


f
(
pz

)
− f

(
qz

)(
p − q

)
z

(z , 0; 0 < q < p 5 1)

f ′ (0) (z = 0; 0 < q < p 5 1),

(136)

so that, clearly, we have the following connection with the familiar q-derivative or the q-difference (Dq f )(z):

(
Dp,q f

)
(z) =

(
D q

p
f
) (

pz
)

and
(
Dq f

)
(z) =

(
Dp,pq f

) ( z
p

)
(z ∈ C; 0 < q < p 5 1). (137)

These last equations (134), (135), (136) and (137) exhibit the fact that, in most cases, the (p, q)-analogues
which have been considered in this article as well as in other earlier investigations for 0 < q < p 5 1 can
easily be deduced from the corresponding (possibly known) q-analogues (with 0 < q < 1) by applying some
obvious parametric and argument variations of the kind which we have mentioned above and in Section 1,
the additional parameter p being redundant.
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